Low-Valent Tungsten Catalyzed Carbonylative Synthesis of Benzoates from Aryl Iodides and Alcohols
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. General Methods for the Preparation of Benzoates
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gehrtz, P.H.; Hirschbeck, V.; Ciszek, B.; Fleischer, I. Carbonylations of Alkenes in the Total Synthesis of Natural Compounds. Synthesis 2016, 48, 1573–1596. [Google Scholar]
- Bai, Y.; Davis, D.C.; Dai, M. Natural Product Synthesis via Palladium-Catalyzed Carbonylation. J. Org. Chem. 2017, 82, 2319–2328. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Wen, M.; Li, F. Palladium-Catalyzed Tandem Carbonylative Aza-Wacker-Type Cyclization of Nucleophile Tethered Alkene to Access Fused N-Heterocycles. Chin. J. Chem. 2021, 39, 317–322. [Google Scholar] [CrossRef]
- Wu, X.-F.; Neumann, H.; Beller, M. Palladium-Catalyzed Carbonylative Coupling Reactions between Ar-X and Carbon Nucleophiles. Chem. Soc. Rev. 2011, 40, 4986–5009. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hu, Y.; Wu, X.-F. Non-Noble Metal-Catalysed Carbonylative Transformations. Chem. Soc. Rev. 2018, 47, 172–194. [Google Scholar] [CrossRef]
- Peng, J.-B.; Wu, F.-P.; Wu, X.-F. First-Row Transition-Metal-Catalyzed Carbonylative Transformations of Carbon Electrophiles. Chem. Rev. 2019, 119, 2090–2127. [Google Scholar] [CrossRef]
- Yan, X.L.; Fan, L.; Zhang, X.D.; Liu, G.D. Recent advances in Cu-catalyzed carbonylation with CO. Org. Chem. Front. 2022, 9, 6749–6765. [Google Scholar] [CrossRef]
- Gu, X.-W.; Wu, X.-F. Abundant metal-catalyzed carbonylation of alkyl bromides and alkyl chlorides. Org. Chem. Front. 2023, 10, 1587–1591. [Google Scholar] [CrossRef]
- Li, W.; Jiang, D.H.; Wang, C.; Cheng, L.-J. Recent Advances in Base-Metal-Catalyzed Carbonylation of Unactivated Alkyl Electrophiles. Chin. J. Chem. 2023, 41, 3419–3432. [Google Scholar] [CrossRef]
- Wu, X.-F.; Geng, H.-Q. Copper-Catalyzed Carbonylation Reactions: A Personal Account. Synthesis 2024, 56, 2595–2613. [Google Scholar] [CrossRef]
- Ganesan, V.; Moon, S.; Yoon, S. Heterogenized Phenanthroline-Pd(2+)-Catalyzed Alkoxycarbonylation of Aryl Iodides in Base-Free Conditions. J. Org. Chem. 2023, 88, 5127–5134. [Google Scholar] [CrossRef] [PubMed]
- Kormos, C.M.; Leadbeater, N.E. Alkoxycarbonylation of aryl iodides using gaseous carbon monoxide and pre-pressurized reaction vessels in conjunction with microwave heating. Org. Biomol. Chem. 2007, 5, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Messa, F.; Paparella, A.N.; Veselý, D.; Krajčovič, J.; Papadia, P.; Perrone, S.; Salomone, A. Gas-Free Amino- and Alkoxycarbonylation of Aryl Iodidesin a Bioinspired Deep Eutectic Solvent with Mo(CO)6 as a Safe CO Source. Eur. J. Org. Chem. 2023, 26, e202300309. [Google Scholar] [CrossRef]
- Suzuki, H.; Kiyobe, S.; Matsuda, T. Rhodium-catalysed additive-free carbonylation of benzamides with diethyl dicarbonate as a carbonyl source. Org. Biomol. Chem. 2024, 22, 2744–2748. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.-M.; Liu, P.-R.; Yan, J.-D.; He, Y.-Y.; Li, H.G.; Ma, A.-J.; Peng, J.-B. Ruthenium-Catalyzed Carbonylation of α-Aminoaryl-Tethered Alkylidenecyclopropanes: Synthesis of Eight-Membered Benzolactams. Org. Lett. 2024, 36, 231–235. [Google Scholar] [CrossRef]
- Guan, M.; Hou, M.; Tang, S.; Cheng, G.; Zhu, X.; Zhao, Y.-H.; Tang, X.; Zhou, H.; Qiu, G. Iron-catalyzed β-hydroxymethylative carbonylation of styrene under photo-irradiation. Chem. Commun. 2023, 59, 13309–13312. [Google Scholar] [CrossRef]
- Teng, M.-Y.; Wu, Y.-J.; Chen, J.-H.; Huang, F.-R.; Liu, D.-Y.; Yao, Q.-J.; Shi, B.-F. Cobalt-Catalyzed Enantioselective C−H Carbonylation towards Chiral Isoindolinones. Angew. Chem. Int. Ed. 2024, 63, e202318803. [Google Scholar] [CrossRef]
- Teng, B.-H.; Bao, Z.-P.; Zhao, Y.; Wu, X.-F. Nickel-Catalyzed Four-Component Carbonylation of 1,3-Butadiene To Access β,γ-Unsaturated Ketones. Org. Lett. 2024, 36, 4779–4783. [Google Scholar]
- Zhang, Y.; Teng, B.; Wu, X.-F. Copper-catalyzed trichloromethylative carbonylation of ethylene. Chem. Sci. 2024, 15, 1418–1423. [Google Scholar] [CrossRef]
- Liu, P.-R.; Ji, M.-M.; Hu, J.-B.; Peng, J.-B. Manganese-Catalyzed Carbonylation of Unactivated Alkyl Bromides with Alkylidenecyclopropanes. ACS Catal. 2024, 14, 9487–9495. [Google Scholar] [CrossRef]
- Schrock, R.R. Multiple Metal-Carbon Bonds for Catalytic Metathesis Reactions (Nobel Lecture). Angew. Chem. Int. Ed. 2006, 45, 3748–3759. [Google Scholar] [CrossRef] [PubMed]
- Jankins, T.C.; Bell, W.C.; Zhang, Y.; Qin, Z.-Y.; Chen, J.S.; Gembicky, M.; Liu, P.; Engle, K.M. Low-valent tungsten redox catalysis enables controlled isomerization and carbonylative functionalization of alkenes. Nat. Chem. 2022, 14, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Berke, H. Homogeneous Hydrogenation of Nitriles Catalyzed by Molybdenum and Tungsten Amides. ACS Catal. 2014, 4, 2191–2194. [Google Scholar] [CrossRef]
- Xu, Y.; Salman, M.; Khan, S.; Zhang, J.; Khan, A. Tungsten-Catalyzed Allylic Substitution with a Heteroatom Nucleophile: Reaction Development and Synthetic Applications. J. Org. Chem. 2020, 85, 11501–11510. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Shen, Y.; Li, W.; Zhan, W.; Zhang, F.; Xu, C.; Song, H. Low-Valent Tungsten-Catalyzed Controllable Oxidative Dehydrogenative Coupling of Anilines. Org. Lett. 2023, 25, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Jankins, T.C.; Martin-Montero, R.; Cooper, P.; Martin, R.; Engle, K.M. Low-Valent Tungsten Catalysis Enables Site-Selective Isomerization–Hydroboration of Unactivated Alkenes. J. Am. Chem. Soc. 2021, 143, 14981–14986. [Google Scholar] [CrossRef]
- Li, C.; Chen, Y.; Huang, X.; Chen, H.; Ye, F.; Chen, L. Low-valent Tungsten Catalyzed Carbonylative Sonogashira Coupling Reactions of Aryl Iodides with Alkynes. ChemistrySelect. 2024, 9, e202304891. [Google Scholar] [CrossRef]
- Kong, W.; Li, B.; Xu, X.; Song, Q. Fe-Catalyzed Aerobic Oxidative C–CN Bond Cleavage of Arylacetonitriles Leading to Various Esters. J. Org. Chem. 2016, 81, 8436–8441. [Google Scholar] [CrossRef]
- Nakatani, Y.; Koizumi, Y.; Yamasaki, Y.; Saito, S. Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group. Org. Lett. 2008, 10, 2067–2071. [Google Scholar] [CrossRef]
- Iwasaki, T.; Maegawa, Y.; Hayashi, Y.; Ohshima, T.; Mashima, K. Transesterification of Various Methyl Esters Under Mild Conditions Catalyzed by Tetranuclear Zinc Cluster. J. Org. Chem. 2008, 73, 5147–5150. [Google Scholar] [CrossRef]
- Corma, A.; Villoria-del-Álamo, B.; Rojas-Buzo, S.; García-García, P. Zr-MOF-808 as Catalyst for Amide Esterification. Chem. Eur. J. 2021, 27, 4588–4598. [Google Scholar]
- Yuan, Y.; Wu, X.-F. Synthesis of Esters from Stable and Convenient Sulfoxonium Precursors under Catalyst- and Additive-Free Conditions. Synlett 2019, 30, 1820–1824. [Google Scholar] [CrossRef]
- Ibrahim, M.B.; Suleiman, R.K.; Fettouhi, M.; El Ali, B. A palladium–bisoxazoline supported catalyst for selective synthesis of aryl esters and aryl amides via carbonylative coupling reactions. RSC Adv. 2016, 6, 78826–78837. [Google Scholar] [CrossRef]
- Chen, Z.; Wen, Y.; Fu, Y.; Chen, H.; Ye, M.; Luo, G. Graphene Oxide: An Efficient Acid Catalyst for the Construction of Esters from Acids and Alcohols. Synlett 2017, 28, 981–985. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Xia, C. A simple and efficient recyclable phosphine-free catalytic system for alkoxycarbonylation and carbonylative Sonogashira coupling reactions of aryl iodides. J. Catal. 2008, 253, 50–56. [Google Scholar] [CrossRef]
- Wu, X.-F.; Neumann, H.; Beller, M.A. General and Efficient Palladium-Catalyzed Alkoxycarbonylation of Phenols to Form Esters through In Situ Formed Aryl Nonaflates. Chem. Eur. J. 2012, 18, 3831–3834. [Google Scholar] [CrossRef]
- Chai, L.; Zhao, Y.-H.; Young, D.J.; Lu, X.; Li, H.-X. Ni(II)-Mediated Photochemical Oxidative Esterification of Aldehydes with Phenols. Org. Lett. 2022, 24, 6908–6913. [Google Scholar] [CrossRef]
- Liao, W.-J.; Lin, S.-Y.; Kuo, Y.-S.; Liang, C.-F. Site-Selective Acylation of Phenols Mediated by a Thioacid Surrogate through Sodium Thiosulfate Catalysis. Org. Lett. 2022, 24, 4207–4211. [Google Scholar] [CrossRef]
Entry | Catalyst | Ligand | Solvent | Yield (%) b |
---|---|---|---|---|
1 | W(CO)6 | PPh3 | Toluene | 69 |
2 | W(CO)3(CH3CN)3 | PPh3 | Toluene | 51 |
3 | W(COD)2(CO)4 | PPh3 | Toluene | 43 |
4 | Mo(CO)6 | PPh3 | Toluene | 34 |
5 | W(CO)6 | L1 | Toluene | 49 |
6 | W(CO)6 | L2 | Toluene | 53 |
7 | W(CO)6 | L3 | Toluene | 42 |
8 c | W(CO)6 | L4 | Toluene | 56 |
9 | W(CO)6 | L5 | Toluene | 38 |
10 | W(CO)6 | PPh3 | THF | 62 |
11 | W(CO)6 | PPh3 | MeCN | 61 |
12 | W(CO)6 | PPh3 | DMSO | 31 |
13 | W(CO)6 | PPh3 | DMF | 26 |
14 | W(CO)6 | PPh3 | DMA | 80 |
15 | W(CO)6 | PPh3 | DCM | 51 |
16 | W(CO)6 | PPh3 | DCE | 50 |
17 | W(CO)6 | PPh3 | 1,4-dioxane | 54 |
18 | W(CO)6 | - | DMA | 30 |
19 | - | PPh3 | DMA | trace |
20 c | W(CO)6 | PPh3 | THF | 93 |
21 d | W(CO)6 | PPh3 | THF | 92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, F.; Lu, L.; Huang, Z.; Huang, Y.; Huang, L.; Li, C.; Li, X. Low-Valent Tungsten Catalyzed Carbonylative Synthesis of Benzoates from Aryl Iodides and Alcohols. Molecules 2024, 29, 5305. https://doi.org/10.3390/molecules29225305
Ye F, Lu L, Huang Z, Huang Y, Huang L, Li C, Li X. Low-Valent Tungsten Catalyzed Carbonylative Synthesis of Benzoates from Aryl Iodides and Alcohols. Molecules. 2024; 29(22):5305. https://doi.org/10.3390/molecules29225305
Chicago/Turabian StyleYe, Feihua, Lin Lu, Zhaoyang Huang, Yunwei Huang, Lixuan Huang, Chunsheng Li, and Xiang Li. 2024. "Low-Valent Tungsten Catalyzed Carbonylative Synthesis of Benzoates from Aryl Iodides and Alcohols" Molecules 29, no. 22: 5305. https://doi.org/10.3390/molecules29225305
APA StyleYe, F., Lu, L., Huang, Z., Huang, Y., Huang, L., Li, C., & Li, X. (2024). Low-Valent Tungsten Catalyzed Carbonylative Synthesis of Benzoates from Aryl Iodides and Alcohols. Molecules, 29(22), 5305. https://doi.org/10.3390/molecules29225305