Effect of Protein, Carbohydrate, and Oil on Phytochemical Bioaccessibility and Bioactivities of the Ginkgo biloba L. Leaf Formulations After In Vitro Digestion
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Vitro Bioaccessibility of Polyphenols and Triterpene Lactones
2.2. Antioxidant Activity
2.3. In Vitro Digestive Enzyme Inhibitory Activity and BSA Glycation
2.4. Principal Component Analysis (PCA)
3. Materials and Methods
3.1. Materials and Preparation of Ginkgo Formulations
3.2. In Vitro Digestion
3.3. Spectrophotometric Phytochemical Analysis
3.4. RP-HPLC Analysis of Polyphenol Compounds
3.5. Antioxidant Activity Assays
3.6. Enzyme Inhibitory Activity Assay and BSA Glycation
3.7. In Vitro Bioaccessibility of Ginkgo Phytochemicals
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bone, K.; Mills, S. Principles and Practice of Phytotherapy: Modern Herbal Medicine; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013; ISBN 0-7020-5297-3. [Google Scholar] [CrossRef]
- Eisvand, F.; Razavi, B.M.; Hosseinzadeh, H. The Effects of Ginkgo biloba on Metabolic Syndrome: A Review. Phytother. Res. 2020, 34, 1798–1811. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Sun, J.; Cui, F.; Zhang, T.; Liu, X.; He, Z. Self-Emulsifying Drug Delivery Systems for Improving Oral Absorption of Ginkgo biloba Extracts. Drug Deliv. 2008, 15, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Gani, A. Ultrasonicated Resveratrol Loaded Starch Nanocapsules: Characterization, Bioactivity and Release Behaviour under in-Vitro Digestion. Carbohydr. Polym. 2021, 251, 117111. [Google Scholar] [CrossRef]
- Alminger, M.; Aura, A.; Bohn, T.; Dufour, C.; El, S.; Gomes, A.; Karakaya, S.; Martínez-Cuesta, M.C.; McDougall, G.J.; Requena, T. In Vitro Models for Studying Secondary Plant Metabolite Digestion and Bioaccessibility. Compr. Rev. Food Sci. Food Saf. 2014, 13, 413–436. [Google Scholar] [CrossRef]
- Oliveira, D.; Latimer, C.; Parpot, P.; Gill, C.I.; Oliveira, R. Antioxidant and Antigenotoxic Activities of Ginkgo biloba L. Leaf Extract Are Retained after in Vitro Gastrointestinal Digestive Conditions. Eur. J. Nutr. 2020, 59, 465–476. [Google Scholar] [CrossRef]
- Charalabidis, A.; Sfouni, M.; Bergström, C.; Macheras, P. The Biopharmaceutics Classification System (BCS) and the Biopharmaceutics Drug Disposition Classification System (BDDCS): Beyond Guidelines. Int. J. Pharm. 2019, 566, 264–281. [Google Scholar] [CrossRef]
- Wang, P.; Cao, X.; Chu, Y. Ginkgolides-Loaded Soybean Phospholipid-Stabilized Nanosuspension with Improved Storage Stability and in Vivo Bioavailability. Colloids Surf. B Biointerfaces 2019, 181, 910–917. [Google Scholar] [CrossRef]
- Shahidi, F.; Peng, H. Bioaccessibility and Bioavailability of Phenolic Compounds. J. Food Bioact. 2018, 4, 11–68. [Google Scholar] [CrossRef]
- Li, C.; Yu, W.; Wu, P.; Chen, X.D. Current in Vitro Digestion Systems for Understanding Food Digestion in Human Upper Gastrointestinal Tract. Trends Food Sci. Technol. 2020, 96, 114–126. [Google Scholar] [CrossRef]
- Ozdal, T.; Capanoglu, E.; Altay, F. A Review on Protein–Phenolic Interactions and Associated Changes. Food Res. Int. 2013, 51, 954–970. [Google Scholar] [CrossRef]
- Haratifar, S.; Corredig, M. Interactions between Tea Catechins and Casein Micelles and Their Impact on Renneting Functionality. Food Chem. 2014, 143, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Čvorović, J.; Ziberna, L.; Fornasaro, S.; Tramer, F.; Passamonti, S. Bioavailability of Flavonoids: The Role of Cell Membrane Transporters. In Polyphenols: Mechanisms of Action in Human Health and Disease; Elsevier: Amsterdam, The Netherlands, 2018; pp. 295–320. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, Z.; Li, Q.; Yang, K.; Huang, Z.; Wang, W.; Zhao, S.; Hu, H. What Dominates the Changeable Pharmacokinetics of Natural Sesquiterpene Lactones and Diterpene Lactones: A Review Focusing on Absorption and Metabolism. Drug Metab. Rev. 2021, 53, 122–140. [Google Scholar] [CrossRef] [PubMed]
- Vujčić Bok, V.; Šola, I.; Rusak, G. Lemon Juice Formulations Modulate In Vitro Digestive Recovery of Spinach Phytochemicals. Food Technol. Biotechnol. 2022, 60, 293–307. [Google Scholar] [CrossRef]
- Kardum, N.; Glibetic, M. Polyphenols and Their Interactions with Other Dietary Compounds: Implications for Human Health. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2018; Volume 84, pp. 103–144. [Google Scholar] [CrossRef]
- Guo, Y.; Mah, E.; Davis, C.G.; Jalili, T.; Ferruzzi, M.G.; Chun, O.K.; Bruno, R.S. Dietary Fat Increases Quercetin Bioavailability in Overweight Adults. Mol. Nutr. Food Res. 2013, 57, 896–905. [Google Scholar] [CrossRef]
- Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef]
- Shim, S.-M.; Yoo, S.-H.; Ra, C.-S.; Kim, Y.-K.; Chung, J.-O.; Lee, S.-J. Digestive Stability and Absorption of Green Tea Polyphenols: Influence of Acid and Xylitol Addition. Food Res. Int. 2012, 45, 204–210. [Google Scholar] [CrossRef]
- Choi, M.S.; Kim, J.-K.; Kim, D.-H.; Yoo, H.H. Effects of Gut Microbiota on the Bioavailability of Bioactive Compounds from Ginkgo Leaf Extracts. Metabolites 2019, 9, 132. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Vujčić, V.; Radić Brkanac, S.; Radojčić Redovniković, I.; Ivanković, S.; Stojković, R.; Žilić, I.; Radić Stojković, M. Phytochemical and Bioactive Potential of in Vivo and in Vitro Grown Plants of Centaurea ragusina L.–Detection of DNA/RNA Active Compounds in Plant Extracts via Thermal Denaturation and Circular Dichroism. Phytochem. Anal. 2017, 28, 584–592. [Google Scholar] [CrossRef]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of in Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols—A Non-Systematic Review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef] [PubMed]
- Pengfei, L.; Tiansheng, D.; Xianglin, H.; Jianguo, W. Antioxidant Properties of Isolated Isorhamnetin from the Sea Buckthorn Marc. Plant Foods Hum. Nutr. 2009, 64, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Spínola, V.; Castilho, P.C. Assessing the in Vitro Inhibitory Effects on Key Enzymes Linked to Type-2 Diabetes and Obesity and Protein Glycation by Phenolic Compounds of Lauraceae Plant Species Endemic to the Laurisilva Forest. Molecules 2021, 26, 2023. [Google Scholar] [CrossRef] [PubMed]
- Spínola, V.; Llorent-Martínez, E.J.; Castilho, P.C. Inhibition of α-Amylase, α-Glucosidase and Pancreatic Lipase by Phenolic Compounds of Rumex maderensis (Madeira Sorrel). Influence of Simulated Gastrointestinal Digestion on Hyperglycaemia-Related Damage Linked with Aldose Reductase Activity and Protein Glycation. LWT 2020, 118, 108727. [Google Scholar] [CrossRef]
- Spínola, V.; Pinto, J.; Castilho, P.C. Hypoglycemic, Anti-Glycation and Antioxidant in Vitro Properties of Two Vaccinium Species from Macaronesia: A Relation to Their Phenolic Composition. J. Funct. Foods 2018, 40, 595–605. [Google Scholar] [CrossRef]
- Proença, C.; Freitas, M.; Ribeiro, D.; Tomé, S.M.; Oliveira, E.F.; Viegas, M.F.; Araújo, A.N.; Ramos, M.J.; Silva, A.M.; Fernandes, P.A. Evaluation of a Flavonoids Library for Inhibition of Pancreatic α-Amylase towards a Structure–Activity Relationship. J. Enzym. Inhib. Med. Chem. 2019, 34, 577–588. [Google Scholar] [CrossRef]
- Kang, M.-G.; Yi, S.-H.; Lee, J.-S. Production and Characterization of a New α-Glucosidase Inhibitory Peptide from Aspergillus Oryzae N159-1. Mycobiology 2013, 41, 149–154. [Google Scholar] [CrossRef]
- Rusak, G.; Šola, I.; Vujčić Bok, V. Matcha and Sencha Green Tea Extracts with Regard to Their Phenolics Pattern and Antioxidant and Antidiabetic Activity during in Vitro Digestion. J. Food Sci. Technol. 2021, 58, 3568–3578. [Google Scholar] [CrossRef]
- Adisakwattana, S.; Jiphimai, P.; Prutanopajai, P.; Chanathong, B.; Sapwarobol, S.; Ariyapitipan, T. Evaluation of α-Glucosidase, α-Amylase and Protein Glycation Inhibitory Activities of Edible Plants. Int. J. Food Sci. Nutr. 2010, 61, 295–305. [Google Scholar] [CrossRef]
- Tanaka, S.; Han, L.-K.; Zheng, Y.-N.; Okuda, H. Effects of the Flavonoid Fraction from Ginkgo biloba Extract on the Postprandial Blood Glucose Elevation in Rats. Yakugaku Zasshi J. Pharm. Soc. Jpn. 2004, 124, 605–611. [Google Scholar] [CrossRef]
- Feng, S.; Song, L.; Liu, Y.; Lai, F.; Zuo, G.; He, G.; Chen, M.; Huang, D. Hypoglycemic Activities of Commonly-Used Traditional Chinese Herbs. Am. J. Chin. Med. 2013, 41, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Muñiz-Ramirez, A.; Perez, R.M.; Garcia, E.; Garcia, F.E. Antidiabetic Activity of Aloe Vera Leaves. Evid. Based Complement. Altern. Med. 2020, 2020, 6371201. [Google Scholar] [CrossRef] [PubMed]
- van Der Lugt, T.; Venema, K.; van Leeuwen, S.; Vrolijk, M.F.; Opperhuizen, A.; Bast, A. Gastrointestinal Digestion of Dietary Advanced Glycation Endproducts Using an in Vitro Model of the Gastrointestinal Tract (TIM-1). Food Funct. 2020, 11, 6297–6307. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects—A Review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Šola, I.; Stić, P.; Rusak, G. Effect of Flooding and Drought on the Content of Phenolics, Sugars, Photosynthetic Pigments and Vitamin C, and Antioxidant Potential of Young Chinese Cabbage. Eur. Food Res. Technol. 2021, 247, 1913–1920. [Google Scholar] [CrossRef]
- Šola, I.; Vujčić Bok, V.; Pinterić, M.; Auer, S.; Ludwig-Müller, J.; Rusak, G. Improving the Phytochemical Profile and Bioactivity of Chinese Cabbage Sprouts by Interspecific Transfer of Metabolites. Food Res. Int. 2020, 137, 109726. [Google Scholar] [CrossRef]
- Šola, I.; Davosir, D.; Kokić, E.; Zekirovski, J. Effect of Hot- and Cold-Water Treatment on Broccoli Bioactive Compounds, Oxidative Stress Parameters and Biological Effects of Their Extracts. Plants 2023, 12, 1135. [Google Scholar] [CrossRef]
- Šola, I.; Gmižić, D.; Pinterić, M.; Tot, A.; Ludwig-Müller, J. Adjustments of the Phytochemical Profile of Broccoli to Low and High Growing Temperatures: Implications for the Bioactivity of Its Extracts. Int. J. Mol. Sci. 2024, 25, 3677. [Google Scholar] [CrossRef]
- Su, E.; Yang, M.; Cao, J.; Lu, C.; Wang, J.; Cao, F. Deep Eutectic Solvents as Green Media for Efficient Extraction of Terpene Trilactones from Ginkgo biloba Leaves. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 385–391. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- European Pharmacopoeia, 5th ed.; Council of Europe: Strasbourg, France, 2004; pp. 2377–2378.
- Howard, L.R.; Clark, J.R.; Brownmiller, C. Antioxidant Capacity and Phenolic Content in Blueberries as Affected by Genotype and Growing Season. J. Sci. Food Agric. 2003, 83, 1238–1247. [Google Scholar] [CrossRef]
- Kusznierewicz, B.; Bartoszek, A.; Wolska, L.; Drzewiecki, J.; Gorinstein, S.; Namieśnik, J. Partial Characterization of White Cabbages (Brassica oleracea Var. Capitata f. Alba) from Different Regions by Glucosinolates, Bioactive Compounds, Total Antioxidant Activities and Proteins. LWT Food Sci. Technol. 2008, 41, 1–9. [Google Scholar] [CrossRef]
- Sun, B.; Ricardo-da-Silva, J.M.; Spranger, I. Critical Factors of Vanillin Assay for Catechins and Proanthocyanidins. J. Agric. Food Chem. 1998, 46, 4267–4274. [Google Scholar] [CrossRef]
- Brkanac Radić, S.; Gerić, M.; Gajski, G.; Vujčić, V.; Garaj-Vrhovac, V.; Kremer, D.; Domijan, A.-M. Toxicity and Antioxidant Capacity of Frangula alnus Mill. Bark and Its Active Component Emodin. Regul. Toxicol. Pharmacol. 2015, 73, 923–929. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J. Ferric Reducing/Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef]
In Vitro Bioaccessibility (%) Salivary Phase | TP | TF | TPA | THA | TFLO | TFLA | TPAN | TTL (GIN-A) | TTL (GIN-B) | Q | K | IzoR | TiF |
GB + water | 178.54 ± 0.37 a | 98.46 ± 2.73 b | 65.85 ± 13.60 bc | 80.08 ± 14.69 ab | 79.50 ± 13.87 b | 108.11 ± 7.48 b | 105.64 ± 15.77 b | 99.33 ± 5.22 ab | 98.21 ± 14.00 ab | 68.45 ± 1.27 d | 70.48 ± 2.17 c | 82.23 ± 1.34 c | 70.38 ± 1.70 c |
GB + 40 mg/mL casein | 106.20 ± 1.09 c | 107.28 ± 3.41 a | 131.89 ± 20.68 a | 76.47 ± 2.05 b | 81.10 ± 4.71 b | 70.26 ± 2.13 c | 57.93 ± 3.42 c | 101.01 ± 0.49 ab | 102.41 ± 1.17 ab | 97.92 ± 4.01 c | 100.09 ± 4.43 b | 100.41 ± 1.08 b | 102.08 ± 0.13 b |
GB + 25 mg/mL glucose | 112.52 ± 4.98 c | 90.04 ± 2.34 b | 40.44 ± 3.00 c | 105.60 ± 2.26 a | 95.96 ± 6.81 ab | 77.75 ± 0.48 c | 68.62 ± 8.10 bc | 90.17 ± 4.33 b | 75.14 ± 10.95 b | 113.13 ± 0.46 a | 108.76 ± 1.56 ab | 103.58 ± 0.10 a | 110.26 ± 0.96 a |
GB + 5% olive oil | 136.74 ± 0.53 b | 107.67 ± 5.24 a | 100.73 ± 5.26 ab | 86.55 ± 10.06 ab | 107.72 ± 11.25 a | 142.46 ± 1.74 a | 162.19 ± 21.15 a | 102.53 ± 4.51 a | 105.73 ± 10.20 a | 104.17 ± 0.06 b | 111.11 ± 4.67 a | 103.68 ± 0.92 a | 105.66 ± 2.04 b |
In Vitro Bioaccessibility (%) Gastric Phase | TP | TF | TPA | THA | TFLO | TFLA | TPAN | TTL (GIN-A) | TTL (GIN-B) | Q | K | IzoR | TiF |
GB + water | 168.47 ± 6.76 a | 117.73 ± 5.89 a | 84.53 ± 1.98 b | 75.19 ± 2.35 ab | 77.78 ± 1.28 b | 48.65 ± 6.15 c | 35.05 ± 3.29 c | 104.49 ± 1.09 a | 112.02 ± 2.93 a | 62.60 ± 0.28 c | 64.08 ± 0.15 b | 77.93 ± 0.35 b | 64.38 ± 0.18 d |
GB + 40 mg/mL casein | 156.03 ± 6.92 a | 99.73 ± 2.42 b | 122.56 ± 23.90 a | 67.26 ± 8.47 b | 70.01 ± 7.87 b | 75.83 ± 0.15 b | 51.55 ± 8.21 bc | 92.85 ± 0.71 b | 82.92 ± 1.70 b | 79.55 ± 1.95 b | 84.26 ± 0.54 a | 92.75 ± 0.45 a | 85.45 ± 0.90 c |
GB + 25 mg/mL glucose | 49.05 ± 0.22 b | 105.06 ± 2.03 b | 106.99 ± 4.52 ab | 81.80 ± 2.22 a | 79.04 ± 2.46 b | 67.30 ± 5.72 b | 77.86 ± 10.13 b | 89.48 ± 1.21 b | 73.42 ± 3.06 c | 98.76 ± 3.29 a | 86.51 ± 4.73 a | 95.67 ± 2.42 a | 92.61 ± 0.65 a |
GB + 5% olive oil | 41.46 ± 3.40 b | 125.53 ± 5.00 a | 112.37 ± 6.48 ab | 73.96 ± 0.59 ab | 95.07 ± 0.58 a | 100.77 ± 4.57 a | 118.84 ± 19.86 a | 91.24 ± 1.95 b | 80.18 ± 4.40 bc | 94.11 ± 0.25 a | 88.66 ± 1.76 a | 91.80 ± 2.40 a | 89.83 ± 0.80 b |
In Vitro Bioaccessibility (%) Intestinal Phase | TP | TF | TPA | THA | TFLO | TFLA | TPAN | TTL (GIN-A) | TTL (GIN-B) | Q | K | IzoR | TiF |
GB + water | 83.81 ± 6.85 a | 106.24 ± 3.77 ab | 51.96 ± 12.02 c | 86.93 ± 1.82 a | 84.46 ± 1.85 b | 45.48 ± 6.98 c | 33.33 ± 3.81 c | 92.32 ± 5.18 bc | 79.41 ± 13.89 bc | 63.49 ± 0.33 c | 69.47 ± 3.72 c | 84.74 ± 0.15 b | 67.80 ± 1.59 c |
GB + 40 mg/mL casein | 64.07 ± 1.43 b | 112.24 ± 0.78 a | 167.23 ± 4.16 a | 72.98 ± 4.81 b | 70.89 ± 4.96 c | 69.30 ± 1.15 ab | 76.85 ± 3.48 b | 96.08 ± 1.05 ab | 90.64 ± 2.51 ab | 77.29 ± 4.01 b | 83.32 ± 5.66 b | 92.13 ± 4.09 a | 83.74 ± 4.92 b |
GB + 25 mg/mL glucose | 61.83 ± 1.05 b | 92.61 ± 4.05 c | 61.72 ± 10.15 c | 85.03 ± 0.63 a | 79.62 ± 0.91 b | 59.44 ± 10.65 bc | 32.81 ± 4.60 c | 86.77 ± 0.64 c | 66.56 ± 1.62 c | 96.50 ± 1.18 a | 96.47 ± 0.44 a | 95.10 ± 0.51 a | 96.31 ± 0.84 a |
GB + 5% olive oil | 55.17 ± 10.70 b | 96.60 ± 4.65 bc | 103.97 ± 11.37 b | 76.10 ± 3.79 b | 95.33 ± 3.91 a | 83.33 ± 2.39 a | 100.67 ± 0.17 a | 98.74 ± 0.76 a | 97.15 ± 1.71 a | 92.77 ± 3.10 a | 89.29 ± 0.49 ab | 95.01 ± 1.16 a | 89.89±1.25 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusak, G.; Vujčić Bok, V.; Šola, I.; Nikša, E.; Maleš, Ž. Effect of Protein, Carbohydrate, and Oil on Phytochemical Bioaccessibility and Bioactivities of the Ginkgo biloba L. Leaf Formulations After In Vitro Digestion. Molecules 2024, 29, 5300. https://doi.org/10.3390/molecules29225300
Rusak G, Vujčić Bok V, Šola I, Nikša E, Maleš Ž. Effect of Protein, Carbohydrate, and Oil on Phytochemical Bioaccessibility and Bioactivities of the Ginkgo biloba L. Leaf Formulations After In Vitro Digestion. Molecules. 2024; 29(22):5300. https://doi.org/10.3390/molecules29225300
Chicago/Turabian StyleRusak, Gordana, Valerija Vujčić Bok, Ivana Šola, Ema Nikša, and Željan Maleš. 2024. "Effect of Protein, Carbohydrate, and Oil on Phytochemical Bioaccessibility and Bioactivities of the Ginkgo biloba L. Leaf Formulations After In Vitro Digestion" Molecules 29, no. 22: 5300. https://doi.org/10.3390/molecules29225300
APA StyleRusak, G., Vujčić Bok, V., Šola, I., Nikša, E., & Maleš, Ž. (2024). Effect of Protein, Carbohydrate, and Oil on Phytochemical Bioaccessibility and Bioactivities of the Ginkgo biloba L. Leaf Formulations After In Vitro Digestion. Molecules, 29(22), 5300. https://doi.org/10.3390/molecules29225300