Effect of In Vitro Gastrointestinal Digestion on the Polyphenol Bioaccessibility and Bioavailability of Processed Sorghum (Sorghum bicolor L. Moench)
Abstract
:1. Introduction
2. Results
2.1. Effect of Simulated Gastrointestinal Digestion on the Total Phenolic Content (TPC) of Processed Sorghum
2.2. Effect of Simulated Digestion on the Antioxidant and Radical Scavenging Activity of Processed Sorghum
2.3. Influence of Different Growing Locations on the TPC of Processed and Digested Sorghum
2.4. UHPLC—Online ABTS and QTOF LC-MS Identification and Quantification of Phenolic Compounds Post In Vitro Digestion and Caco-2 Intestinal Transport of Processed Sorghum
2.5. Transport of Digested Sorghum Phenolic Compounds Through the Basolateral Chamber of the In Vitro Caco-2 Intestinal Monolayer
3. Materials and Methods
3.1. Materials
3.1.1. Sorghum Samples
3.1.2. Chemicals, Standards and Reagents
3.2. Methods
3.3. Simulated Digestion of Processed Sorghum Using an In Vitro Approach
3.4. Determination of Phenolic Content and Antioxidant Potential
3.4.1. Total Phenolic Content (TPC)
3.4.2. Radical Scavenging Activity Using the ABTS Assay
3.4.3. Antioxidant Activity Using the Ferric Reducing Antioxidant Potential (FRAP) Assay
3.5. UHPLC—Online ABTS Analysis of Sorghum Samples
3.6. QTOF LC-MS Sorghum Phenolic Compound Identification
3.7. Caco-2 Cellular Transport Assay
3.8. Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luzardo-Ocampo, I.; Ramírez-Jiménez, A.K.; Cabrera-Ramírez, Á.H.; Rodríguez-Castillo, N.; Campos-Vega, R.; Loarca-Piña, G.; Gaytán-Martínez, M. Impact of cooking and nixtamalization on the bioaccessibility and antioxidant capacity of phenolic compounds from two sorghum varieties. Food Chem. 2020, 309, 125684. [Google Scholar] [CrossRef] [PubMed]
- Adelakun, O.E.; Duodu, G. Identification and quantification of phenolic compounds and bioactive properties of sorghum-cowpea-based food subjected to an in vitro digestion model. Eur. J. Nutr. Food Saf. 2017, 7, 57–66. [Google Scholar] [CrossRef]
- Nignpense, B.E.; Francis, N.; Blanchard, C.; Santhakumar, A.B. Effect of gastrointestinal digestion on the stability, antioxidant activity, and Caco-2 cellular transport of pigmented grain polyphenols. J. Food Sci. 2024, 89, 2701–2715. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; He, F.; Chen, G. Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. J. Funct. Foods 2014, 7, 101–111. [Google Scholar] [CrossRef]
- Girard, A.L.; Awika, J.M. Sorghum polyphenols and other bioactive components as functional and health promoting food ingredients. J. Cereal Sci. 2018, 84, 112–124. [Google Scholar] [CrossRef]
- Collins, A.; Santhakumar, A.B.; Francis, N.; Blanchard, C.; Chinkwo, K. Impact of sorghum (Sorghum bicolor L. Moench) phenolic compounds on cancer development pathways. Food Biosci. 2024, 59, 104177. [Google Scholar] [CrossRef]
- Callcott, E.T.; Blanchard, C.L.; Snell, P.; Santhakumar, A.B. The anti-inflammatory and antioxidant effects of pigmented rice consumption in an obese cohort. Food Funct. 2019, 10, 8016–8025. [Google Scholar] [CrossRef]
- Francis, N.; Rao, S.; Blanchard, C.; Santhakumar, A. Black sorghum phenolic extract regulates expression of genes associated with oxidative stress and inflammation in human endothelial cells. Molecules 2019, 24, 3321. [Google Scholar] [CrossRef]
- de Morais Cardoso, L.; Pinheiro, S.S.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Crit. Rev. Food Sci. Nutr. 2017, 57, 372–390. [Google Scholar] [CrossRef]
- Mohapatra, D.; Patel, A.S.; Kar, A.; Deshpande, S.S.; Tripathi, M.K. Effect of different processing conditions on proximate composition, anti-oxidants, anti-nutrients and amino acid profile of grain sorghum. Food Chem. 2019, 271, 129–135. [Google Scholar] [CrossRef]
- Collins, A.; Santhakumar, A.; Latif, S.; Chinkwo, K.; Francis, N.; Blanchard, C. Impact of processing on the phenolic content and antioxidant activity of Sorghum bicolor L. Moench. Molecules 2024, 29, 3626. [Google Scholar] [CrossRef] [PubMed]
- Hole, A.S.; Kjos, N.P.; Grimmer, S.; Kohler, A.; Lea, P.; Rasmussen, B.; Lima, L.R.; Narvhus, J.; Sahlstrøm, S. Extrusion of barley and oat improves the bioaccessibility of dietary phenolic acids in growing pigs. J. Agric. Food Chem. 2013, 61, 2739–2747. [Google Scholar] [CrossRef] [PubMed]
- Hemery, Y.M.; Anson, N.M.; Havenaar, R.; Haenen, G.R.; Noort, M.W.; Rouau, X. Dry-fractionation of wheat bran increases the bioaccessibility of phenolic acids in breads made from processed bran fractions. Food Res. Int. 2010, 43, 1429–1438. [Google Scholar] [CrossRef]
- Adarkwah-Yiadom, M.; Duodu, K.G. Effect of extrusion cooking and simulated in vitro gastrointestinal digestion on condensed tannins and radical scavenging activity of type II and type III whole grain sorghum. Int. J. Food Sci. Technol. 2017, 52, 2282–2294. [Google Scholar] [CrossRef]
- Hilary, S.; Tomás-Barberán, F.A.; Martinez-Blazquez, J.A.; Kizhakkayil, J.; Souka, U.; Al-Hammadi, S.; Habib, H.; Ibrahim, W.; Platat, C. Polyphenol characterisation of Phoenix dactylifera L. (date) seeds using HPLC-mass spectrometry and its bioaccessibility using simulated in-vitro digestion/Caco-2 culture model. Food Chem. 2020, 311, 125969. [Google Scholar] [CrossRef]
- Marina, Z.; Amin, I.; Loh, S.P.; Fadhilah, J.; Kartinee, K.N. Intestinal permeability and transport of apigenin across caco-2 cell monolayers. J. Food Bioact. 2019, 7, 48–55. [Google Scholar] [CrossRef]
- Domínguez-Avila, J.A.; Wall-Medrano, A.; Velderrain-Rodríguez, G.; Chen, C.-Y.O.; Salazar-López, N.J.; Robles-Sánchez, M.; González-Aguilar, G.A. Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food Funct. 2017, 8, 15–38. [Google Scholar] [CrossRef]
- Nignpense, B.E.; Latif, S.; Francis, N.; Blanchard, C.; Santhakumar, A.B. Bioaccessibility and antioxidant activity of polyphenols from pigmented barley and wheat. Foods 2022, 11, 3697. [Google Scholar] [CrossRef]
- Correia, I.; Nunes, A.; Barros, A.S.; Delgadillo, I. Comparison of the effects induced by different processing methods on sorghum proteins. J. Cereal Sci. 2010, 51, 146–151. [Google Scholar] [CrossRef]
- Proietti, I.; Mantovani, A.; Mouquet-Rivier, C.; Guyot, J. Modulation of chelating factors, trace minerals and their estimated bioavailability in Italian and African sorghum (Sorghum bicolor (L.) Moench) porridges. Int. J. Food Sci. Technol. 2013, 48, 1526–1532. [Google Scholar] [CrossRef]
- Rao, S.; Santhakumar, A.B.; Chinkwo, K.A.; Wu, G.; Johnson, S.K.; Blanchard, C.L. Characterization of phenolic compounds and antioxidant activity in sorghum grains. J. Cereal Sci. 2018, 84, 103–111. [Google Scholar] [CrossRef]
- Sompong, R.; Siebenhandl-Ehn, S.; Linsberger-Martin, G.; Berghofer, E. Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chem. 2011, 124, 132–140. [Google Scholar] [CrossRef]
- Swallah, M.S.; Fu, H.; Sun, H.; Affoh, R.; Yu, H. The Impact of Polyphenol on General Nutrient Metabolism in the Monogastric Gastrointestinal Tract. J. Food Qual. 2020, 2020, 5952834. [Google Scholar] [CrossRef]
- Salazar-López, N.J.; González-Aguilar, G.A.; Rouzaud-Sández, O.; Robles-Sánchez, M. Bioaccessibility of hydroxycinnamic acids and antioxidant capacity from sorghum bran thermally processed during simulated in vitro gastrointestinal digestion. J. Food Sci. Technol. 2018, 55, 2021–2030. [Google Scholar] [CrossRef]
- Jamloki, A.; Bhattacharyya, M.; Nautiyal, M.; Patni, B. Elucidating the relevance of high temperature and elevated CO2 in plant secondary metabolites (PSMs) production. Heliyon 2021, 7, e07709. [Google Scholar] [CrossRef]
- Punia, H.; Tokas, J.; Malik, A.; Singh, S.; Phogat, D.; Bhuker, A.; Mor, V.S.; Rani, A.; Sheokand, R.N. Discerning morpho-physiological and quality traits contributing to salinity tolerance acquisition in sorghum [Sorghum bicolor (L.) Moench]. S. Afr. J. Bot. 2020, 140, 409–418. [Google Scholar] [CrossRef]
- Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer Efficacy of Polyphenols and Their Combinations. Nutrients 2016, 8, 552. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, P.; Warner, R.D.; Fang, Z. Sorghum grain: From genotype, nutrition, and phenolic profile to its health benefits and food applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2025–2046. [Google Scholar] [CrossRef]
- Ou, K.; Gu, L. Absorption and metabolism of proanthocyanidins. J. Funct. Foods 2014, 7, 43–53. [Google Scholar] [CrossRef]
- Bergonzi, M.C.; De Stefani, C.; Vasarri, M.; Stojcheva, E.I.; Ramos-Pineda, A.M.; Baldi, F.; Bilia, A.R.; Degl’innocenti, D. Encapsulation of olive leaf polyphenol-rich extract in polymeric micelles to improve its intestinal permeability. Nanomaterials 2023, 13, 3147. [Google Scholar] [CrossRef]
- Cabrera-Ramírez, A.; Luzardo-Ocampo, I.; Ramírez-Jiménez, A.; Morales-Sánchez, E.; Campos-Vega, R.; Gaytán-Martínez, M. Effect of the nixtamalization process on the protein bioaccessibility of white and red sorghum flours during in vitro gastrointestinal digestion. Food Res. Int. 2020, 134, 109234. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Ozkan, G.; Isik, H.; Horoz, O.; Van Camp, J.; Capanoglu, E. Black carrot pomace as a source of polyphenols for enhancing the nutritional value of cake: An in vitro digestion study with a standardized static model. LWT 2017, 77, 475–481. [Google Scholar] [CrossRef]
TPC (mg/g GAE) | ||||||||
---|---|---|---|---|---|---|---|---|
Sorghum Process | BlackSs | BlackSb | RedBu1 | RedBa1 | WhiteLi1 | RedBu2 | RedBa2 | WhiteLi2 |
R | 5.05 ± 1.18 a | 6.05 ± 1.82 a | 0.67 ± 0.08 a | 0.47 ± 0.14 a | 0.52 ± 0.06 a | 0.58 ± 0.07 a | 0.53 ± 0.08 a | 0.52 ± 0.05 a |
C | 10.00 ± 1.14 b | 10.51 ± 1.91 b | 0.69 ± 0.11 a | 0.52 ± 0.10 a | 0.49 ± 0.05 a | 0.69 ± 0.14 a | 0.68 ± 0.07 b | 0.62 ± 0.21 ab |
C DIG | 9.20 ± 0.81 bc | 10.05 ± 1.71 bc | 0.96 ± 0.10 b | 0.94 ± 0.14 b | 0.91 ± 0.09 b | 0.91 ± 0.11 b | 0.89 ± 0.13 c | 0.89 ± 0.13 b |
F | 6.55 ± 0.55 d | 6.90 ± 1.84 a | 0.84 ± 0.06 c | 0.73 ± 0.12 c | 0.65 ± 0.07 c | 0.65 ± 0.11 c | 0.71 ± 0.12 b | 0.79 ± 0.17 c |
F DIG | 9.25 ± 1.70 be | 9.71 ± 1.37 bd | 1.03 ± 0.08 bd | 1.02 ± 0.13 bd | 0.95 ± 0.09 bd | 0.88 ± 0.11 bd | 0.97 ± 0.11 ce | 0.85 ± 0.11 bcd |
FC | 6.79 ± 1.21 df | 6.58 ± 1.15 a | 0.93 ± 0.07 e | 0.72 ± 0.11 ce | 0.45 ± 0.05 a | 0.58 ± 0.07 ae | 0.62 ± 0.11 b | 0.64 ± 0.18 ae |
FC DIG | 9.94 ± 1.88 bg | 9.30 ± 1.87 bde | 0.93 ± 0.11 ef | 1.00 ± 0.13 bf | 0.82 ± 0.07 e | 0.83 ± 0.13 f | 0.83 ± 0.12 g | 0.83 ± 0.09 e |
Peak | Tentative ID | m/z | RT | Polyphenol Class |
---|---|---|---|---|
1 ° | Kaempferol-3-O-xyloside | 418.9579 | 0.80 | Flavonol glycoside |
2 | Trans-Piceid | 251.0797 | 1.06 | Stilbene |
3 ° | Trans-cinnamic acid | 147.0310 | 1.07 | Phenolic acid |
4 | 6-Methoxy-7-hydroxycoumarin | 193.0360 | 1.09 | o-hydroxycinnamic acid |
5 °∆ | Procyanidin A1 | 539.1378 | 1.22 | Flavan-3-ol |
6 ∆ | Glutamine | 128.0360 | 1.64 | Digestion metabolite |
7 ° | Apigenin-7-O-glucoside | 413.1686 | 2.16 | Flavone glycoside |
8 ∆ | Kaempferol-3-O-glucuronide | 267.0744 | 2.20 | Flavone glycoside |
9 ° | Restrytisol A | 377.0864 | 2.30 | Stilbene |
10 | Coumarin | 145.0510 | 2.47 | o-hydroxycinnamic acid |
11 | Protocatechuic acid | 153.0198 | 3.00 | Phenolic acid |
12 ° | Trans-cinnamic acid | 147.0445 | 3.09 | Phenolic acid |
13 ° | Sinapic acid | 164.0718 | 3.20 | Phenolic acid |
14 ° | Apigenin-7-O-glucoside | 413.1679 | 3.65 | Flavone glycoside |
15 ° | Maackin A | 485.2382 | 3.84 | Stilbene |
16 ∆ | Petunidin-3-(6-O-coumaroyl) glucoside | 218.1028 | 4.13 | Flavone glycoside |
17 | Catechin | 289.0726 | 5.14 | Flavan-3-ol |
18 ° | Quercetin-3-(6-O-rhamnosyl) galactoside | 540.2797 | 5.45 | Flavone glycoside |
19 °∆ | Tryptophan | 203.0819 | 6.20 | Phenolic amino acid |
20 | 4-Acetylbutyric acid | 131.0721 | 7.55 | Phenolic acid |
21 ° | Trans-Pinostilbene | 241.1204 | 7.74 | Stilbene |
22 | Caffeic acid | 181.0512 | 7.75 | Phenolic acid |
23 | Procyanidin B1 isomer | 577.1386 | 8.97 | Flavan-3-ol |
24 | Catechin | 289.0733 | 9.08 | Flavan-3-ol |
25 ° | Malvidin-3-O-rutinoside | 330.2048 | 9.12 | Flavone glycoside |
26 | 2-Isopropylmalic acid | 177.0201 | 9.20 | Phenolic acid |
27 ° | Malvidin-3-O-glucoside | 512.2386 | 9.57 | Flavone glycoside |
28 ∆ | Epicatechin gallate | 440.1326 | 10.05 | Flavan-3-ol |
29 ° | Davidiol A | 567.3513 | 10.30 | Stilbene trimer |
30 | Apigeninidin | 253.0737 | 10.43 | 3-deoxyanthocyanidin |
31 | Procyanidin C1 | 865.1978 | 10.45 | Flavan-3-ol |
32 | Epigallocatechin | 307.1409 | 11.42 | Flavan-3-ol |
33 °∆ | Catechin | 289.0739 | 11.46 | Flavan-3-ol |
34 | Trans-cinnamic acid | 147.0453 | 11.79 | Phenolic acid |
35 | Isoferulic acid | 195.0668 | 12.09 | Phenolic acid |
36 ° | Diquercetin-3-(3-O-glucosyl) glucuronide | 756.3681 | 12.13 | Flavone glycoside |
37 | Catechin derivative | 720.1572 | 12.73 | Flavan-3-ol |
38 | N′.n′-dicafferoylspermidine | 468.2130 | 13.21 | Phenolic acid |
39 | Ferulic acid | 468.2156 | 13.56 | Phenolic acid |
40 ° | Procyanidin B3 | 579.3146 | 14.05 | Flavan-3-ol |
41 | Malic acid | 135.0458 | 14.53 | Phenolic acid |
42 | Catechin | 289.0738 | 14.60 | Flavan-3-ol |
43 ° | Procyanidin B2 | 451.2577 | 14.61 | Flavan-3-ol |
44 | Glucomalcomiin | 482.2334 | 15.39 | o-hydroxycinnamic acid |
45 | Kaempferol | 187.0980 | 15.67 | Flavonol |
46 | Epicat-(4beta→6)-epicatechin-(2beta→7,4beta→8)-epicatechin | 867.2377 | 16.36 | Flavan-3-ol |
47 | Procyanidin C1 | 867.2382 | 16.37 | Flavan-3-ol |
48 | Luteolin-7-O-glucoside | 447.0954 | 16.81 | Flavone glycoside |
49 | Pyrano-eriodictyol-(3→4)-catechin-7-O-glucoside | 867.2362 | 16.99 | Flavone glycoside |
50 | Taxifolin | 303.0527 | 17.69 | Flavononol |
51 | Procyanidin | 429.2133 | 17.98 | Flavan-3-ol |
52 | Pyrano-naringenin-(3→4)-catechin-7-O-glucoside isomer | 851.2415 | 18.55 | Flavone glycoside |
53 ∆ | 2,4,6-Trihydroxyphenanthrene-2-O-glucoside | 353.0496 | 18.63 | Flavone glycoside |
54 | Taxifolin | 303.0879 | 19.23 | Flavanonol |
55 | Pentahydroxyflavanone-(3→4)-catechin-7-O-glucoside isomer | 721.1780 | 19.99 | Flavone glycoside |
56 | Luteolin | 285.0766 | 21.45 | Flavone |
57 | 7-O-methyl-luteolinidin | 395.2135 | 21.49 | 3-deoxyanthocyanidin |
58 | Luteolin derivative | 415.1070 | 22.41 | Flavone |
Compound | % BlackSs Compound Retrieval | % BlackSb Compound Retrieval | % RedBu1 Compound Retrieval |
---|---|---|---|
5 | 6 ± 1 a | 22 ± 2 b | 6 ± 0 a |
6 | 100 ± 2 c | 100 ± 1 c | 100 ± 5 c |
8 | 100 ± 6 c | 100 ± 21 c | 100 ± 3 c |
16 | - | 100 ± 33 c | - |
19 | 83 ± 6 d | 100 ± 1 c | 45 ± 1 e |
28 | 100 ± 2 c | 100 ± 23 c | 100 ± 1 c |
33 | 100 ± 11 c | - | - |
53 | 100 ± 3 c | 100 ± 3 c | 100 ± 12 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collins, A.; Francis, N.; Chinkwo, K.; Santhakumar, A.B.; Blanchard, C. Effect of In Vitro Gastrointestinal Digestion on the Polyphenol Bioaccessibility and Bioavailability of Processed Sorghum (Sorghum bicolor L. Moench). Molecules 2024, 29, 5229. https://doi.org/10.3390/molecules29225229
Collins A, Francis N, Chinkwo K, Santhakumar AB, Blanchard C. Effect of In Vitro Gastrointestinal Digestion on the Polyphenol Bioaccessibility and Bioavailability of Processed Sorghum (Sorghum bicolor L. Moench). Molecules. 2024; 29(22):5229. https://doi.org/10.3390/molecules29225229
Chicago/Turabian StyleCollins, Aduba, Nidhish Francis, Kenneth Chinkwo, Abishek Bommannan Santhakumar, and Christopher Blanchard. 2024. "Effect of In Vitro Gastrointestinal Digestion on the Polyphenol Bioaccessibility and Bioavailability of Processed Sorghum (Sorghum bicolor L. Moench)" Molecules 29, no. 22: 5229. https://doi.org/10.3390/molecules29225229
APA StyleCollins, A., Francis, N., Chinkwo, K., Santhakumar, A. B., & Blanchard, C. (2024). Effect of In Vitro Gastrointestinal Digestion on the Polyphenol Bioaccessibility and Bioavailability of Processed Sorghum (Sorghum bicolor L. Moench). Molecules, 29(22), 5229. https://doi.org/10.3390/molecules29225229