Study on Flame Retardancy of Cotton Fabric Modified by Sulfonic Groups Chelated with Ba2+
Abstract
:1. Introduction
2. Results and Discussion
2.1. FTIR Spectroscopic Analysis of Each Step Sample
2.2. XPS Analysis
2.3. XRD Analysis
2.4. SEM and EDS Analysis
2.5. Cone Calorimetry Analysis
2.6. Thermal Stability Analysis
2.7. Flame Resistance Analysis
3. Experimental Setup
3.1. Materials and Reagents
3.2. Preparation of Flame-Retardant Fabrics
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, D.; Tan, J.; Tang, L.; Chen, D.; Yuan, L.P.; Huang, Z.Z.; Zou, D.F.; Tao, Q.; Tan, Z.D.; Deng, J.Y.; et al. Synthesis and performance study of sulfur-containing amino acid ammonium phosphate type flame retardants for cotton fabric. Mater. Today. Commun. 2023, 37, 107180. [Google Scholar] [CrossRef]
- Bentis, A.; Boukhriss, A.; Grancaric, A.M.; El Bouchti, M.; El Achaby, M.; Gmouh, S. Flammability and combustion behavior of cotton fabrics treated by the sol gel method using ionic liquids combined with different anions. Cellulose 2019, 26, 2139–2153. [Google Scholar] [CrossRef]
- Zhou, C.; Zhou, S.T.; You, F.; Wang, Z.H.; Li, D.; Li, G.; Zhang, X.F.; Pan, Y.; Wang, J.Q.; Ma, J. Effectively improving flame retardancy levels of finished cotton fabrics only by simple binary silicon-boron oxide sols. J. Polym. Res. 2023, 30, 437–458. [Google Scholar] [CrossRef]
- Zhang, X.S.; Du, X.J.; Wang, L.L.; Shi, M.W. The effect of char on flame retardancy of cotton, flame retardant cotton and poly(m-phenylene isophthalamide) fabrics investigated by cone calorimeter. Int. J. Cloth. Sci. Tech. 2019, 31, 532–543. [Google Scholar] [CrossRef]
- Yang, Y.T.; Huang, J.L.; Wang, X.; Grunlan, J.; Song, L.; Hu, Y. Flame retardant and hydrophobic cotton using a unique phosphorus–nitrogen–silicon-containing coating. Cellulose 2022, 29, 8473–8488. [Google Scholar] [CrossRef]
- Sertsova, A.A.; Marakulin, S.I.; Yurtov, E.V. Metal compound nanoparticles: Flame retardants for polymer composites. Russ. J. Gen. Chem. 2017, 87, 1395–1402. [Google Scholar] [CrossRef]
- Alongi, J.; Colleoni, C.; Rosace, G.; Malucelli, G. Phosphorus-and nitrogen-doped silica coatings for enhancing the flame retardancy of cotton: Synergisms or additive effects? Polym. Degrad. Stabil. 2013, 98, 579–589. [Google Scholar] [CrossRef]
- Ye, L.; Li, J.; Gong, S.; Herczegh, S.M.; Zhang, Q.; Letcher, R.J.; Su, G. Established and emerging organophosphate esters (OPEs) and the expansion of an environmental contamination issue: A review and future directions. J. Hazard. Mater. 2023, 459, 132095. [Google Scholar] [CrossRef]
- Yang, J.; Wang, L.; Liu, Y.; Quan, F.; Tian, X.; Xia, Y. Synergistic flame retardancy of metal-ion/nitrogen in composite fibers prepared from all-seaweed biomass. Polym. Degrad. Stabil. 2024, 227, 110884. [Google Scholar] [CrossRef]
- Zabihi, O.; Ahmadi, M.; Li, Q.X.; Ferdowsi, M.R.G.; Mahmoodi, R.; Kalali, E.N.; Wang, D.Y.; Naebe, M. A sustainable approach to scalable production of a graphene based flame retardant using waste fish deoxyribonucleic acid. J. Clean. Prod. 2020, 247, 119150. [Google Scholar] [CrossRef]
- Zhang, A.N.; Zhao, H.B.; Cheng, J.B.; Li, M.E.; Li, S.L.; Cao, M.; Wang, Y.Z. Construction of durable eco-friendly biomass-based flame-retardant coating for cotton fabrics. Chem. Eng. J. 2021, 410, 128361. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, A.; Cheng, Y.; Li, M.; Cui, Y.; Li, Z. Recent advances in biomass phytic acid flame retardants. Polym. Test. 2023, 124, 108100. [Google Scholar] [CrossRef]
- Wang, X.; Niu, H.X.; Guo, W.W.; Song, L.; Hu, Y. Cardanol as a versatile platform for fabrication of bio-based flame-retardant epoxy thermosets as DGEBA substitutes. Chem. Eng. J. 2021, 421, 129738. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Ma, Z.Y.; Leng, Q.; Wang, Y.H. Eco-friendly flame retardant coating deposited on cotton fabrics from bio-based chitosan, phytic acid and divalent metal ions. Int. J. Biol. Macromol. 2019, 140, 303–310. [Google Scholar] [CrossRef]
- Luo, Q.L.; Gao, P.; Zhou, J.; Zhang, J.; Wu, W.; Cao, J.D.; Reddy, N.; Ma, H. Imparting flame resistance to citric acid–modified cotton fabrics using DNA. J. Eng. Fiber. Fabr. 2020, 15, 1–10. [Google Scholar] [CrossRef]
- Li, J.; Zhao, H.; Liu, H.; Sun, J.; Wu, J.; Liu, Q.; Zheng, Y.; Zheng, P. Recent advances in metal-family flame retardants:a review. R. Soc. Chem. 2023, 13, 22639. [Google Scholar] [CrossRef]
- Wu, N.; Ding, C.; Yang, R.J. Effects of zinc and nickel salts in intumescent flame-retardant polypropylene. Polym. Degrad. Stabil. 2010, 95, 2589–2595. [Google Scholar] [CrossRef]
- Li, W.T.; Qi, S.K.; Liu, Q.L.; Gao, H.H.; Liang, S.H.; Feng, W.J.; Jiang, M.G. Thermal degradation and flame retardant mechanism of sulfonated polyoxadiazole fibers modified by metal ions. J. Polym. Res. 2020, 27, 365–374. [Google Scholar] [CrossRef]
- Wu, Y.X.; Huang, Y.T.; Guan, J.P.; Cheng, X.W.; Xu, J.T.; Chen, G.Q. Facile preparation of effective flame retardant silk fabric by the metal salt adsorption approach. Polym. Degrad. Stabil. 2020, 182, 109378. [Google Scholar] [CrossRef]
- Geng, X.J.; Yang, G.C.; Fan, Z.Q.; Yu, L.; He, J.; Liu, Y.; Guo, H.W.; Zhang, Q.H. In-situ synthesis of double chelated transition metal macromolecules for flame retardant and smoke suppression properties. Ind. Crop. Prod. 2024, 220, 119257. [Google Scholar] [CrossRef]
- Guo, L.L.; Tian, J.L.; Qi, Z.M.; Zhu, Y.J.; Lv, Y.J.; Mao, H.Y.; Chen, Y.J.; Li, G.Q.; Wang, C.X. Preparation of eco-friendly flame-retardant cotton fabrics based on chemical grafting and calcium chelation. Cellulose 2024, 31, 8917–8933. [Google Scholar] [CrossRef]
- Li, Z.F.; Zhang, C.J.; Cui, L.; Zhu, P.; Yan, C.; Liu, Y. Fire retardant and thermal degradation properties of cotton fabrics based on APTES and sodium phytate through layer-by-layer assembly. J. Anal. Appl. Pyrol. 2017, 123, 216–223. [Google Scholar] [CrossRef]
- Zhou, X.K.; Su, X.W.; Zhao, J.Y.; Liu, Y.S.; Ren, Y.L.; Xu, Z.W.; Liu, X.H. Preparation of biomass-based green cotton fabrics with flame retardant, hydrophobic and self-cleaning properties. Cellulose 2024, 31, 3871–3892. [Google Scholar] [CrossRef]
- Tian, J.L.; Yu, W.H.; Pan, J.; Wang, K.; Qi, Z.M.; Lin, L.; Wang, J.M.; Wang, C.X. Synthesis of reactive flame retardant containing Si–P–S–N and its application in cotton fabric. Cellulose 2022, 30, 2551–2572. [Google Scholar] [CrossRef]
- Kaur, B.; Jain, R.K.; Gur, T.S.; Bhatnagar, H.L.; Schulten, H.R. Thermal stability of phosphorylated cellulose modified with various transition metals. J. Anal. Appl. Pyrol. 1985, 9, 173–206. [Google Scholar] [CrossRef]
- Parlak, E.; Arar, Ö. Removal of copper (Cu2+) from water by sulfonated cellulose. J. Dispers. Sci. Technol. 2017, 39, 1403–1408. [Google Scholar] [CrossRef]
- Dong, C.H.; Zhang, F.G.; Pang, Z.Q.; Yang, G.H. Efficient and selective adsorption of multi-metal ions using sulfonated cellulose as adsorbent. Carbohydr. Polym. 2016, 151, 230–236. [Google Scholar] [CrossRef]
- Dong, C.H.; Zhang, H.G.; Pang, Z.Q.; Liu, Y.; Zhang, F.L. Sulfonated modification of cotton linter and its application as adsorbent for high-efficiency removal of lead(II) in effluent. Bioresour. Technol. 2013, 146, 512–518. [Google Scholar] [CrossRef]
- Choi, H.J. Assessment of sulfonation in cornstalk for adsorption of metal-ions from seawater. Korean J. Chem. Eng. 2022, 39, 121–133. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Peng, L.; Han, S.; Hao, C.; Jiang, C.; Wang, H.; Fan, X. Effective removal of heavy metals from water using porous lignin-based adsorbents. Chemosphere 2021, 279, 130504. [Google Scholar] [CrossRef]
- Kanbua, C.; Rattanawongwiboon, T.; Khamlue, R.; Ummartyotin, S. Green synthesis of sulfonated cellulose/polyether block amide/polyethylene glycol diacrylate (SC/PEBAX/PEGDA) composite membrane by gamma radiation and sulfonation techniques for battery application. Int. J. Biol. Macromol. 2023, 248, 125844. [Google Scholar] [CrossRef] [PubMed]
- Liimatainen, H.; Visanko, M.; Sirviö, J.; Hormi, O.; Niinimäki, J. Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose 2013, 20, 741–749. [Google Scholar] [CrossRef]
- Li, L.; Qi, P.; Sun, J.; Liu, W.; Li, H.; Gu, X.; Zhang, S. Improving the fire performance and washing durability of nylon-cotton blend fabrics by the incorporation taurine derivatives. Prog. Org. Coat. 2022, 171, 107018. [Google Scholar] [CrossRef]
- Rajalaxmi, D.; Jiang, N.; Leslie, G.; Ragauskas, A.J. Synthesis of novel water-soluble sulfonated cellulose. Carbohydr. Res. 2010, 345, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Thiangtham, S.; Runt, J.; Manuspiya, H. Sulfonation of dialdehyde cellulose extracted from sugarcane bagasse for synergistically enhanced water solubility. Carbohydr. Polym. 2019, 208, 314–322. [Google Scholar] [CrossRef]
- Lin, D.; Zeng, X.; Li, H.; Lai, X.; Wu, T. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction. J. Colloid. Interface. Sci. 2019, 533, 198–206. [Google Scholar] [CrossRef]
- He, L.; Ma, N.; Liang, Z.; Zhao, S.; Yan, J.; Lin, H.; You, C.; Cai, L.; Wang, F. Fabrication of sulfonated cellulose nanocrystals/sodium alginate beads for adsorbents of matrine. Microchem. J. 2024, 203, 110766. [Google Scholar] [CrossRef]
- Juan-Alcañiz, J.; Gielisse, R.; Lago, A.B.; Ramos-Fernandez, E.V.; Serra-Crespo, P.; Devic, T.; Guillou, N.; Serre, N.; Kapteijn, F.; Gascon, J. Towards acid MOFs—Catalytic performance of sulfonic acid functionalized architectures. Catal. Sci. Technol. 2013, 3, 2311–2318. [Google Scholar] [CrossRef]
- Tondro, H.; Zilouei, H.; Zargoosh, K.; Bazarganipour, M. Investigation of heterogeneous sulfonated graphene oxide to hydrolyze cellulose and produce dark fermentative biohydrogen using Enterobacter aerogenes. Bioresour. Technol. 2020, 306, 123124. [Google Scholar] [CrossRef]
- Ibrahim, D.M.; Mostafa, A.A.; Korowash, S.I. Chemical characterization of some substituted hydroxyapatites. Chem. Cent. J. 2011, 5, 74. [Google Scholar]
- Luque, P.L.; Sanchez-Ilarduya, M.B.; Sarmiento, A.; Murua, H.; Arrizabalaga, H. Characterization of carbonate fraction of the Atlantic bluefin tuna fin spine bone matrix for stable isotope analysis. PeerJ 2019, 7, 7176–7191. [Google Scholar] [CrossRef]
- Majid, M.F.; Samaneh, S. Chemical functionalization of chitosan biopolymer and chitosan-magnetite nanocomposite with sulfonic acid for acid-catalyzed reactions. Chin. J. Chem. Eng. 2021, 39, 154–161. [Google Scholar] [CrossRef]
- Wang, X.Z.; Zheng, Y.H.; Xue, Y.; Yan, Y.D.; Ma, F.Q.; Zhang, M.L.; Bai, H.Y.; Kou, Z.Q.; Liu, J.P. Study on the destruction process of cationic exchange resins treated by Li2CO3-Na2CO3-K2CO3 molten salt. J. Environ. Chem. Eng. 2021, 9, 105948. [Google Scholar] [CrossRef]
- Castellano, A.; Colleoni, C.; Iacono, G.; Mezzi, A.; Plutino, M.R.; Malucelli, G.; Rosace, G. Synthesis and characterization of a phosphorous/nitrogen based sol-gel coating as a novel halogen- and formaldehyde-free flame retardant finishing for cotton fabric. Polym. Degrad. Stabil. 2019, 162, 148–159. [Google Scholar] [CrossRef]
- Miao, Z.; Yan, D.; Zhang, T.; Yang, F.; Zhang, S.; Liu, W.; Wu, Z. High-Efficiency Flame Retardants of a P-N-Rich Polyphosphazene Elastomer Nanocoating on Cotton Fabric. ACS. Appl. Mater. Interfaces 2021, 13, 32094–32105. [Google Scholar] [CrossRef] [PubMed]
- Demir, A.; Türemen, M. Structural characterization of LbL assembled multilayers by using different polyelectrolytes on cotton fabrics. Fiber. Polym. 2017, 18, 2298–2306. [Google Scholar] [CrossRef]
- Lin, H.; Yao, L.R.; Chen, Y.Y.; Wang, H. Structure and Properties of Silk Fibroin Modified Cotton. Fiber. Polym. 2008, 9, 113–120. [Google Scholar] [CrossRef]
- Han, Y.; Ma, Z.; Wang, X.; Sun, G. Fabrication of N and S co-doped lignin-based porous carbon aerogels loaded with FeCo alloys and their application to oxygen evolution and reduction reactions in Zn-air batteries. Int. J. Biol. Macromol. 2024, 273 Pt 2, 132961. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, M.; Liu, Q.; Wang, X.; Lv, T.; Jia, L. Graphene oxide mediated cellulose-derived carbon as a highly selective catalyst for the hydrolysis of cellulose to glucose. Appl. Catal. A Gen. 2017, 543, 218–224. [Google Scholar] [CrossRef]
- Wang, L.; Lyu, W.; Huang, L.; Li, F.; Zhang, H. Utilization of gellan gum as a novel eco-friendly depressant in the flotation separation of fluorite from barite. Miner. Eng. 2022, 184, 107640. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Vinnik, D.A.; Gavrilova, T.A.; Gudkova, S.A.; Isaenko, L.I.; Jiang, X.; Pokrovsky, L.D.; Prosvirin, I.P.; Mashkovtseva, L.S.; Lin, Z.S. Flux Crystal Growth and the Electronic Structure of BaFe12O19 Hexaferrite. J. Phys. Chem. C 2016, 120, 5114–5123. [Google Scholar] [CrossRef]
- Lu, Y.; Jia, Y.; Zhang, G.; Zhang, F. An eco-friendly intumescent flame retardant with high efficiency and durability for cotton fabric. Cellul. 2018, 25, 5389–5404. [Google Scholar] [CrossRef]
- Xing, L.; Hu, C.; Zhang, W.; Guan, L.; Gu, J. Transition of cellulose supramolecular structure during concentrated acid treatment and its implication for cellulose nanocrystal yield. Carbohydr. Polym. 2020, 229, 115539. [Google Scholar] [CrossRef] [PubMed]
- Kafle, K.; Greeson, K.; Lee, C.; Kim, S.H. Cellulose polymorphs and physical properties of cotton fabrics processed with commercial textile mills for mercerization and liquid ammonia treatments. Text. Res. J. 2014, 84, 1692–1699. [Google Scholar] [CrossRef]
- French, A.D. Idealized powder diffraction patterns for cellulosepolymorphs. Cellulose 2014, 21, 885–896. [Google Scholar] [CrossRef]
- Mendoza, D.J.; Browne, C.; Raghuwanshi, V.S.; Simon, G.P.; Garnier, G. One-shot TEMPO-periodate oxidation of native cellulose. Carbohydr. Polym. 2019, 226, 115292. [Google Scholar] [CrossRef]
- Ivanovska, A.; Milosevic, M.; Ladarevic, J.; Jankoska, M.; Matic, T.; Svircev, Z.; Kostic, M. A step towards tuning the jute fiber structure and properties by employing sodium periodate oxidation and coating with alginate. Int. J. Biol. Macromol. 2024, 257, 128668. [Google Scholar] [CrossRef]
- Nazaré, S.; Kandola, B.K.; Horrocks, A.R. Smoke, CO, and CO2 Measurements and Evaluation using Different Fire Testing Techniques for Flame Retardant Unsaturated Polyester Resin Formulations. J. Fire. Sci. 2008, 26, 215–242. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J.; Zhang, C.; Ji, H.; Zhu, P. The Flame Retardancy, Thermal Properties, and Degradation Mechanism of Zinc Alginate Films. J. Macromol. Sci. Part. B 2014, 53, 1074–1089. [Google Scholar] [CrossRef]
- Luo, J.; Hu, W.; Suo, Z.; Wang, Y.; Zhang, Y. Co-pyrolysis of spent radioactive ion exchange resin and manganese dioxide: Decrease the decomposition temperatures of functional groups. J. Hazard. Mater. 2021, 418, 126275. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, X.R.; Peng, Y.L.; Wang, D.; Yang, L.W.; Peng, H.; Zhu, P.; Wang, D.Y. Effect of reactive time on flame retardancy and thermal degradation behavior of bio-based zinc alginate film. Polym. Degrad. Stabil. 2016, 127, 20–31. [Google Scholar] [CrossRef]
- Hou, X.B.; Xue, Z.X.; Xia, Y.Z. Preparation of a novel agar/sodium alginate fire-retardancy film. Mater. Lett. 2018, 233, 274–277. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, P.W.; Xiong, K.K.; Liu, H.H.; Zhao, P.H.; Liu, Y.Q. Impacts of multi-element flame retardants on flame retardancy, thermal stability, and pyrolysis behavior of epoxy resin. Polym. Degrad. Stabil. 2019, 167, 217–227. [Google Scholar] [CrossRef]
- Zhang, W.; Xia, W.; Shi, Y.; Zhou, C.; Chen, R.; Wang, L.; Qu, J. A DOPO-anchored benzothiadiazole derivative toward efficiently P/N/S synergistic flame retarding of epoxy thermoset. Polym. Adv. Technol. 2022, 33, 3490–3500. [Google Scholar] [CrossRef]
- Zhang, J.G.; Jiang, N.; Dang, Z.; Elder, T.J.; Ragauskas, A.J. Oxidation and sulfonation of cellulosics. Cellulose 2007, 15, 489–496. [Google Scholar] [CrossRef]
- ISO 5660; Reaction-To-Fire Tests—Heat Release, Smoke Production and Mass Loss Rate. International Organization for Standardization: Geneva, Switzerland, 2015.
- AATCC TM61; Colorfastness to Laundering: Accelerated. AATCC: Durham, NC, USA, 2013.
Samples | TTI (s) | PHRR (kW/m2) | TPHRR (s) | THR (MJ/m2) | CO2/CO (%) | FIGRA (kW/m2·s) | TSR (m2/m2) | Av-EHC (MJ/Kg) |
---|---|---|---|---|---|---|---|---|
COT | 15 | 250.50 | 32 | 7.34 | 15.36 | 34.17 | 37.02 | 19.36 |
COT-SC-Ba | 23 | 152.37 | 35 | 8.48 | 11.09 | 17.97 | 1.32 | 15.47 |
Atmosphere | Sample | Tonset (°C) | Tmax (°C) | Rmax (%/min) | Residual Mass at 800 °C (wt.%) |
---|---|---|---|---|---|
Air | COT | 310.6 | 339.2 | 18.3 | 0.02 |
COT-SC-Ba | 261.5 | 315.8 | 11.8 | 26.9 | |
N2 | COT | 322.6 | 357.9 | 14.6 | 8.05 |
COT-SC-Ga | 266.2 | 315.1 | 14.7 | 26.8 |
Sample | LOI (%) | Afterflame Time (s) | Afterglow Time (s) | Char Length (cm) |
---|---|---|---|---|
COT | 17.6 ± 0.6 | 2.9 ± 0.3 | 17.2 ± 1.2 | ≥34 |
COT-SC-Ba | 34.4 ± 0.4 | 0 | 0 | 7.5 ± 0.5 |
COT-SC-Ba washed in 5 cycles | 21.6 ± 0.5 | 3.2 ± 0.2 | 8.9 ± 2.2 | ≥34 |
Washed and re-chelated COT-SC-Ba | 29.7 ± 0.7 | 3.1 ± 0.3 | 131.4 ± 9.7 | 7.8 ± 0.6 |
Sample | Elasticity Modulus (MPa) | Breaking Strain (%) | Tensile Strength (MPa) | Whiteness Index (%) |
---|---|---|---|---|
COT | 350.57 ± 13.78 | 22.98 ± 0.25 | 44.3 ± 0.9 | 79.44 |
COT-M | 290.76 ± 28.84 | 37.44 ± 3.47 | 48.47 ± 3.28 | / |
COT-DAC | 152.13 ± 3.94 | 20.2 ± 2.78 | 17.48 ± 1.87 | / |
COT-SC | 124.88 ± 3.27 | 35.29 ± 1.71 | 30.22 ± 0.23 | / |
COT-SC-Ba | 85.8 ± 16.93 | 24.82 ± 2.19 | 22.2 ± 4.07 | 76.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Lin, H.; Qi, Z.; Pan, J.; Mao, H.; Huang, C.; Li, G.; Wang, C. Study on Flame Retardancy of Cotton Fabric Modified by Sulfonic Groups Chelated with Ba2+. Molecules 2024, 29, 5306. https://doi.org/10.3390/molecules29225306
Guo L, Lin H, Qi Z, Pan J, Mao H, Huang C, Li G, Wang C. Study on Flame Retardancy of Cotton Fabric Modified by Sulfonic Groups Chelated with Ba2+. Molecules. 2024; 29(22):5306. https://doi.org/10.3390/molecules29225306
Chicago/Turabian StyleGuo, Lingling, Hongqin Lin, Zhenming Qi, Jiang Pan, Haiyan Mao, Chunmei Huang, Guoqiang Li, and Chunxia Wang. 2024. "Study on Flame Retardancy of Cotton Fabric Modified by Sulfonic Groups Chelated with Ba2+" Molecules 29, no. 22: 5306. https://doi.org/10.3390/molecules29225306
APA StyleGuo, L., Lin, H., Qi, Z., Pan, J., Mao, H., Huang, C., Li, G., & Wang, C. (2024). Study on Flame Retardancy of Cotton Fabric Modified by Sulfonic Groups Chelated with Ba2+. Molecules, 29(22), 5306. https://doi.org/10.3390/molecules29225306