Analyzing the Total Attractive Force and Hydrogen Storage on Two-Dimensional MoP2 at Different Temperatures Using a First-Principles Molecular Dynamics Approach
Abstract
:1. Introduction
2. Results
2.1. Hydrogen Storage on Pristine 2D MoP2
2.1.1. Optimization
2.1.2. First-Principle Molecular Dynamics Calculations
2.2. Hydrogen Storage on 2DMoP2 with Mo Vacancies
2.2.1. Optimization
2.2.2. First-Principles Molecular Dynamics Calculations
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Office of Energy Efficiency & Renewable Energy. DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles. Available online: https://www.osti.gov/biblio/1721803 (accessed on 24 July 2024).
- Jena, P. Materials for Hydrogen Storage: Past, Present, and Future. J. Phys. Chem. Lett. 2011, 2, 206–211. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Q.; Sun, Q. Electric field enhanced hydrogen storage on polarizable materials substrates. Proc. Natl. Acad. Sci. USA 2010, 107, 2801–2806. [Google Scholar] [CrossRef]
- Lasia, A. Mechanism and kinetics of the hydrogen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 19484–19518. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, M.; Ding, J.; Hong, S.; Masa, J.; Liu, S.; Sun, Z. Simple synthesis of two-dimensional MoP2 nanosheets for efficient electrocatalytic hydrogen evolution. Electrochem. Commun. 2018, 97, 27–31. [Google Scholar] [CrossRef]
- Yan, Y.; Xia, B.; Xu, Z.; Wang, X. Recent Development of Molybdenum Sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction. ACS Catal. 2014, 4, 1693–1705. [Google Scholar] [CrossRef]
- Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J.D.; Nørskov, J.K.; Abild-Pedersen, F.; Jaramillo, T.F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 2015, 8, 3022–3029. [Google Scholar] [CrossRef]
- McEnaney, J.M.; Chance Crompton, J.; Callejas, J.F.; Popczun, E.J.; Biacchi, A.J.; Lewis, N.S.; Schaak, R.E. Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution. Chem. Mater. 2014, 26, 4826–4831. [Google Scholar] [CrossRef]
- Wei, C.; Qian, L.; Xing, Z.; Asiri, A.M.; Alamri, K.A.; Sun, X. MoP nanosheets supported on biomass-derived carbon flake: One-step facile preparation and application as a novel high-active electrocatalyst toward hydrogen evolution reaction. Appl. Catal. B Environ. 2015, 164, 144–150. [Google Scholar]
- Karki, S.; Mondal, A.; Sinhamahapatra, A.; Ingole, P.G. Synthesis and Engineering of High-Performance Transition Metal-Based Electrocatalysts for Green Hydrogen Production and Storage. In Transition Metal-Based Electrocatalysts: Applications in Green Hydrogen Production and Storage; ACS Publications: Washington, DC, USA, 2023; pp. 169–203. [Google Scholar]
- He, T.; Zhen, W.; Chen, Y.; Guo, Y.; Li, Z.; Huang, N.; Li, Z.; Liu, R.; Liu, Y.; Lian, X.; et al. Integrated interfacial design of covalent organic framework photocatalysts to promote hydrogen evolution from water. Nat. Commun. 2023, 14, 329. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; Li, J.; Liu, H.; Liu, M.; Zhang, Y.; Su, L.; Pérez-Jiménez, A.I.; Guo, Y.; Yang, F.; et al. Mechanically Induced Highly Efficient Hydrogen Evolution from Water over Piezoelectric SnSe nanosheets. Small 2022, 18, e2202507. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Wu, S.; Liu, K.; Meng, X.; Li, B.; Lai, J.; Wang, L.; Feng, S. Phosphorus vacancies enriched cobalt phosphide embedded in nitrogen doped carbon matrix enabling seawater splitting at ampere-level current density. Nano Energy 2023, 109, 108292. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, Q.; Yao, H.; Wang, M.; Wu, P.; Wang, H.; Zhang, L.; Guo, L. Rapid synthesis of C60-MoC nanocomposites by molten salt electrochemical reaction for hydrogen evolution. J. Electrochem. Soc. 2023, 170, 026503. [Google Scholar] [CrossRef]
- Tarhan, C.; Mehmet, A.Ç. A study on hydrogen, the clean energy of the future: Hydrogen storage methods. J. Energy Storage 2021, 40, 102676. [Google Scholar] [CrossRef]
- Usman, M.R. Hydrogen storage methods: Review and current status. Renew. Sustain. Energy Rev. 2022, 167, 112743. [Google Scholar] [CrossRef]
- Edet, H.O.; Louis, H.; Benjamin, I.; Gideon, M.; Unimuke, T.O.; Adalikwu, S.A.; Nwagu, A.D.; Adeyinka, A.S. Hydrogen storage capacity of C12X12 (X = N, P, and Si). Chem. Phys. Impact 2022, 5, 100107. [Google Scholar] [CrossRef]
- Chen, Z.; Kirlikovali, K.O.; Idrees, K.B.; Wasson, M.C.; Farha, O.K. Porous materials for hydrogen storage. Chem 2022, 8, 693–716. [Google Scholar] [CrossRef]
- Shang, Y.; Pistidda, C.; Gizer, G.; Klassen, T.; Dornheim, M. Mg-based materials for hydrogen storage. J. Magnes. Alloys 2021, 9, 1837–1860. [Google Scholar] [CrossRef]
- Lin, H.J.; Lu, Y.S.; Zhang, L.T.; Liu, H.Z.; Edalati, K.; Révész, A. Recent advances in metastable alloys for hydrogen storage: A review. Rare Met. 2022, 41, 1797–1817. [Google Scholar] [CrossRef]
- Aydin, S.; Şimşek, M. The enhancement of hydrogen storage capacity in Li, Na, and Mg-decorated BC3 graphene by CLICH and RICH algorithms. Int. J. Hydrogen Energy 2019, 44, 7354–7370. [Google Scholar] [CrossRef]
- Suresh, K.; Aulakh, D.; Purewal, J.; Siegel, D.J.; Veenstra, M.; Matzger, A.J. Optimizing Hydrogen Storage in MOFs through Engineering of Crystal Morphology and Control of Crystal Size. J. Am. Chem. Soc. 2021, 143, 10727–10734. [Google Scholar] [CrossRef]
- Dou, X.; Gao, P.; Jiang, G.; Li, J.-W.; Tong, X.; Tan, Y. Enhanced reversible hydrogen storage performance of Mg-decorated g-C2N: First principles calculations. Comput. Mater. Sci. 2023, 220, 112046. [Google Scholar] [CrossRef]
- Chandrika, K.M.; Prathyusha, V. Is chitin a promising hydrogen storage material? A thorough quantum mechanical study. Int. J. Hydrogen Energy 2023, 48, 16779–16789. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, R.; Wang, J.; Wang, B.; Liang, B.; Yildirim, T.; Zhang, J.; Zhou, W.; Chen, B. Optimization of the Pore Structures of MOFs for Record High Hydrogen Volumetric Working Capacity. Adv. Mater. 2020, 32, e1907995. [Google Scholar] [CrossRef] [PubMed]
- Lesmana, L.A.; Aziz, M. Adoption of triply periodic minimal surface structure for effective metal hydride-based hydrogen storage. Energy 2023, 262, 125399. [Google Scholar] [CrossRef]
- Labrousse, J.; Belasfar, K.; Aziz, O.; El Kenz, A.; Benyoussef, A. First principles study of BC7 monolayer compared to graphene as an ultra-high-capacity sheet for hydrogen storage applications. Diam. Relat. Mater. 2022, 131, 109523. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Y.; Xiao, X.; Zhou, P.; Bi, J.; Qi, J.; Lv, L.; Xu, F.; Sun, L.; Chen, L. Robust architecture of 2D nano Mg-based borohydride on graphene with superior reversible hydrogen storage performance. J. Mater. Sci. Technol. 2023, 146, 121–130. [Google Scholar] [CrossRef]
- Luo, H.; Yang, Y.; Lu, L.; Li, G.; Wang, X.; Huang, X.; Tao, X.; Huang, C.; Lan, Z.; Zhou, W.; et al. Highly dispersed nano-TiB2 derived from the two-dimensional Ti3CN MXene for tailoring the kinetics and reversibility of the Li-Mg-BH hydrogen storage material. Appl. Surf. Sci. 2023, 610, 155581. [Google Scholar] [CrossRef]
- Tian, W.; Ren, G.; Cui, H.; Huan, Y.; Liu, P.; Yang, L.; Jiang, Q.; Bai, X. Analysis of hydrogen storage mechanism in bilayer double-vacancy defective graphene modified using transition metals: Insights from Ti-BDVG(Ti)-Ti. Int. J. Hydrogen Energy 2023, 48, 14322–14336. [Google Scholar] [CrossRef]
- Abifarin, J.K.; Torres, J.F.; Lu, Y. 2D materials for enabling hydrogen as an energy vector. Nano Energy 2024, 129, 109997. [Google Scholar] [CrossRef]
- Nagar, R.; Srivastava, S.; Hudson, S.L.; Amaya, S.L.; Tanna, A.; Sharma, M.; Achayalingam, R.; Sonkaria, S.; Khare, V.; Sesha, S.; et al. Recent developments in state-of-the-art hydrogen energy technologies—Review of hydrogen storage materials. Sol. Compass 2023, 5, 100033. [Google Scholar] [CrossRef]
- Singh, M.; Shukla, A.; Chakraborty, B. Highly Efficient Hydrogen Storage of Sc Decorated Biphenylene Monolayer Near Ambient Temperature: An Ab-initio Simulations. Sustain. Energy Fuels 2023, 7, 996–1010. [Google Scholar] [CrossRef]
- Marcos-Viquez, A.L.; Miranda, A.; Cruz-Irisson, M.; Pérez, L.A. Tin carbide monolayers decorated with alkali metal atoms for hydrogen storage. Int. J. Hydrogen Energy 2022, 47, 41329–41335. [Google Scholar] [CrossRef]
- Gumbs, G.; Balassis, A.; Iurov, A.; Fekete, P. Strongly Localized Image States of Spherical Graphitic Particles. Sci. World J. 2014, 2014, 726303. [Google Scholar] [CrossRef] [PubMed]
- Bardeen, J. The Image and Van der Waals Forces at a Metallic Surface. Phys. Rev. B 1940, 58, 727–736. [Google Scholar] [CrossRef]
- Eisenshitz, R.; London, F. Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften. Z. Phys. 1930, 60, 491–527. [Google Scholar] [CrossRef]
- London, F. Zur Theorie und Systematik der Molekularkräfte. Z. Phys. 1930, 63, 245–279. [Google Scholar] [CrossRef]
- Canales, M.; Marcos, A.; Zárate, A.; Magaña, L.F. Effects of masking titanium with a one-atom-thick carbon layer on the adsorption of nitrogen monoxide, nitrogen dioxide, ozone, and formaldehyde. J. Mater. Sci. 2020, 55, 17000–17018. [Google Scholar] [CrossRef]
- Troullier, N.; Martins, J.L. Efficient Pseudopotentials for Plane-Wave Calculations. Phys. Rev. B 1991, 43, 1993–2006. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Soler, J.M.; Artacho, E.; Gale, J.D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. Phys. Condens. Matter 2002, 14, 2745. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Grimme, S.J. Accurate description of van der Waals complexes by density functional theory including empirical corrections. Comput. Chem. 2004, 25, 1463. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, L.; Gordiy, I.; Friede, M.; Helmich-Paris, B.; Grimme, S.; Hansen, A.; Bursch, M. Extension of the D3 and D4 London dispersion corrections to the full actinides series. Phys. Chem. Chem. Phys. 2024, 26, 21379–21394. [Google Scholar] [CrossRef] [PubMed]
- Tuma, C.; Sauer, J. Treating dispersion effects in extended systems by hybrid MP2: DFT calculations—Protonation of isobutene in zeolite ferrierite. Phys. Chem. Chem. Phys. 2006, 8, 3955–3965. [Google Scholar] [CrossRef]
- Yousaf, K.E.; Brothers, E.N. Applications of screened hybrid density functionals with empirical dispersion corrections to rare gas dimers and solids. J. Chem. Theory Comput. 2010, 6, 864–872. [Google Scholar] [CrossRef]
- Shimojo, F.; Wu, Z.; Nakano, A.; Kalia, R.K.; Vashishta, P. Density functional study of 1, 3, 5-trinitro-1, 3, 5-triazine molecular crystal with van der Waals interactions. J. Chem. Phys. 2010, 132, 094106. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 2019, 150, 154122. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced Capabilities for Materials Modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef]
- Kokalj, A. XCrySDen—A New Program for Displaying Crystalline Structures and Electron Densities. J. Mol. Graph. Model. 1999, 17, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viquez, A.L.M.; Torres, O.S.; Solís, L.F.M. Analyzing the Total Attractive Force and Hydrogen Storage on Two-Dimensional MoP2 at Different Temperatures Using a First-Principles Molecular Dynamics Approach. Molecules 2024, 29, 5228. https://doi.org/10.3390/molecules29225228
Viquez ALM, Torres OS, Solís LFM. Analyzing the Total Attractive Force and Hydrogen Storage on Two-Dimensional MoP2 at Different Temperatures Using a First-Principles Molecular Dynamics Approach. Molecules. 2024; 29(22):5228. https://doi.org/10.3390/molecules29225228
Chicago/Turabian StyleViquez, Alma Lorena Marcos, Osiris Salas Torres, and Luis Fernando Magaña Solís. 2024. "Analyzing the Total Attractive Force and Hydrogen Storage on Two-Dimensional MoP2 at Different Temperatures Using a First-Principles Molecular Dynamics Approach" Molecules 29, no. 22: 5228. https://doi.org/10.3390/molecules29225228
APA StyleViquez, A. L. M., Torres, O. S., & Solís, L. F. M. (2024). Analyzing the Total Attractive Force and Hydrogen Storage on Two-Dimensional MoP2 at Different Temperatures Using a First-Principles Molecular Dynamics Approach. Molecules, 29(22), 5228. https://doi.org/10.3390/molecules29225228