Advancements in p53-Based Anti-Tumor Gene Therapy Research
Abstract
:1. Introduction
2. Varieties of p53-Based Gene Therapy Techniques
2.1. WTp53 DNA Therapy
2.2. WTp53 mRNA Therapy
2.3. MTp53 siRNA Therapy
2.4. CRISPR-Cas9 Therapy
2.5. Therapies Involving microRNAs Related to p53
3. Techniques for Delivering Nucleic Acids in p53-Based Gene Therapy
3.1. Virus Vector Mediated p53-Based Gene Therapy
3.1.1. Retrovirus Vectors
3.1.2. Adenovirus Vector
3.1.3. Vaccinia Virus Vectors
3.1.4. Phage Vector
3.2. Non-Viral Vector Mediated p53-Based Gene Therapy
3.2.1. Cationic Liposomes
3.2.2. Cationic Polymers
3.2.3. Inorganic Nanocarriers
3.2.4. PCN
3.2.5. Exosomes
3.2.6. Microbubbles
3.2.7. Bacteria Vector
3.3. Improvement of Non-Viral Vectors
3.3.1. Improve the Vector’s Capacity to Specifically Target Tumors
3.3.2. Improve the Vector’s Capacity to Penetrate the Cell Membrane
3.3.3. Improve the Vector’s Capacity to Escape Lysosomes
3.3.4. Diminish the Vector’s Toxic Effects
3.4. Multiple Drugs Co-Delivery System
4. Overview and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Speidel, D. The role of DNA damage responses in p53 biology. Arch. Toxicol. 2015, 89, 501–517. [Google Scholar] [CrossRef] [PubMed]
- Niemantsverdriet, M.; Jong, E.d.; Langendijk, J.A.; Kampinga, H.H.; Coppes, R.P. Synergistic induction of profibrotic PAI-1 by TGF-β and radiation depends on p53. Radiother. Oncol. 2010, 97, 33–35. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Zhao, D.; Li, M.; Chang, S.Y.; Xue, Y.D.; Xu, N.; Li, S.J.; Tang, N.N.; Gong, L.L.; Liu, Y.N.; et al. Crosstalk between PML and p53 in response to TGF-β1: A new mechanism of cardiac fibroblast activation. Int. J. Biol. Sci. 2023, 19, 994–1006. [Google Scholar] [CrossRef] [PubMed]
- Li, M. The role of P53 up-regulated modulator of apoptosis (PUMA) in ovarian development, cardiovascular and neurodegenerative diseases. Apoptosis 2021, 26, 235–247. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, H.; Sun, W.; Gong, H.; Wang, Y.; Ma, C.; Wang, J.; Cao, C.; Yang, X.; Tian, J.; et al. Hyperhomocysteinemia induces cardiac injury by up-regulation of p53-dependent Noxa and Bax expression through the p53 DNA methylation in ApoE−/− mice. Acta Biochim. Biophys. Sin. 2013, 45, 391–400. [Google Scholar] [CrossRef]
- Kang, R.; Kroemer, G.; Tang, D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic. Biol. Med. 2018, 133, 162–168. [Google Scholar] [CrossRef]
- Wang, J.; Yukun, L.; Jie, C.; Xinjiao, Y.; Zhe, X.; Di, Z.; Deling, J.; Kaixiang, X.; Jiang, W.H.; Ye, Z.H. Role of P53 Mediated Molecular Regulation in Starvation-Induced Autophagy in HCT-116 and HT-29 Colorectal Carcinoma Cells. Biol. Bull. 2024, 50, S522–S533. [Google Scholar] [CrossRef]
- Ikeguchi, M.; Sakatani, T.; Ueta, T.; Fukuda, K.; Oka, S.; Hisamitsu, K.; Yamaguchi, K.; Tsujitani, S.; Kaibara, N. Correlation between cathepsin D expression and p53 protein nuclear accumulation in oesophageal squamous cell carcinoma. J. Clin. Pathol. 2002, 55, 121–126. [Google Scholar] [CrossRef]
- Yeo, S.Y.; Itahana, Y.; Guo, A.K.; Han, R.; Iwamoto, K.; Nguyen, H.T.; Bao, Y.; Kleiber, K.; Wu, Y.J.; Bay, B.H.; et al. Transglutaminase 2 contributes to a TP53-induced autophagy program to prevent oncogenic transformation. eLife 2016, 5, e07101. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, H.; Fang, Y.; Lu, L.; Li, M.; Yan, B.; Nie, Y.; Teng, C. Molecular chaperone HspB2 inhibited pancreatic cancer cell proliferation via activating p53 downstream gene RPRM, BAI1, and TSAP6. J. Cell. Biochem. 2019, 121, 2318–2329. [Google Scholar] [CrossRef]
- Dohn, M.; Jiang, J.; Chen, X. Receptor tyrosine kinase EphA2 is regulated by p53-family proteins and induces apoptosis. Oncogene 2001, 20, 6503–6515. [Google Scholar] [CrossRef] [PubMed]
- Lawler, J.; Miao, W.-M.; Duquette, M.; Bouck, N.; Bronson, R.T.; Hynes, R.O. Thrombospondin-1 Gene Expression Affects Survival and Tumor Spectrum of p53-Deficient Mice. Am. J. Pathol. 2001, 159, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Yapindi, L.; Bowley, T.; Kurtaneck, N.; Bergeson, R.L.; James, K.; Wilbourne, J.; Harrod, C.K.; Hernandez, B.Y.; Emerling, B.M.; Yates, C.; et al. Activation of p53-regulated pro-survival signals and hypoxia-independent mitochondrial targeting of TIGAR by human papillomavirus E6 oncoproteins. Virology 2023, 585, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Cortez, M.A.; Ivan, C.; Valdecanas, D.; Wang, X.; Peltier, H.J.; Ye, Y.; Araujo, L.; Carbone, D.P.; Shilo, K.; Giri, D.K.; et al. PDL1 Regulation by p53 via miR-34. J. Natl. Cancer Inst. 2016, 108, djv303. [Google Scholar] [CrossRef]
- Blagih, J.; Zani, F.; Chakravarty, P.; Hennequart, M.; Pilley, S.; Hobor, S.; Morton, J.P.; Gronroos, E.; Mason, S.; Yang, M.; et al. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Rep. 2020, 30, 481–496.e6. [Google Scholar] [CrossRef]
- Davoodi, P.; Srinivasan, M.P.; Wang, C.H. Effective co-delivery of nutlin-3a and p53 genes via core-shell microparticles for disruption of MDM2-p53 interaction and reactivation of p53 in hepatocellular carcinoma. J. Mater. Chem. B 2017, 5, 5816–5834. [Google Scholar] [CrossRef]
- Rong, J.; Li, P.; Ge, Y.; Chen, H.; Wu, J.; Zhang, R.; Lao, J.; Lou, D.; Zhang, Y. Histone H2A-peptide-hybrided upconversion mesoporous silica nanoparticles for bortezomib/p53 delivery and apoptosis induction. Colloids Surf. B Biointerfaces 2020, 186, 110674. [Google Scholar] [CrossRef]
- Blagih, J.; Buck, M.D.; Vousden, K.H. p53, cancer and the immune response. J. Cell Sci. 2020, 133, jcs237453. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, R.; Zhou, T.; Zhang, B.; Li, Z.; Gao, M.; Huang, Y.; Liu, H. Leveraging the multivalent p53 peptide-MdmX interaction to guide the improvement of small molecule inhibitors. Nat. Commun. 2022, 13, 1087. [Google Scholar] [CrossRef]
- Zhang, S.; Carlsen, L.; Hernandez Borrero, L.; Seyhan, A.A.; Tian, X.; El-Deiry, W.S. Advanced Strategies for Therapeutic Targeting of Wild-Type and Mutant p53 in Cancer. Biomolecules 2022, 12, 548. [Google Scholar] [CrossRef]
- Shi, S.-W.; Li, B.; Dong, Y.; Ge, Y.; Qu, X.; Lu, L.-G.; Yuan, Y.-H.; Li, L.-J.; Li, Y. In Vitro and Clinical Studies of Gene Therapy with Recombinant Human Adenovirus-p53 Injection for Malignant Melanoma. Hum. Gene Ther. Clin. Dev. 2019, 30, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Tang, Y.; Li, Y.; Liu, C.; He, J.; Zhang, L.K.; Guan, Y.Q. Tumor cell-derived extracellular vesicles for breast cancer specific delivery of therapeutic P53. J. Control. Release Off. J. Control. Release Soc. 2022, 349, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Lee, M.M.; Chan, M.K. Efficient intracellular delivery of p53 protein by engineered protein crystals restores tumor suppressing function in vivo. Biomaterials 2021, 271, 120759. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, W.; Li, X.; Zhang, J.; Sun, M.; Tang, Z.; Ran, W.; Yang, K.; Huang, G.; Li, L. Expert consensus on the clinical application of recombinant adenovirus human p53 for head and neck cancers. Int. J. Oral Sci. 2021, 13, 333–338. [Google Scholar] [CrossRef]
- Shimada, H.; Matsubara, H.; Shiratori, T.; Shimizu, T.; Miyazaki, S.; Okazumi, S.; Nabeya, Y.; Shuto, K.; Hayashi, H.; Tanizawa, T.; et al. Phase I/II adenoviral p53 gene therapy for chemoradiation resistant advanced esophageal squamous cell carcinoma. Cancer Sci. 2006, 97, 554–561. [Google Scholar] [CrossRef]
- Buller, R.E.; Runnebaum, I.B.; Karlan, B.Y.; Horowitz, J.A.; Shahin, M.; Buekers, T.; Petrauskas, S.; Kreienberg, R.; Slamon, D.; Pegram, M. A phase I/II trial of rAd/p53 (SCH 58500) gene replacement in recurrent ovarian cancer. Cancer Gene Ther. 2002, 9, 553–566. [Google Scholar] [CrossRef]
- Galanis, E.; Okuno, S.H.; Nascimento, A.G.; Lewis, B.D.; Lee, R.A.; Oliveira, A.M.; Sloan, J.A.; Atherton, P.; Edmonson, J.H.; Erlichman, C.; et al. Phase I–II trial of ONYX-015 in combination with MAP chemotherapy in patients with advanced sarcomas. Gene Ther. 2005, 12, 437–445. [Google Scholar] [CrossRef]
- Liang, M. Oncorine, the World First Oncolytic Virus Medicine and its Update in China. Curr. Cancer Drug Targets 2018, 18, 171–176. [Google Scholar] [CrossRef]
- Hori, N.; Tazawa, H.; Li, Y.; Okura, T.; Kikuchi, S.; Kuroda, S.; Ohara, T.; Noma, K.; Nishizaki, M.; Urata, Y.; et al. Intraperitoneal Administration of p53-armed Oncolytic Adenovirus Inhibits Peritoneal Metastasis of Diffuse-type Gastric Cancer Cells. Anticancer Res. 2023, 43, 4809–4821. [Google Scholar] [CrossRef]
- Wang, X.; Su, C.; Cao, H.; Li, K.; Chen, J.; Jiang, L.; Zhang, Q.; Wu, X.; Jia, X.; Liu, Y.; et al. A novel triple-regulated oncolytic adenovirus carrying p53 gene exerts potent antitumor efficacy on common human solid cancers. Mol. Cancer Ther. 2008, 7, 1598–1603. [Google Scholar] [CrossRef]
- Chen, W.; Wu, Y.; Liu, W.; Wang, G.; Wang, X.; Yang, Y.; Chen, W.; Tai, Y.; Lu, M.; Qian, Q.; et al. Enhanced antitumor efficacy of a novel fiber chimeric oncolytic adenovirus expressing p53 on hepatocellular carcinoma. Cancer Lett. 2011, 307, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Geoerger, B.; Vassal, G.; Opolon, P.; Dirven, C.M.; Morizet, J.; Laudani, L.; Grill, J.; Giaccone, G.; Vandertop, W.P.; Gerritsen, W.R.; et al. Oncolytic activity of p53-expressing conditionally replicative adenovirus AdDelta24-p53 against human malignant glioma. Cancer Res. 2004, 64, 5753–5759. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, F.; Di Somma, S.; Castellano, G.; Amato, J.; Pagano, B.; Randazzo, A.; Portella, G.; Malfitano, A.M. Combination of dl922-947 Oncolytic Adenovirus and G-Quadruplex Binders Uncovers Improved Antitumor Activity in Breast Cancer. Cells 2022, 11, 2482. [Google Scholar] [CrossRef] [PubMed]
- Fodor, I.; Timiryasova, T.; Denes, B.; Yoshida, J.; Ruckle, H.; Lilly, M. Vaccinia virus mediated p53 gene therapy for bladder cancer in an orthotopic murine model. J. Urol. 2005, 173, 604–609. [Google Scholar] [CrossRef]
- Leung, C.P.; Barve, M.A.; Wu, M.-S.; Pirollo, K.F.; Strauss, J.F.; Liao, W.-C.; Yang, S.-H.; Nunan, R.A.; Adams, J.; Harford, J.B.; et al. A phase II trial combining tumor-targeting TP53 gene therapy with gemcitabine/nab-paclitaxel as a second-line treatment for metastatic pancreatic cancer. J. Clin. Oncol. 2021, 39, 4139. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, M.; Kang, R.; Cui, M.; Song, M.; Liu, K. A cancer cell membrane coated nanoparticles-based gene delivery system for enhancing cancer therapy. Int. J. Pharm. 2022, 629, 122415. [Google Scholar] [CrossRef]
- Han, H.; Chen, W.; Yang, J.; Liang, X.; Wang, Y.; Li, Q.; Yang, Y.; Li, K. Inhibition of cell proliferation and migration through nucleobase-modified polyamidoamine-mediated p53 delivery. Int. J. Nanomed. 2018, 13, 1297–1311. [Google Scholar] [CrossRef]
- Tang, X.; Li, Q.; Liang, X.; Yang, J.; Liu, Z.; Li, Q. Inhibition of proliferation and migration of tumor cells through lipoic acid-modified oligoethylenimine-mediated p53 gene delivery. New J. Chem. 2019, 43, 2758–2765. [Google Scholar] [CrossRef]
- Xiong, J.; Li, G.; Mei, X.; Ding, J.; Shen, H.; Zhu, D.; Wang, H. Co-Delivery of p53 Restored and E7 Targeted Nucleic Acids by Poly (Beta-Amino Ester) Complex Nanoparticles for the Treatment of HPV Related Cervical Lesions. Front. Pharmacol. 2022, 13, 826771. [Google Scholar] [CrossRef]
- Li, W.-B.; Yuan, W.; Xu, F.-J.; Zhao, C.; Ma, J.; Zhan, Q.-M. Functional study of dextran-graft-poly((2-dimethyl amino)ethyl methacrylate) gene delivery vector for tumor therapy. J. Biomater. Appl. 2013, 28, 125–135. [Google Scholar] [CrossRef]
- Li, Y.; Xu, B.; Bai, T.; Liu, W. Co-delivery of doxorubicin and tumor-suppressing p53 gene using a POSS-based star-shaped polymer for cancer therapy. Biomaterials 2015, 55, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Hu, Y.; Meng, T.; Tan, Y.; Zhao, M.; Dai, S.; Yuan, H.; Hu, F. Redox-responsive Polymer Inhibits Macrophages Uptake for Effective Intracellular Gene Delivery and Enhanced Cancer Therapy. Colloids Surf. B Biointerfaces 2018, 175, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rashid, R.S.; Omar, S.M.; Teiama, M.S.; Khairy, A.; Magdy, M.; Anis, B. Fabrication Of Gold Nanoparticles In Absence Of Surfactant As In Vitro Carrier Of Plasmid DNA. Int. J. Nanomed. 2019, 14, 8399–8408. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhao, Y.; Mu, X.; Wu, H.; Chen, L.; Liu, W.; Mu, Y.; Liu, J.; Wei, X. A silica-polymer composite nano system for tumor-targeted imaging and p53 gene therapy of lung cancer. J. Biomater. Sci. Polym. Ed. 2015, 26, 384–400. [Google Scholar] [CrossRef]
- Liu, M.X.; Zhang, X.L.; Yang, J.B.; Lu, Z.L.; Zhang, Q.T. Highly water-dispersible PCN nanosheets as light-controlled lysosome self-promoting escape type non-cationic gene carriers for tumor therapy. J. Mater. Chem. B 2022, 10, 5430–5438. [Google Scholar] [CrossRef]
- Munagala, R.; Aqil, F.; Jeyabalan, J.; Kandimalla, R.; Wallen, M.; Tyagi, N.; Wilcher, S.; Yan, J.; Schultz, D.J.; Spencer, W.; et al. Exosome-mediated delivery of RNA and DNA for gene therapy. Cancer Lett. 2021, 505, 58–72. [Google Scholar] [CrossRef]
- Pérez Jorge, G.; Módolo, D.G.; Jaimes-Florez, Y.P.; Fávaro, W.J.; de Jesus, M.B.; Brocchi, M. p53 gene delivery via a recombinant Salmonella enterica Typhimurium leads to human bladder carcinoma cell death in vitro. Lett. Appl. Microbiol. 2022, 75, 1010–1020. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, Q.; Xu, X.; Shen, S.; Zhang, Y.; Mo, R. Sequentially Site-Specific Delivery of Apoptotic Protein and Tumor-Suppressor Gene for Combination Cancer Therapy. Small 2019, 15, e1902998. [Google Scholar] [CrossRef]
- Chen, S.; Lei, Q.; Li, S.-Y.; Qin, S.-Y.; Jia, H.-Z.; Cheng, Y.-J.; Zhang, X.-Z. Fabrication of dual responsive co-delivery system based on three-armed peptides for tumor therapy. Biomaterials 2016, 92, 25–35. [Google Scholar] [CrossRef]
- Chen, S.; Rong, L.; Lei, Q.; Cao, P.-X.; Qin, S.-Y.; Zheng, D.-W.; Jia, H.-Z.; Zhu, J.-Y.; Cheng, S.-X.; Zhuo, R.-X.; et al. A surface charge-switchable and folate modified system for co-delivery of proapoptosis peptide and p53 plasmid in cancer therapy. Biomaterials 2016, 77, 149–163. [Google Scholar] [CrossRef]
- Coffin, R. Interview with Robert Coffin, inventor of T-VEC: The first oncolytic immunotherapy approved for the treatment of cancer. Immunotherapy 2016, 8, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Darrow, J.J. Luxturna: FDA documents reveal the value of a costly gene therapy. Drug Discov. Today 2019, 24, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Lu, W.; Chen, M.; Gao, W.; Zhang, C.; Guo, B.; Yang, J. Combined effect of recombinant human adenovirus p53 and curcumin in the treatment of liver cancer. Exp. Ther. Med. 2020, 20, 18. [Google Scholar] [CrossRef] [PubMed]
- Valente, J.F.A.; Sousa, A.; Gaspar, V.M.; Queiroz, J.A.; Sousa, F. The biological performance of purified supercoiled p53 plasmid DNA in different cancer cell lines. Process Biochem. 2018, 75, 240–249. [Google Scholar] [CrossRef]
- Eusébio, D.; Almeida, A.M.; Alves, J.M.; Maia, C.J.; Queiroz, J.A.; Sousa, F.; Sousa, Â. The Performance of Minicircle DNA Versus Parental Plasmid in p53 Gene Delivery Into HPV-18-Infected Cervical Cancer Cells. Nucleic Acid Ther. 2020, 31, 82–91. [Google Scholar] [CrossRef]
- Almeida, A.M.; Queiroz, J.A.; Sousa, F.; Sousa, Â. Minicircle DNA: The Future for DNA-Based Vectors? Trends Biotechnol. 2020, 38, 1047–1051. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, H.; Zhao, L.; Guo, S.; Hu, S.; Tian, M.; Nie, Y.; Yu, J.; Zhou, C.; Niu, J.; et al. Targeting the miR-34a/LRPPRC/MDR1 axis collapse the chemoresistance in P53 inactive colorectal cancer. Cell Death Differ. 2022, 29, 2177–2189. [Google Scholar] [CrossRef]
- Bähr, O.; Wick, W.; Weller, M. Modulation of MDR/MRP by wild-type and mutant p53. J. Clin. Investig. 2001, 107, 643–646. [Google Scholar] [CrossRef]
- Wang, X.; Wu, X.; Wang, C.; Zhang, W.; Ouyang, Y.; Yu, Y.; He, Z. Transcriptional suppression of breast cancer resistance protein (BCRP) by wild-type p53 through the NF-κB pathway in MCF-7 cells. FEBS Lett. 2010, 584, 3392–3397. [Google Scholar] [CrossRef]
- Priya, S.S.; Rekha, M.R. Synergistic effect of p53 gene/DOX intracellular delivery and P-gp inhibition by pullulan thiomers on cancer cells: In vitro and in vivo evaluations. J. Mater. Chem. B 2023, 11, 1365–1377. [Google Scholar] [CrossRef]
- Gohara, S.; Shinohara, K.; Yoshida, R.; Kariya, R.; Tazawa, H.; Hashimoto, M.; Inoue, J.; Kubo, R.; Nakashima, H.; Arita, H.; et al. An oncolytic virus as a promising candidate for the treatment of radioresistant oral squamous cell carcinoma. Mol. Ther. Oncolytics 2022, 27, 141–156. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.S.; Ma, J.G.; Xing, L.N. Efficacy and safety of recombinant human adenovirus p53 combined with chemoradiotherapy in the treatment of recurrent nasopharyngeal carcinoma. Anti-Cancer Drugs 2017, 28, 230–236. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wu, Y.; Qiu, X. Effects of recombinant human adenovirus p53 injection combined with TP chemotherapeutic regimen in treating advanced cervical cancer. Lab. Med. Clin. 2023, 20, 2868–2871. (In Chinese) [Google Scholar]
- Qiao, H.B.; Li, J.; Lv, L.J.; Nie, B.J.; Lu, P.; Xue, F.; Zhang, Z.M. The effects of interleukin 2 and rAd-p53 as a treatment for glioblastoma. Mol. Med. Rep. 2018, 17, 4853–4859. [Google Scholar] [CrossRef]
- Chada, S.; Wiederhold, D.B.; Menander, K.; Ahn, H.; Oh, E.; Yun, C.O.; Sobol, R.E. Reversing immune checkpoint inhibitor resistance with adenoviral IL-24 and p53 tumor suppressor immune gene therapy. J. Clin. Oncol. 2018, 36, 64. [Google Scholar] [CrossRef]
- Deng, B.; Sun, T.; Tang, B.; Tao, S.; Kang, P.; Qian, K.; Jiang, B.; Li, K.; Li, K.; Zhou, J.; et al. Surgery combined with adenoviral p53 gene therapy for treatment of non-small cell lung cancer: A phase II study. Oncotarget 2017, 8, 107089–107095. [Google Scholar] [CrossRef]
- Zhu, J. A new combination therapy using recombinant human adenovirus p53 injection (rAd-p53) to manage advanced thyroid cancer. J. Clin. Oncol. 2017, 35, e17585. [Google Scholar] [CrossRef]
- Luo, Z.; Zheng, K.; Fan, Q.; Jiang, X.; Xiong, D. Hyperthermia exposure induces apoptosis and inhibits proliferation in HCT116 cells by upregulating miR-34a and causing transcriptional activation of p53. Exp. Ther. Med. 2017, 14, 5379–5386. [Google Scholar] [CrossRef]
- Li, D.; Qin, Y.; Fan, Y. Effect observation of Recombinant Human P53 Adenovirus Injection combined with regional heperthermia and chemotherapy treating advanced pancreatic cancer. China Mod. Med. 2017, 24, 84–87. (In Chinese) [Google Scholar]
- Chen, Q.; Pan, S.; Gao, X. Clinical Effect of Wuling Powders Combined With Human Recombinant p53 Adenovirus Injection on Malignant Pericardial Effusion. Pract. J. Card. Cereb. Pneumal Vasc. Dis. 2016, 24, 94–96. (In Chinese) [Google Scholar]
- Guo, X.; Fang, Z.; Zhang, M.; Yang, D.; Wang, S.; Liu, K. A Co-Delivery System of Curcumin and p53 for Enhancing the Sensitivity of Drug-Resistant Ovarian Cancer Cells to Cisplatin. Molecules 2020, 25, 2621. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Wang, B.; Liu, Y.; Zhong, L.; Tang, Y.; Guo, H.; Jiang, T.; Wang, L.; Li, Y.; Cai, L. Murine Double Minute 2 siRNA and wild-type p53 gene therapy interact positively with zinc on prostate tumours in vitro and in vivo. Eur. J. Cancer 2014, 50, 1184–1194. [Google Scholar] [CrossRef] [PubMed]
- Sukumar, U.K.; Rajendran, J.C.; Gambhir, S.S.; Massoud, T.F.; Paulmurugan, R. SP94-Targeted Triblock Co-Polymer Nanoparticle Delivers Thymidine Kinase-p53-Nitroreductase Triple Therapeutic Gene and Restores Anticancer Function against Hepatocellular Carcinoma in vivo. ACS Appl. Mater. Interfaces 2020, 12, 11307–11319. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sukumar, U.K.; Jugniot, N.; Seetharam, S.M.; Rengaramachandran, A.; Sadeghipour, N.; Mukherjee, P.; Krishnan, A.; Massoud, T.F.; Paulmurugan, R. Inhaled Gold Nano-Star Carriers for Targeted Delivery of Triple Suicide Gene Therapy and Therapeutic MicroRNAs to Lung Metastases: Development and Validation in a Small Animal Model. Adv. Ther. 2022, 5, 220018. [Google Scholar] [CrossRef]
- Kong, N.; Tao, W.; Ling, X.; Wang, J.; Xiao, Y.; Shi, S.; Ji, X.; Shajii, A.; Gan, S.T.; Kim, N.Y.; et al. Synthetic mRNA nanoparticle-mediated restoration of p53 tumor suppressor sensitizes p53-deficient cancers to mTOR inhibition. Sci. Transl. Med. 2019, 11, eaaw1565. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, J.; Zhou, H.; Zeng, X.; Ruan, Z.; Pu, Z.; Jiang, X.; Matsui, A.; Zhu, L.; Amoozgar, Z.; et al. Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for effective cancer therapy. Nat. Commun. 2022, 13, 758. [Google Scholar] [CrossRef]
- Zhang, X.; Hai, L.; Gao, Y.; Yu, G.; Sun, Y. Lipid nanomaterials-based RNA therapy and cancer treatment. Acta Pharm. Sin. B 2023, 13, 903–915. [Google Scholar] [CrossRef]
- Thess, A.; Grund, S.; Mui, B.L.; Hope, M.J.; Baumhof, P.; Fotin-Mleczek, M.; Schlake, T. Sequence-Engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals. Mol. Ther. 2015, 23, 1456–1464. [Google Scholar] [CrossRef]
- Chen, H.; Liu, D.; Guo, J.; Aditham, A.; Zhou, Y.; Tian, J.; Luo, S.; Ren, J.; Hsu, A.; Huang, J.; et al. Branched chemically modified poly(A) tails enhance the translation capacity of mRNA. Nat. Biotechnol. 2024. online ahead of print. [Google Scholar] [CrossRef]
- Banik, R.; Neuman, T.G.; Hao, Z.; Sharabati, M.A.; Zhao, W.; Anderson, D.G.; Przybycien, T.; Kilduff, J.; Belfort, G. Convection rather than diffusion for fast efficient mRNA vaccine purification. Sep. Purif. Technol. 2025, 354, 129310. [Google Scholar] [CrossRef]
- Sabapathy, K.; Lane, D. Therapeutic targeting of p53: All mutants are equal, but some mutants are more equal than others. Nat. Rev. Clin. Oncol. 2018, 15, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Willis, A.; Jung, E.J.; Wakefield, T.; Chen, X. Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene 2004, 23, 2330–2338. [Google Scholar] [CrossRef] [PubMed]
- Leroy, B.; Anderson, M.; Soussi, T. TP53 mutations in human cancer: Database reassessment and prospects for the next decade. Hum. Mutat. 2014, 35, 672–688. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.; Teoh, W.W.; Phang, B.H.; Tong, W.M.; Wang, Z.Q.; Sabapathy, K. Cell-type, Dose, and Mutation-type Specificity Dictate Mutant p53 Functions In Vivo. Cancer Cell 2012, 22, 751–764. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Tang, Y.; Lao, Z.; Lei, J.; Wei, G. Common cancer mutations R175H and R273H drive the p53 DNA-binding domain towards aggregation-prone conformations. Phys. Chem. Chem. Phys. PCCP 2020, 22, 9225–9232. [Google Scholar] [CrossRef]
- Schulz-Heddergott, R.; Stark, N.; Edmunds, S.J.; Li, J.; Conradi, L.-C.; Bohnenberger, H.; Ceteci, F.; Greten, F.R.; Dobbelstein, M.; Moll, U.M. Therapeutic Ablation of Gain-of-Function Mutant p53 in Colorectal Cancer Inhibits Stat3-Mediated Tumor Growth and Invasion. Cancer Cell 2018, 34, 298–314.e7. [Google Scholar] [CrossRef]
- Restle, A.; Färber, M.; Baumann, C.; Böhringer, M.; Scheidtmann, K.H.; Müller-Tidow, C.; Wiesmüller, L. Dissecting the role of p53 phosphorylation in homologous recombination provides new clues for gain-of-function mutants. Nucleic Acids Res. 2008, 36, 5362–5375. [Google Scholar] [CrossRef]
- Bergamaschi, D.; Gasco, M.; Hiller, L.; Sullivan, A.; Syed, N.; Trigiante, G.; Yulug, I.; Merlano, M.; Numico, G.; Comino, A.; et al. p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell 2003, 3, 387–402. [Google Scholar] [CrossRef]
- Martinez, L.A.; Naguibneva, I.; Lehrmann, H.; Vervisch, A.; Tchénio, T.; Lozano, G.; Harel-Bellan, A. Synthetic small inhibiting RNAs: Efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc. Natl. Acad. Sci. USA 2002, 99, 14849–14854. [Google Scholar] [CrossRef]
- Park, W.I.; Park, S.-R.; Park, H.-J.; Bae, Y.-H.; Ryu, H.S.; Jang, H.-O.; Bae, M.-K.; Bae, S.-K. Silencing of Mutant p53 Leads to Suppression of Human Breast Xenograft Tumor Growth in vivo. KSBB J. 2016, 31, 52–57. [Google Scholar] [CrossRef]
- Ubby, I.; Krueger, C.; Rosato, R.; Qian, W.; Chang, J.; Sabapathy, K. Cancer therapeutic targeting using mutant-p53-specific siRNAs. Oncogene 2019, 38, 3415–3427. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Doudna, J.A. CRISPR–Cas9 Structures and Mechanisms. Annu. Rev. Biophys. 2017, 46, 505–529. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, J.; Liu, Y.; Xie, L.; Su, B.; Mou, D.; Wang, L.; Liu, T.; Wang, X.; Zhang, B.; et al. CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukemia. N. Engl. J. Med. 2019, 381, 1240–1247. [Google Scholar] [CrossRef]
- Horie, T.; Ono, K. VERVE-101: A promising CRISPR-based gene editing therapy that reduces LDL-C and PCSK9 levels in HeFH patients. Eur. Heart J. Cardiovasc. Pharmacother. 2024, 10, 89–90. [Google Scholar] [CrossRef]
- Longhurst, H.J.; Lindsay, K.; Petersen, R.S.; Fijen, L.M.; Gurugama, P.; Maag, D.; Butler, J.S.; Shah, M.Y.; Golden, A.; Xu, Y.; et al. CRISPR-Cas9 In Vivo Gene Editing of KLKB1 for Hereditary Angioedema. N. Engl. J. Med. 2024, 390, 432–441. [Google Scholar] [CrossRef]
- Chira, S.; Gulei, D.; Hajitou, A.; Berindan-Neagoe, I. Restoring the p53 ‘Guardian’ Phenotype in p53-Deficient Tumor Cells with CRISPR/Cas9. Trends Biotechnol. 2018, 36, 653–660. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Suwan, K.; Hajitou, A. Initial Steps for the Development of a Phage-Mediated Gene Replacement Therapy Using CRISPR-Cas9 Technology. J. Clin. Med. 2020, 9, 1498. [Google Scholar] [CrossRef]
- Tsuchida, C.A.; Brandes, N.; Bueno, R.; Trinidad, M.; Mazumder, T.; Yu, B.; Hwang, B.; Chang, C.; Liu, J.; Sun, Y.; et al. Mitigation of chromosome loss in clinical CRISPR-Cas9-engineered T cells. Cell 2023, 186, 4567–4582.e20. [Google Scholar] [CrossRef]
- Wu, J.; Zou, Z.; Liu, Y.; Liu, X.; Zhangding, Z.; Xu, M.; Hu, J. CRISPR/Cas9-induced structural variations expand in T lymphocytes in vivo. Nucleic Acids Res. 2022, 50, 11128–11137. [Google Scholar] [CrossRef]
- Leibowitz, M.L.; Papathanasiou, S.; Doerfler, P.A.; Blaine, L.J.; Sun, L.; Yao, Y.; Zhang, C.Z.; Weiss, M.J.; Pellman, D. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing. Nat. Genet. 2021, 53, 895–905. [Google Scholar] [CrossRef]
- Hsu, P.D.; Scott, D.A.; Weinstein, J.A.; Ran, F.A.; Konermann, S.; Agarwala, V.; Li, Y.; Fine, E.J.; Wu, X.; Shalem, O.; et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 2013, 31, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.W.; Kim, S.; Kim, Y.; Kweon, J.; Kim, H.S.; Bae, S.; Kim, J.S. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014, 24, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.S.; Dagdas, Y.S.; Kleinstiver, B.P.; Welch, M.M.; Sousa, A.A.; Harrington, L.B.; Sternberg, S.H.; Joung, K.J.; Yildiz, A.; Doudna, J.A. Enhanced Proofreading Governs CRISPR-Cas9 Targeting Accuracy. Biophys. J. 2018, 114, 194a. [Google Scholar] [CrossRef]
- Bae, S.; Park, J.; Kim, J.S. Cas-OFFinder: A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 2014, 30, 1473–1475. [Google Scholar] [CrossRef]
- He, B.; Zhao, Z.; Cai, Q.; Zhang, Y.; Zhang, P.; Shi, S.; Xie, H.; Peng, X.; Yin, W.; Tao, Y.; et al. miRNA-based biomarkers, therapies, and resistance in Cancer. Int. J. Biol. Sci. 2020, 16, 2628–2647. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Liu, R.; Kasinski, A.L.; Shen, H.; Slack, F.J.; Tang, D.G. MicroRNA-34a: Potent Tumor Suppressor, Cancer Stem Cell Inhibitor, and Potential Anticancer Therapeutic
. Front. Cell Dev. Biol. 2021, 9, 640587. [Google Scholar] [CrossRef]
- Slabáková, E.; Culig, Z.; Remšík, J.; Souček, K. Alternative mechanisms of miR-34a regulation in cancer. Cell Death Dis. 2017, 8, e3100. [Google Scholar] [CrossRef]
- Abdelaal, A.M.; Sohal, I.S.; Iyer, S.; Sudarshan, K.; Kothandaraman, H.; Lanman, N.A.; Low, P.S.; Kasinski, A.L. A first-in-class fully modified version of miR-34a with outstanding stability, activity, and anti-tumor efficacy. Oncogene 2023, 42, 2985–2999. [Google Scholar] [CrossRef]
- Abdelaal, A.M.; Sohal, I.S.; Iyer, S.G.; Sudarshan, K.; Orellana, E.A.; Ozcan, K.E.; Dos Santos, A.P.; Low, P.S.; Kasinski, A.L. Selective targeting of chemically modified miR-34a to prostate cancer using a small molecule ligand and an endosomal escape agent. Mol. Ther. Nucleic Acids 2024, 35, 102193. [Google Scholar] [CrossRef]
- Roth, J.A.; Nguyen, D.; Lawrence, D.D.; Kemp, B.L.; Carrasco, C.H.; Ferson, D.Z.; Hong, W.K.; Komaki, R.; Lee, J.J.; Nesbitt, J.C.; et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat. Med. 1996, 2, 985–991. [Google Scholar] [CrossRef]
- Bastone, A.L.; Dziadek, V.; John-Neek, P.; Mansel, F.; Fleischauer, J.; Agyeman-Duah, E.; Schaudien, D.; Dittrich-Breiholz, O.; Schwarzer, A.; Schambach, A.; et al. Development of an in vitro genotoxicity assay to detect retroviral vector-induced lymphoid insertional mutants. Mol. Ther. Methods Clin. Dev. 2023, 30, 515–533. [Google Scholar] [CrossRef] [PubMed]
- Hacein-Bey-Abina, S.; Von Kalle, C.; Schmidt, M.; Le Deist, F.; Wulffraat, N.; McIntyre, E.; Radford, I.; Villeval, J.L.; Fraser, C.C.; Cavazzana-Calvo, M.; et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 2003, 348, 255–256. [Google Scholar] [CrossRef] [PubMed]
- Hacein-Bey-Abina, S.; Garrigue, A.; Wang, G.P.; Soulier, J.; Lim, A.; Morillon, E.; Clappier, E.; Caccavelli, L.; Delabesse, E.; Beldjord, K.; et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Investig. 2008, 118, 3132–3142. [Google Scholar] [CrossRef] [PubMed]
- Braun, C.J.; Boztug, K.; Paruzynski, A.; Witzel, M.; Schwarzer, A.; Rothe, M.; Modlich, U.; Beier, R.; Göhring, G.; Steinemann, D.; et al. Gene Therapy for Wiskott-Aldrich Syndrome—Long-Term Efficacy and Genotoxicity. Sci. Transl. Med. 2014, 6, 227ra233. [Google Scholar] [CrossRef]
- Pai, S.Y.; Nagarsheth, N.; Prockop, S.; Armant, M.; Kohn, D.B.; Marsh, R.A.; Booth, C.; Everett, J.K.; Bleesing, J.; Chellapandian, D.; et al. Long-Term Outcome of Gene Therapy for X-Linked Severe Combined Immunodeficiency (SCID-X1) Using an Enhancer-Deleted Self-Inactivating Gammaretroviral Vector. Blood 2022, 140, 10643–10645. [Google Scholar] [CrossRef]
- Ramezani, A.; Hawley, T.S.; Hawley, R.G. Combinatorial Incorporation of Enhancer-Blocking Components of the Chicken β-Globin 5′HS4 and Human T-Cell Receptor α/δ BEAD-1 Insulators in Self-Inactivating Retroviral Vectors Reduces Their Genotoxic Potential. Stem Cells 2008, 26, 3257–3266. [Google Scholar] [CrossRef]
- Milone, M.C.; O’Doherty, U. Clinical use of lentiviral vectors. Leukemia 2018, 32, 1529–1541. [Google Scholar] [CrossRef]
- Senzer, N.; Nemunaitis, J. A review of contusugene ladenovec (Advexin) p53 therapy. Curr. Opin. Mol. Ther. 2009, 11, 54–61. [Google Scholar]
- Wen, S.F.; Xie, L.; McDonald, M.; DiGiacomo, R.; Chang, A.; Gurnani, M.; Shi, B.; Liu, S.; Indelicato, S.R.; Hutchins, B.; et al. Development and validation of sensitive assays to quantitate gene expression after p53 gene therapy and paclitaxel chemotherapy using in vivo dosing in tumor xenograft models. Cancer Gene Ther. 2000, 7, 1469–1480. [Google Scholar] [CrossRef]
- Yu, R.; Wang, M.; Zhu, X.; Sun, Z.; Jiang, A.; Yao, H. Therapeutic effects of lenvatinib in combination with rAd-p53 for the treatment of non-small cell lung cancer. Oncol. Lett. 2018, 16, 6573–6581. [Google Scholar] [CrossRef]
- Xiao, J.; Zhou, J.; Fu, M.; Liang, L.I.; Deng, Q.; Liu, X.; Liu, F. Efficacy of recombinant human adenovirus-p53 combined with chemotherapy for locally advanced cervical cancer: A clinical trial. Oncol. Lett. 2017, 13, 3676–3680. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Xia, Y.; Li, X. Recombinant human p53 adenovirus injection (rAd-p53) combined with chemotherapy for 4 cases of high-grade serous ovarian cancer. Curr. Gene Ther. 2020, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Wang, L.; Ma, X.; Li, X. Investigation on the genomic characterization of uterine sarcoma for rAd-p53 combined with chemotherapy treatment. Hum. Gene Ther. 2020, 31, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Sheng, S.; Zheng, J.; Cui, S.; Cui, X.; Qian, Z. Complete remission of multiple lung metastases after ablation of hepatocellular carcinoma by transarterial infusion with the p53 gene. Anti-Cancer Drugs 2015, 26, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, L.M.; Wang, B.L.; Tang, K.L.; Xu, Y. Clinical trial of the rAd-p53 in combination with lenvatinib for treatment of renal cell carcinoma. Int. J. Clin. Exp. Med. 2016, 9, 23560–23567. [Google Scholar]
- Mo, J.; Lin, M.; He, B.; Tan, K.; Jin, C.; Jiang, H.; Pan, X.; Lin, W. Recombinant human adenovirus-p53 improves the outcome of mid-late stage pancreatic cancer via arterial infusion. Oncol. Lett. 2017, 14, 6829–6832. [Google Scholar] [CrossRef]
- Lu, P.; Yang, X.; Huang, Y.; Lu, Z.; Miao, Z.; Liang, Q.; Zhu, Y.; Fan, Q. Antitumor activity of a combination of rAd2p53 adenoviral gene therapy and radiotherapy in esophageal carcinoma. Cell Biochem. Biophys. 2011, 59, 147–152. [Google Scholar] [CrossRef]
- Zhang, Z. Recombinant adeno-viral human p53 gene combined with FOLFOX4 in the treatment of advanced colorectal cancer. J. Clin. Oncol. 2012, 30, e14036. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, J.; Ji, H. Clinical efficacy of recombinant human p53 adenovirus in the treatment of malignant pleural effusion in lung adenocarcinoma. Chin. J. Gerontol. 2016, 36, 5921–5923. (In Chinese) [Google Scholar]
- Bian, C.; Wang, H. Clinical Study on Hyperthermic Perfusion Chemotherapy Combined with Recombinant Human Adenovirus p53 in the Treatment of Hepatocellular Carcinoma Complicated with Abdominal Dropsy. China Pharm. 2019, 28, 72–75. (In Chinese) [Google Scholar]
- Watanabe, N.; Yano, K.; Tsuyuki, K.; Okano, T.; Yamato, M. Re-examination of regulatory opinions in Europe: Possible contribution for the approval of the first gene therapy product Glybera. Mol. Ther. Methods Clin. Dev. 2017, 2, 14066. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.; Chauhan, A. Clinical Application of Oncolytic Viruses: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 7505. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, J.R.; Kirn, D.H.; Williams, A.; Heise, C.; Horn, S.; Muna, M.; Ng, L.; Nye, J.A.; Sampson-Johannes, A.; Fattaey, A.; et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996, 274, 373–376. [Google Scholar] [CrossRef]
- Reid, T.R.; Freeman, S.; Post, L.; McCormick, F.; Sze, D.Y. Effects of Onyx-015 among metastatic colorectal cancer patients that have failed prior treatment with 5-FU/leucovorin. Cancer Gene Ther. 2005, 12, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Rothmann, T.; Hengstermann, A.; Whitaker, N.J.; Scheffner, M.; Hausen, H.z. Replication of ONYX-015, a Potential Anticancer Adenovirus, Is Independent of p53 Status in Tumor Cells. J. Virol. 1998, 72, 9470–9478. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Z.; Zhang, J.; Wang, J.; Wang, T.; Su, J.; Shi, F.; Wang, F. 757P The efficacy and safety of recombinant human adenovirus type 5 (H101) intra-tumor therapy in patients with recurrent or metastatic cervical cancer: A prospective, open-label, single-arm study. Ann. Oncol. 2023, 34, S518. [Google Scholar] [CrossRef]
- Xie, J.; Yi, L.; Meng, Z. 95P A phase II study of combination of H101 (a recombinant human adenovirus type 5) and nivolumab for advanced hepatocellular carcinoma (HCC) after systemic therapy failure. Immuno-Oncol. Technol. 2022, 16, 100199. [Google Scholar] [CrossRef]
- He, Y.; Chen, J.; Zhu, Z.; Gao, S.; Wang, H.; Mao, W.; Qian, H.; Liu, W.; Guo, X.; Qing, H.; et al. H101 treatment of hepatic metastasis of colorectal cancer with recombinant human adenovirus 5 injection: A phase I clinical trial-TROJAN 021. J. Clin. Oncol. 2021, 39, 3605. [Google Scholar] [CrossRef]
- Wang, B.; Zhong, C.; Liao, Z.; Wang, H.; Cai, X.; Zhang, Y.; Wang, J.; Wang, T.; Yao, H. 365P Effectiveness and safety of human type 5 recombinant adenovirus (H101) in malignant tumor with malignant pleural effusion and ascites: A multicenter, observational, real-world study. Ann. Oncol. 2023, 34, S328–S329. [Google Scholar] [CrossRef]
- Tanabe, S.; Kojima, T.; Tazawa, H.; Noma, K.; Katsui, K.; Hori, K.; Nakamura, N.; Urata, Y.; Doi, T.; Kanazawa, S.; et al. 554P Phase I clinical trial of OBP-301, a novel telomerase-specific oncolytic virus, in combination with radiotherapy in esophageal cancer patients. Ann. Oncol. 2021, 32, S612. [Google Scholar] [CrossRef]
- Ono, R.; Nishimae, F.; Wakida, T.; Sakurai, F.; Mizuguchi, H. Effects of pre-existing anti-adenovirus antibodies on transgene expression levels and therapeutic efficacies of arming oncolytic adenovirus. Sci. Rep. 2022, 12, 21560. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wu, S.; Wang, Y.; Shao, F.; Lv, P.; Li, R.; Zhao, X.; Zhang, J.; Zhang, X.; Li, J.; et al. Lung-Targeted Transgene Expression of Nanocomplexed Ad5 Enhances Immune Response in the Presence of Preexisting Immunity. Engineering 2023. [Google Scholar] [CrossRef] [PubMed]
- Zeimet, A.G.; Marth, C. Why did p53 gene therapy fail in ovarian cancer? Lancet Oncol. 2003, 4, 415–422. [Google Scholar] [CrossRef]
- Braun, D.; Judmann, B.; Cheng, X.; Wangler, B.; Schirrmacher, R.; Fricker, G.; Wangler, C. Synthesis, Radiolabeling, and In Vitro and In Vivo Characterization of Heterobivalent Peptidic Agents for Bispecific EGFR and Integrin αvβ3 Targeting. ACS Omega 2023, 8, 2793–2807. [Google Scholar] [CrossRef]
- Parmar, H.S.; Nayak, A.; Kataria, S.; Tripathi, V.; Jaiswal, P.; Gavel, P.K.; Jha, H.C.; Bhagwat, S.; Dixit, A.K.; Lukashevich, V.; et al. Restructuring the ONYX-015 adenovirus by using spike protein genes from SARS-CoV-2 and MERS-CoV: Possible implications in breast cancer treatment. Med. Hypotheses 2022, 159, 110750. [Google Scholar] [CrossRef]
- Kos, F.J.; Frankel, P.; Cristea, M.; Eng, M.; Tinsley, R.; Dempsey, S.; Ruel, N.; Stewart, D.; Dellinger, T.H.; Diamond, D.J. Immunologic Signatures of Peripheral Blood T Cells Reveal the Outcome of p53MVA Vaccine and Pembrolizumab Treatment in Patients with Advanced Ovarian Cancer. Cancer Res. Commun. 2023, 3, 2585–2595. [Google Scholar] [CrossRef]
- Downs-Canner, S.; Guo, Z.S.; Ravindranathan, R.; Breitbach, C.J.; O’malley, M.E.; Jones, H.L.; Moon, A.; McCart, J.A.; Shuai, Y.; Zeh, H.J.; et al. Phase 1 Study of Intravenous Oncolytic Poxvirus (vvDD) in Patients With Advanced Solid Cancers. Mol. Ther. J. Am. Soc. Gene Ther. 2016, 24, 1492–1501. [Google Scholar] [CrossRef]
- Rao, V.B.; Zhu, J. Bacteriophage T4 as a nanovehicle for delivery of genes and therapeutics into human cells. Curr. Opin. Virol. 2022, 55, 101255. [Google Scholar] [CrossRef]
- Liu, T.; Zhao, N.; Shi, M.; Shen, Y.; Mao, C.; Zhou, X. Phage-Derived Oncolytic Viruses with 3C from Seneca Valley Virus for Targeted Therapy of Cervical Cancer. Adv. Ther. 2022, 5, 220059. [Google Scholar] [CrossRef]
- Chen, C.; Han, H.; Yang, W.; Ren, X.; Kong, X. Polyethyleneimine-modified calcium carbonate nanoparticles for p53 gene delivery. Regen. Biomater. 2016, 3, 57–63. [Google Scholar] [CrossRef]
- Karmakar, A.; Bratton, S.M.; Dervishi, E.; Ghosh, A.; Mahmood, M.; Xu, Y.; Saeed, L.M.; Mustafa, T.; Casciano, D.; Radominska-Pandya, A.; et al. Ethylenediamine functionalized-single-walled nanotube (f-SWNT)-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells. Int. J. Nanomed. 2011, 6, 1045–1055. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, X.; Yu, B.; Chen, M.; Zhao, N.; Xu, F.J. pH-Responsive hyaluronic acid-cloaked polycation/gold nanohybrids for tumor-targeted synergistic photothermal/gene therapy. Biomater. Sci. 2022, 10, 2618–2627. [Google Scholar] [CrossRef] [PubMed]
- Changand, E.H.; Pirollo, K. C-104 A Tumor-targeting delivery platform for p53 therapy: Translation and clinical applications. JAIDS J. Acquir. Immune Defic. Syndr. 2016, 71, 48. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, X.; Bai, Y.; Xie, H.; Yang, Z.; Wang, Y.; Chen, Y.; Luo, Y.; Ma, M.; Lu, W.; et al. Amphiphilic cationic triblock polymers for p53-mediated triple-negative breast cancer gene therapy. Mater. Des. 2022, 219, 110758. [Google Scholar] [CrossRef]
- Gaspar, V.M.; Costa, E.C.; Queiroz, J.A.; Pichon, C.; Sousa, F.; Correia, I.J. Folate-targeted multifunctional amino acid-chitosan nanoparticles for improved cancer therapy. Pharm. Res. 2015, 32, 562–577. [Google Scholar] [CrossRef]
- Meng, T.; Wu, J.; Yi, H.; Liu, J.; Lu, B.; Yuan, M.; Huang, X.; Yuan, H.; Hu, F. A spermine conjugated stearic acid-g-chitosan oligosaccharide polymer with different types of amino groups for efficient p53 gene therapy. Colloids Surf. B Biointerfaces 2016, 145, 695–705. [Google Scholar] [CrossRef]
- Mekuria, S.L.; Li, J.; Song, C.; Gao, Y.; Ouyang, Z.; Shen, M.; Shi, X. Facile Formation of PAMAM Dendrimer Nanoclusters for Enhanced Gene Delivery and Cancer Gene Therapy. ACS Appl. Bio Mater. 2021, 4, 7168–7175. [Google Scholar] [CrossRef]
- Lin, J.-T.; Chen, H.; Wang, D.; Xiong, L.; Li, J.-Z.; Chen, G.-H.; Chen, G.-B. Nuclear-targeted p53 and DOX co-delivery of chitosan derivatives for cancer therapy in vitro and in vivo. Colloids Surf. B Biointerfaces 2019, 183, 110440. [Google Scholar] [CrossRef]
- Han, K.; Chen, S.; Chen, W.-H.; Lei, Q.; Liu, Y.; Zhuo, R.-X.; Zhang, X.-Z. Synergistic gene and drug tumor therapy using a chimeric peptide. Biomaterials 2013, 34, 4680–4689. [Google Scholar] [CrossRef]
- Wang, H.; Guo, Q.; Jiang, Y.; Liu, E.; Zhao, Y.; Wang, H.; Li, Y.; Huang, Y. Co-delivery of Cell-permeable Chimeric Apoptosis AVPIR8 Peptide/p53 DNA for Cocktail Therapy. Adv. Funct. Mater. 2013, 23, 6068–6075. [Google Scholar] [CrossRef]
- Cho, C.W.; Cho, Y.S.; Lee, H.K.; Yeom, Y.I.; Park, S.N.; Yoon, D.Y. Improvement of receptor-mediated gene delivery to HepG2 cells using an amphiphilic gelling agent. Biotechnol. Appl. Biochem. 2000, 32, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Eslaminejad, T.; Nematollahi-Mahani, S.N.; Ansari, M. Glioblastoma Targeted Gene Therapy Based on pEGFP/p53-Loaded Superparamagnetic Iron Oxide Nanoparticles. Curr. Gene Ther. 2017, 17, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Ibnat, N.; Kamaruzman, N.I.; Ashaie, M.; Chowdhury, E.H. Transfection with p21 and p53 tumor suppressor plasmids suppressed breast tumor growth in syngeneic mouse model. Gene 2019, 701, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R. The biology and function of exosomes in cancer. J. Clin. Investig. 2016, 126, 1208–1215. [Google Scholar] [CrossRef]
- Rinaldi, L.; Folliero, V.; Palomba, L.; Zannella, C.; Isticato, R.; Di Francia, R.; Berretta, M.; de Sio, I.; Adinolfi, L.E.; Morelli, G.; et al. Sonoporation by microbubbles as gene therapy approach against liver cancer. Oncotarget 2018, 9, 32182–32190. [Google Scholar] [CrossRef]
- Wu, L.; Li, L.; Li, S.; Liu, L.; Xin, W.; Li, C.; Yin, X.; Xu, X.; Bao, F.; Hua, Z. Macrophage-mediated tumor-targeted delivery of engineered Salmonella typhimurium VNP20009 in anti-PD1 therapy against melanoma. Acta Pharm. Sin. B 2022, 12, 3952–3971. [Google Scholar] [CrossRef]
- Zuo, L.; Zhang, F.; Xu, Y. Anti-EGF antibody cationic polymeric liposomes for delivery of the p53 gene for ovarian carcinoma therapy. Int. J. Clin. Exp. Pathol. 2019, 12, 205–211. [Google Scholar]
- Xu, W.; Yang, M.; Zhang, W.; Jia, W.; Zhang, H.; Zhang, Y. Tumor microenvironment responsive nano-platform for overcoming sorafenib resistance of hepatocellular carcinoma. Mater. Today Bio 2024, 24, 100902. [Google Scholar] [CrossRef]
- Liu, J.; He, J.; Zhang, M.; Xu, G.; Ni, P. A synergistic polyphosphoester-based co-delivery system of the anticancer drug doxorubicin and the tumor suppressor gene p53 for lung cancer therapy. J. Mater. Chem. B 2018, 6, 3262–3273. [Google Scholar] [CrossRef]
- Wang, G.H.; Huang, G.L.; Zhao, Y.; Pu, X.X.; Li, T.; Deng, J.J.; Lin, J.T. ATP triggered drug release and DNA co-delivery systems based on ATP responsive aptamers and polyethylenimine complexes. J. Mater. Chem. B 2016, 4, 3832–3841. [Google Scholar] [CrossRef]
- Wang, G.-H.; Cai, Y.-Y.; Du, J.-K.; Li, L.; Li, Q.; Yang, H.-K.; Lin, J.-T. TAT-conjugated chitosan cationic micelle for nuclear-targeted drug and gene co-delivery. Colloids Surf. B Biointerfaces 2018, 162, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, H.; Cao, T.; Huang, Q.; Zhang, D.; He, Z.; Lin, J.; Li, L. Nuclear-targeted TAT-PZLL-D3 co-delivery DOX and p53 for chemotherapy resistance of SCLC. Mater. Lett. 2021, 303, 130325. [Google Scholar] [CrossRef]
- Xu, X.; Liu, A.; Bai, Y.; Li, Y.; Zhang, C.; Cui, S.; Piao, Y.; Zhang, S. Co-delivery of resveratrol and p53 gene via peptide cationic liposomal nanocarrier for the synergistic treatment of cervical cancer and breast cancer cells. J. Drug Deliv. Sci. Technol. 2019, 51, 746–753. [Google Scholar] [CrossRef]
- Lin, J.-T.; Liu, Z.-K.; Zhu, Q.-L.; Rong, X.-H.; Liang, C.-L.; Wang, J.; Ma, D.; Sun, J.; Wang, G.-H. Redox-responsive nanocarriers for drug and gene co-delivery based on chitosan derivatives modified mesoporous silica nanoparticles. Colloids Surf. B Biointerfaces 2017, 155, 41–50. [Google Scholar] [CrossRef]
- Zhuo, Y.; Huang, X.; Lin, N.; Yu, F.; Chen, Y.; Guan, M.; Yi, W.; Lai, F. SiO2/hyaluronic acid nanoparticles carry CaO2, DOX and p53 plasmid to effectively achieve ion interference/chemical/gene multimodal therapy of lung cancer. Biomater. Sci. 2023, 11, 4346–4358. [Google Scholar] [CrossRef]
- Priya, S.S.; Rekha, M.R. Intracellular Delivery of p53 gene and Drug Using Cationised Pullulan Thiomer Lowers the Effective Therapeutic Doses of Chemotherapeutic Drug in Cancer Cells. Mater. Today Commun. 2022, 103129. [Google Scholar] [CrossRef]
- Zhao, F.; Yin, H.; Li, J. Supramolecular self-assembly forming a multifunctional synergistic system for targeted co-delivery of gene and drug. Biomaterials 2014, 35, 1050–1062. [Google Scholar] [CrossRef]
- Fischer, M. Census and evaluation of p53 target genes. Oncogene 2017, 36, 3943–3956. [Google Scholar] [CrossRef]
- Hua, P.; Liang, R.; Yang, S.; Tu, Y.; Chen, M. Microneedle-assisted dual delivery of PUMA gene and celastrol for synergistic therapy of rheumatoid arthritis through restoring synovial homeostasis. Bioact. Mater. 2024, 36, 83–95. [Google Scholar] [CrossRef]
Name | Vector | Phase | Indication | Outcome | Ref. |
---|---|---|---|---|---|
Gendicine | RDAd | Approved in China | Head and neck squamous cell carcinoma, etc. | Safe and effective. | [24] |
INGN 201 (Advexin) | RDAd | I/II | Esophageal squamous cell carcinoma, etc. | Safe, feasible, and biologically active. | [25] |
SCH-58500 (ACN53) | RDAd | I/II | Recurrent ovarian cancer, primary peritoneal cancer, fallopian tube cancer, etc. | Safe and well-tolerated. | [26] |
ONYX-015 (dl1520) | CRAd | I/II | Advanced sarcoma, etc. | Well-tolerated. | [27] |
Oncoline (H101) | CRAd | Approved in China | Nasopharyngeal carcinoma, etc. | Safe and effective. | [28] |
OBP-702 | CRAd | In vitro and in vivo | Diffuse-type gastric cancer cells | Inhibit tumor growth in mice and induce cell apoptosis and autophagy. | [29] |
SG600-p53 | CRAd | In vitro and in vivo | Non-small cell lung cancer cells | Selective replication in tumors and anti-tumor effects. | [30] |
SG635-p53 | CRAd | In vitro and in vivo | Liver cancer cells | Inhibit tumor growth and prolong animal survival. | [31] |
AdDelta24-p53 | CRAd | In vitro and in vivo | Malignant glioma, etc. | Relieve tumors and prolong animal survival. | [32] |
dl922-947 | CRAd | In vitro and in vivo | Breast cancer cells | Demonstrate anti-tumor efficacy in vivo and in vitro. | [33] |
rVV-TK-53 | Vaccinia virus | In vitro and in vivo | Bladder cancer cells | Inducing the extinction of tumor cells. | [34] |
SGT-53 | Liposome nanoparticles | II | Pancreatic adenocarcinoma | Clinically significant benefits | [35] |
CM@MnO2-PEI-NLS-ss/p53 | Polyethylenimine | In vitro and in vivo | Malignant melanoma cells | Targeting cancer cells with high specificity and inhibiting tumor growth. | [36] |
AP-PAMAM/p53 | Polyamide amine dendritic polymer | In vitro | Cervical cancer cells | Anti-tumor proliferation, induction of cell apoptosis, inhibition of cancer cell migration and invasion. | [37] |
LA-OEI/p53 | Lipoic acid-modified oligoethylenimine | In vitro | Cervical cancer cells | Inhibit cell migration. | [38] |
PBAE537 | Poly (Beta-Amino Ester) Complex Nanoparticles | In vitro and in vivo | Cervical cancer cells | Successfully reversed cervical intraepithelial neoplasia in HPV transgenic mice. | [39] |
DPD/pEGFP-C1-p53 | Dextran-graft-poly ((2-dimethyl amino) ethyl methacrylate) | In vitro and in vivo | Breast cancer cells | Inhibit tumor cell proliferation. | [40] |
micelles/DOX/p53 | POSS-based star-shaped polymer | In vitro and in vivo | Breast cancer cells | Inducing apoptosis of tumor cells. | [41] |
P-CSSO/p53 | PEG modified glycolipid-like polymer | In vitro and in vivo | Liver cancer cells | The tumor inhibition rate can reach 77.1%. | [42] |
AuNPs-p53 | Gold nanoparticles | In vitro | Lung cancer cells | Low toxicity in normal cells, triggering apoptosis in tumor cells. | [43] |
MB-NSi-p53-CS | Silica-polymer composite nano system | In vitro and in vivo | Lung cancer cells | Low cytotoxicity, high p53 transfection, and anticancer efficacy. | [44] |
PCN-P53 | Highly water-dispersible polymeric carbon nitride (PCN) nanosheets | In vitro and in vivo | Cervical cancer cells | Efficient DNA condensation, outstanding biocompatibility, transfection tracking, light responsiveness, and high transfection efficiency. | [45] |
EPM-pcDNA-p53 | Bovine colostrum exosomes and polyethyleneimine matrix | In vitro and in vivo | Lung cancer cells | Inhibiting the proliferation of tumor cells. | [46] |
χ11218 pYA4545p53 strain | χ11218 strain of Salmonella typhimurium | In vitro | Bladder cancer cells | Decrease the vitality of human bladder cancer cells. | [47] |
p53/C-rNC/L-FA | Liposome nanoparticles | In vitro and in vivo | Breast cancer cells | Inducing tumor cell apoptosis and inhibiting tumor growth. | [48] |
RHD/p53 | Cationic peptide | In vitro and in vivo | Cervical cancer cells | Demonstrate anti-tumor efficacy in vivo and in vitro. | [49] |
FK/p53/PEG-PLL (DA) | Cationic peptide | In vitro and in vivo | Cervical cancer cells | Demonstrate anti-tumor efficacy in vivo and in vitro. | [50] |
TME-Responsive Vectors | TME-Sensitive Chemical Bonds or Macromolecules | Targeting Mechanism | Ref. |
---|---|---|---|
Redox-responsive vector | Disulfide bond | The high content of GSH in tumor cells can trigger disulfide bond cleavage, thereby releasing drug complexes within tumor cells. | [49] |
PH-responsive vector | Hydrazone | The low pH of tumor cells can promote pH-sensitive chemical bond cleavage, thereby releasing drug complexes within tumor cells. | [49] |
Enzyme-responsive vector | CPLGIAG peptide | Matrix metalloproteinases (MMPs) are overexpressed in almost all human tumors, and CPLGIAG peptides can be hydrolyzed by MMPs. The drug is coupled to the vector through CPLGIAG peptides, and after entering tumor cells, CPLGIAG peptides are hydrolyzed by MMPs to achieve targeted drug release. | [71] |
Phosphoester bond | The content of phosphodiesterase I in tumor cells is higher than that in normal tissues. Phosphate ester bonds are degraded by phosphodiesterase, and polyphosphate esters rich in phosphate ester bonds are used as p53 gene vectors. After entering tumor cells, the phosphate ester bonds are degraded to release drugs. | [169] | |
ATP-responsive vector | ATP-responsive aptamer duplex | The level of ATP in the intracellular fluid is higher than that in the extracellular environment. In the ATP rich tumor environment, the structural changes of ATP-responsive aptamer duplex release, thereby targeting the release of loaded drugs. | [170] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Bai, J.; Li, W.; Su, Z.; Cheng, X. Advancements in p53-Based Anti-Tumor Gene Therapy Research. Molecules 2024, 29, 5315. https://doi.org/10.3390/molecules29225315
Peng Y, Bai J, Li W, Su Z, Cheng X. Advancements in p53-Based Anti-Tumor Gene Therapy Research. Molecules. 2024; 29(22):5315. https://doi.org/10.3390/molecules29225315
Chicago/Turabian StylePeng, Yuanwan, Jinping Bai, Wang Li, Zhengding Su, and Xiyao Cheng. 2024. "Advancements in p53-Based Anti-Tumor Gene Therapy Research" Molecules 29, no. 22: 5315. https://doi.org/10.3390/molecules29225315
APA StylePeng, Y., Bai, J., Li, W., Su, Z., & Cheng, X. (2024). Advancements in p53-Based Anti-Tumor Gene Therapy Research. Molecules, 29(22), 5315. https://doi.org/10.3390/molecules29225315