New Insights into the Development of Donepezil-Based Hybrid and Natural Molecules as Multi-Target Drug Agents for Alzheimer’s Disease Treatment
Abstract
:1. Introduction
2. Current Drugs for Treatments
2.1. Treatments Focused on Slowing Alzheimer’s Progression: Aducanumab, Lecanemab, and Donanemab
2.2. Treatments to Address Cognitive and Behavioral Symptoms—Donepezil, Rivastigmine, Galantamine, Memantine, and a Memantine-Donepezil Combo
3. Adjuvants of Multi-Target Drugs in Alzheimer’s
4. Therapeutic Strategies for Alzheimer’s Disease (AD)
5. Novel Donepezil-Based Hybrids with a Focus on N-Benzylpiperidine Derivatives for Targeting AD (2014–2024)
6. Natural Compounds as Multi-Target Drugs for Alzheimer’s Disease Treatment
6.1. Natural Compounds in Clinical Trials for AD Treatment
6.2. Melatonin
6.3. Cannabidiol
6.4. Dronabinol
6.5. Curcumin
6.6. Resveratrol
6.7. Quercetin
6.8. Licochalcone A
6.9. Pinitol
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, Y.; Jin, H.; Xue, Y.-H.; Chen, Q.; Yao, S.-Y.; Du, M.-Q.; Liu, S. Current and future therapeutic strategies for Alzheimer’s disease: An overview of drug development bottlenecks. Front. Aging Neurosci. 2023, 15, 1206572. [Google Scholar] [CrossRef] [PubMed]
- Better, M.A. Alzheimer’s disease facts and figures. Alzheimers Dement 2023, 19, 1598–1695. [Google Scholar]
- Noorda, K.; Noorda, K.; Sabbagh, M.N.; Bertelson, J.; Singer, J.; Decourt, B. Amyloid-Directed Antibodies: Past, Present, and Future. J. Alzheimer’s Dis. 2024, 101, S3–S22. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Du, Q.; Song, M.; Kang, R.; Zhou, J.; Zhang, H.; Ding, Y. Amyloid-β-targeting immunotherapies for Alzheimer’s disease. J. Control. Release 2024, 375, 346–365. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wei, S.; Tian, H.; Cheng, J.; Zhong, Y.; Zhong, X.; Huang, D.; Jiang, C.; Ke, X. Adverse event profile of memantine and donepezil combination therapy: A real-world pharmacovigilance analysis based on FDA adverse event reporting system (FAERS) data from 2004 to 2023. Front. Pharmacol. 2024, 15, 1439115. [Google Scholar] [CrossRef]
- Abdi Dezfouli, R.; Akbariforoud, S.; Esmaeilidezfouli, E. Are there links between Alzheimer’s disease and ADHD? The efficacy of acetylcholinesterase inhibitors and NMDA receptor antagonists in controlling ADHD symptoms: A systematic review. Middle East Curr. Psychiatry 2024, 31, 13. [Google Scholar] [CrossRef]
- Talwar, A.; Chatterjee, S.; Sherer, J.; Abughosh, S.; Johnson, M.; Aparasu, R.R. Cumulative Anticholinergic Burden and its Predictors among Older Adults with Alzheimer’s Disease Initiating Cholinesterase Inhibitors. Drugs Aging 2024, 41, 339–355. [Google Scholar] [CrossRef]
- Kumar, S.; Saha, S.; Babu, A.; Agrawal, M.; Singh, K.; Chaudhary, H.; Lavania, K. Enzyme Inhibition in Managing Cardiovascular Diseases. Curr. Enzym. Inhib. 2024, 20, 109–123. [Google Scholar] [CrossRef]
- Niazi, S.K.; Magoola, M.; Mariam, Z. Synergistic Approaches in Neurodegenerative Therapeutics: Multi-Target Drug Innovative Interventions for Alzheimer’s Disease. Pharmaceuticals 2024, 17, 741. [Google Scholar] [CrossRef]
- Lokwani, D.K.; Chavan, S.R.; Ugale, V.G.; Kendre, P.N.; Jain, S.P. Recent updates in chemistry of Alzheimer’s: Synthetic molecules. In Alzheimer’s Disease and Advanced Drug Delivery Strategies; Elsevier: Amsterdam, The Netherlands, 2024; pp. 33–46. [Google Scholar]
- Singh, B.; Day, C.M.; Abdella, S.; Garg, S. Alzheimer’s disease current therapies, novel drug delivery systems and future directions for better disease management. J. Control. Release 2024, 367, 402–424. [Google Scholar] [CrossRef]
- Ohie, Z.; Mok, R. Aduhelm: Revisting the Phase 3 Trials and the FDA Approval Decision. 2024. Available online: https://digitalcommons.liu.edu/symposium_discoveryday/2024/posters/19/ (accessed on 12 September 2024).
- Ashique, S.; Sirohi, E.; Kumar, S.; Rihan, M.; Mishra, N.; Bhatt, S.; Gautam, R.; Singh, S.; Gupta, G.; Chellappan, D.; et al. Aducanumab in Alzheimer’s disease: A critical update. Curr. Med. Chem. 2024, 31, 5004–5026. [Google Scholar] [CrossRef] [PubMed]
- Scott, I.A. Monoclonal antibodies for treating early Alzheimer disease—A commentary on recent ‘positive’trials. Age Ageing 2024, 53, afae023. [Google Scholar] [CrossRef] [PubMed]
- Honig, L.S.; Sabbagh, M.N.; van Dyck, C.H.; Sperling, R.A.; Hersch, S.; Matta, A.; Giorgi, L.; Gee, M.; Kanekiyo, M.; Li, D.; et al. Updated safety results from phase 3 lecanemab study in early Alzheimer’s disease. Alzheimer’s Res. Ther. 2024, 16, 105. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lai, M.; Tao, M. Evaluating the efficacy and safety of Alzheimer’s disease drugs: A meta-analysis and systematic review. Medicine 2024, 103, e37799. [Google Scholar] [CrossRef] [PubMed]
- Jaffee, M.S.; Wicklund, M.; Chapin, B.A.; DeKosky, S.T. Drug Therapy for Alzheimer Disease and Other Cognitive Disorders/Dementias. In Brody’s Human Pharmacology-E-Book: Brody’s Human Pharmacology-E-Book; Elsevier: Amsterdam, The Netherlands, 2024; Volume 129. [Google Scholar]
- Tari, P.K.; Parsons, C.G.; Collingridge, G.L.; Rammes, G. Memantine: Updating a rare success story in pro-cognitive therapeutics. Neuropharmacology 2024, 244, 109737. [Google Scholar] [CrossRef]
- Yaghmaei, E.; Lu, H.; Ehwerhemuepha, L.; Zheng, J.; Danioko, S.; Rezaie, A.; Sajjadi, S.A.; Rakovski, C. Combined use of Donepezil and Memantine increases the probability of five-year survival of Alzheimer’s disease patients. Commun. Med. 2024, 4, 99. [Google Scholar] [CrossRef]
- Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef]
- Petersen, R.C. Mild cognitive impairment. CONTINUUM Lifelong Learn. Neurol. 2016, 22, 404–418. [Google Scholar] [CrossRef]
- Huang, Y.; Mucke, L. Alzheimer mechanisms and therapeutic strategies. Cell 2012, 148, 1204–1222. [Google Scholar] [CrossRef]
- Bredesen, D.E. Reversal of cognitive decline: A novel therapeutic program. Aging 2014, 6, 707. [Google Scholar] [CrossRef]
- Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.; Lee, G.; Ritter, A.; Sabbagh, M.; Zhong, K. Alzheimer’s disease drug development pipeline: 2019. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2019, 5, 272–293. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, A. A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol. Rep. 2015, 67, 195–203. [Google Scholar] [CrossRef] [PubMed]
- González, J.F.; Alcántara, A.R.; Doadrio, A.L.; Sánchez-Montero, J.M. Developments with multi-target drugs for Alzheimer’s disease: An overview of the current discovery approaches. Expert Opin. Drug Discov. 2019, 14, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Benek, O.; Korabecny, J.; Soukup, O. A perspective on multi-target drugs for Alzheimer’s disease. Trends Pharmacol. Sci. 2020, 41, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Basu, S. Multi-targeting strategies for Alzheimer’s disease therapeutics: Pros and cons. Curr. Top. Med. Chem. 2017, 17, 3017–3061. [Google Scholar] [CrossRef]
- Zarini-Gakiye, E.; Amini, J.; Sanadgol, N.; Vaezi, G.; Parivar, K. Recent updates in the Alzheimer’s disease etiopathology and possible treatment approaches: A narrative review of current clinical trials. Curr. Mol. Pharmacol. 2020, 13, 273–294. [Google Scholar] [CrossRef]
- Simone Tranches Dias, K.; Viegas, C. Multi-target directed drugs: A modern approach for design of new drugs for the treatment of Alzheimer’s disease. Curr. Neuropharmacol. 2014, 12, 239–255. [Google Scholar] [CrossRef]
- Wang, T.; Liu, X.-H.; Guan, J.; Ge, S.; Wu, M.-B.; Lin, J.-P.; Yang, L.-R. Advancement of multi-target drug discoveries and promising applications in the field of Alzheimer’s disease. Eur. J. Med. Chem. 2019, 169, 200–223. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, S.; Zhu, Z.; Xu, J. Multi-target design strategies for the improved treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2019, 176, 228–247. [Google Scholar] [CrossRef]
- de Freitas Silva, M.; Dias, K.S.; Gontijo, V.S.; Ortiz, C.J.C.; Viegas, C., Jr. Multi-target directed drugs as a modern approach for drug design towards Alzheimer’s disease: An update. Curr. Med. Chem. 2018, 25, 3491–3525. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.M.; Gabr, M.T. Multitarget therapeutic strategies for Alzheimer’s disease. Neural Regen. Res. 2019, 14, 437–440. [Google Scholar] [PubMed]
- Turgutalp, B.; Kizil, C. Multi-target drugs for Alzheimer’s disease. Trends Pharmacol. Sci. 2024, 45, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, R.R.; Popovic-Nikolic, M.R.; Nikolic, K.; Uliassi, E.; Bolognesi, M.L. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 2018, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-J.; Pan, W.; Hu, Y.-J.; Wang, Y.-T. Multi-target drugs: The trend of drug research and development. PLoS ONE 2012, 7, e40262. [Google Scholar] [CrossRef]
- Domínguez-Fernández, C.; Egiguren-Ortiz, J.; Razquin, J.; Gómez-Galán, M.; De las Heras-García, L.; Paredes-Rodríguez, E.; Astigarraga, E.; Miguélez, C.; Barreda-Gómez, G. Review of technological challenges in personalised medicine and early diagnosis of neurodegenerative disorders. Int. J. Mol. Sci. 2023, 24, 3321. [Google Scholar] [CrossRef]
- López-López, E.; Medina-Franco, J.L. Toward structure–multiple activity relationships (SMARts) using computational approaches: A polypharmacological perspective. Drug Discov. Today 2024, 29, 104046. [Google Scholar] [CrossRef]
- Lim, S.G.; Baumert, T.F.; Boni, C.; Gane, E.; Levrero, M.; Lok, A.S.; Maini, M.K.; Terrault, N.; Zoulim, F. The scientific basis of combination therapy for chronic hepatitis B functional cure. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 238–253. [Google Scholar] [CrossRef]
- Tilala, M.; Chawda, A.D.; Benke, A.P. Enhancing regulatory compliance through training and development programs: Case studies and recommendations. J. Cardiovasc. Res. 2023, 14, 1839–1850. [Google Scholar]
- García, A.M.; Johann, F.; Echegoyen, R.; Calcaterra, C.; Riera, P.; Belloli, L.; Carrillo, F. Toolkit to Examine Lifelike Language (TELL): An app to capture speech and language markers of neurodegeneration. Behav. Res. Methods 2024, 56, 2886–2900. [Google Scholar] [CrossRef]
- Kaur, B.; Singh, P. Alzheimer’s Disease: Treatment of Multi-Factorial Disorders with Multi-Target Approach. Mini Rev. Med. Chem. 2023, 23, 380–398. [Google Scholar] [PubMed]
- Bolognesi, M.L. Polypharmacology in a single drug: Multitarget drugs. Curr. Med. Chem. 2013, 20, 1639–1645. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, K.; O’Bryant, S.E.; Hampel, H.; Trojanowski, J.Q.; Montine, T.J.; Jeromin, A.; Blennow, K.; Lönneborg, A.; Wyss-Coray, T.; Soares, H.; et al. The future of blood-based biomarkers for Alzheimer’s disease. Alzheimer’s Dement. 2014, 10, 115–131. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.-X.; Liu, F.; Iqbal, K. Multifactorial hypothesis and multi-targets for Alzheimer’s disease. J. Alzheimer’s Dis. 2018, 64, S107–S117. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Schneider, L.S.; Giacobini, E.; Kivipelto, M.; Sindi, S.; Dubois, B.; Broich, K.; Nisticò, R.; Aisen, P.S.; Lista, S. Advances in the therapy of Alzheimer’s disease: Targeting amyloid beta and tau and perspectives for the future. Expert Rev. Neurother. 2015, 15, 83–105. [Google Scholar] [CrossRef]
- Bargagna, B.; Ciccone, L.; Nencetti, S.; Santos, M.A.; Chaves, S.; Camodeca, C.; Orlandini, E. Multifunctional Small Molecules as Potential Anti-Alzheimer’s Disease Agents. Molecules 2021, 26, 6015. [Google Scholar] [CrossRef]
- Bolognesi, M.L.; Cavalli, A. Multitarget drug discovery and polypharmacology. ChemMedChem 2016, 11, 1190–1192. [Google Scholar] [CrossRef]
- Laura Bolognesi, M. Multi-target-directed ligands as innovative tools to combat trypanosomatid diseases. Curr. Top. Med. Chem. 2011, 11, 2824–2833. [Google Scholar] [CrossRef]
- Tonda-Turo, C.; Origlia, N.; Mattu, C.; Accorroni, A.; Chiono, V. Current limitations in the treatment of Parkinson’s and Alzheimer’s diseases: State-of-the-art and future perspective of polymeric carriers. Curr. Med. Chem. 2018, 25, 5755–5771. [Google Scholar] [CrossRef]
- Kabir, A.; Muth, A. Polypharmacology: The science of multi-targeting molecules. Pharmacol. Res. 2022, 176, 106055. [Google Scholar] [CrossRef]
- Ryszkiewicz, P.; Malinowska, B.; Schlicker, E. Polypharmacology: Promises and new drugs in 2022. Pharmacol. Rep. 2023, 75, 755–770. [Google Scholar] [CrossRef] [PubMed]
- De Strooper, B.; Karran, E. The cellular phase of Alzheimer’s disease. Cell 2016, 164, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharmacal Res. 2013, 36, 375–399. [Google Scholar] [CrossRef] [PubMed]
- Makhoba, X.H.; Viegas Jr, C.; Mosa, R.A.; Viegas, F.P.; Pooe, O.J. Potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Des. Dev. Ther. 2020, 14, 3235–3249. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Choe, K.; Park, J.S.; Park, H.Y.; Kang, H.; Park, T.J.; Kim, M.O. The Interplay of Protein Aggregation, Genetics, and Oxidative Stress in Alzheimer’s Disease: Role for Natural Antioxidants and Immunotherapeutics. Antioxidants 2024, 13, 862. [Google Scholar] [CrossRef]
- Masters, C.L.; Bateman, R.; Blennow, K.; Rowe, C.C.; Sperling, R.A.; Cummings, J.L. Alzheimer’s disease. Nat. Rev. Dis. Primers 2015, 1, 15056. [Google Scholar] [CrossRef]
- Scheltens, P.; Blennow, K.; Breteler, M.M.; De Strooper, B.; Frisoni, G.B.; Salloway, S.; Van der Flier, W.M. Alzheimer’s disease. Lancet 2016, 388, 505–517. [Google Scholar] [CrossRef]
- Munafò, A.; Cantone, A.F.; Di Benedetto, G.; Torrisi, S.A.; Burgaletto, C.; Bellanca, C.M.; Gaudio, G.; Broggi, G.; Caltabiano, R.; Leggio, G.M.; et al. Pharmacological enhancement of cholinergic neurotransmission alleviates neuroinflammation and improves functional outcomes in a triple transgenic mouse model of Alzheimer’s disease. Front. Pharmacol. 2024, 15, 1386224. [Google Scholar] [CrossRef]
- Nagori, K.; Pradhan, M.; Sharma, M.; Badwaik, H.R.; Nakhate, K.T. Current Progress on Central Cholinergic Receptors as Therapeutic Targets for Alzheimer’s Disease. Curr. Alzheimer Res. 2024, 21, 50–68. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, T.; Zhang, H. Genes related to neurotransmitter receptors as potential biomarkers for Alzheimer’s disease. Neurosci. Lett. 2024, 832, 137816. [Google Scholar] [CrossRef]
- Zadrozny, M.; Drapich, P.; Gasiorowska-Bien, A.; Niewiadomski, W.; Harrington, C.R.; Wischik, C.M.; Riedel, G.; Niewiadomska, G. Neuroprotection of Cholinergic Neurons with a Tau Aggregation Inhibitor and Rivastigmine in an Alzheimer’s-like Tauopathy Mouse Model. Cells 2024, 13, 642. [Google Scholar] [CrossRef] [PubMed]
- Azargoonjahromi, A. The duality of amyloid-β: Its role in normal and Alzheimer’s disease states. Mol. Brain 2024, 17, 44. [Google Scholar] [CrossRef] [PubMed]
- Kamble, S.M.; Patil, K.R.; Upaganlawar, A.B. Etiology, pathogenesis of Alzheimer’s disease and amyloid beta hypothesis. In Alzheimer’s Disease and Advanced Drug Delivery Strategies; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–11. [Google Scholar]
- Liu, N.; Haziyihan, A.; Zhao, W.; Chen, Y.; Chao, H. Trajectory of brain-derived amyloid beta in Alzheimer’s disease: Where is it coming from and where is it going? Transl. Neurodegener. 2024, 13, 42. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, J.-S.; Li, S.; Zhang, F.; Deng, J.; Zeng, L.-H.; Tan, J. Amyloid Precursor Protein: A Regulatory Hub in Alzheimer’s Disease. Aging Dis. 2024, 15, 201. [Google Scholar]
- Abyadeh, M.; Gupta, V.; Paulo, J.A.; Mahmoudabad, A.G.; Shadfar, S.; Mirshahvaladi, S.; Gupta, V.; Nguyen, C.T.O.; Finkelstein, D.I.; You, Y.; et al. Amyloid-beta and tau protein beyond Alzheimer’s disease. Neural Regen. Res. 2024, 19, 1262–1276. [Google Scholar] [CrossRef]
- Vyas, J.; Raytthatha, N.; Prajapati, B.G. Amyloid cascade hypothesis, tau synthesis, and role of oxidative stress in AD. In Alzheimer’s Disease and Advanced Drug Delivery Strategies; Academic Press: Cambridge, MA, USA, 2024; pp. 73–92. [Google Scholar]
- Bruno, M.; Bonomi, C.G.; Ricci, F.; Di Donna, M.G.; Mercuri, N.B.; Koch, G.; Martorana, A.; Motta, C. Blood–brain barrier permeability is associated with different neuroinflammatory profiles in Alzheimer’s disease. Eur. J. Neurol. 2024, 31, e16095. [Google Scholar] [CrossRef]
- Tsartsalis, S.; Sleven, H.; Fancy, N.; Wessely, F.; Smith, A.M.; Willumsen, N.; Cheung, T.K.D.; Rokicki, M.J.; Chau, V.; Ifie, E.; et al. A single nuclear transcriptomic characterisation of mechanisms responsible for impaired angiogenesis and blood-brain barrier function in Alzheimer’s disease. Nat. Commun. 2024, 15, 2243. [Google Scholar] [CrossRef]
- Padrela, B.; Mahroo, A.; Tee, M.; Sneve, M.H.; Moyaert, P.; Geier, O.; Kuijer, J.P.A.; Beun, S.; Nordhøy, W.; Zhu, Y.D.; et al. Developing blood-brain barrier arterial spin labelling as a non-invasive early biomarker of Alzheimer’s disease (DEBBIE-AD): A prospective observational multicohort study protocol. BMJ Open 2024, 14, e081635. [Google Scholar] [CrossRef]
- Ekundayo, B.E.; Obafemi, T.O.; Adewale, O.B.; Obafemi, B.A.; Oyinloye, B.E.; Ekundayo, S.K. Oxidative Stress, Endoplasmic Reticulum Stress and Apoptosis in the Pathology of Alzheimer’s Disease. Cell Biochem. Biophys. 2024, 82, 457–477. [Google Scholar] [CrossRef]
- Dhapola, R.; Beura, S.K.; Sharma, P.; Singh, S.K.; HariKrishnaReddy, D. Oxidative stress in Alzheimer’s disease: Current knowledge of signaling pathways and therapeutics. Mol. Biol. Rep. 2024, 51, 48. [Google Scholar] [CrossRef]
- Firdous, S.M.; Khan, S.A.; Maity, A. Oxidative stress–mediated neuroinflammation in Alzheimer’s disease. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 8189–8209. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Chu, C.; Qin, Q.; Shen, H.; Wen, L.; Tang, Y.; Qu, M. Lipid metabolism and oxidative stress in patients with Alzheimer’s disease and amnestic mild cognitive impairment. Brain Pathol. 2024, 34, e13202. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, C.; Arias-Cavieres, A. Calcium, reactive oxygen species, and synaptic plasticity. Physiology 2016, 31, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Hadi, F.; Mortaja, M.; Hadi, Z. Calcium (Ca2+) hemostasis, mitochondria, autophagy, and mitophagy contribute to Alzheimer’s disease as early moderators. Cell Biochem. Funct. 2024, 42, e4085. [Google Scholar] [CrossRef]
- Zündorf, G.; Reiser, G. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid. Redox Signal. 2011, 14, 1275–1288. [Google Scholar] [CrossRef]
- Kaar, A.; Weir, M.P.; Rae, M.G. Altered neuronal group 1 metabotropic glutamate receptor-and endoplasmic reticulum-mediated Ca2+ signaling in two rodent models of Alzheimer’s disease. Neurosci. Lett. 2024, 823, 137664. [Google Scholar] [CrossRef]
- Naguib, S.; Gan, L. Cellular and pathological functions of tau. Nat. Rev. Mol. Cell Biol. 2024, 25, 845–864. [Google Scholar]
- Yang, J.; Shen, N.; Shen, J.; Yang, Y.; Li, H.-L. Complicated role of post-translational modification and protease-cleaved fragments of tau in Alzheimer’s Disease and other tauopathies. Mol. Neurobiol. 2024, 61, 4712–4731. [Google Scholar] [CrossRef]
- Lantero-Rodriguez, J.; Camporesi, E.; Montoliu-Gaya, L.; Gobom, J.; Piotrowska, D.; Olsson, M.; Burmann, I.M.; Becker, B.; Brinkmalm, A.; Burmann, B.M.; et al. Tau protein profiling in tauopathies: A human brain study. Mol. Neurodegener. 2024, 19, 54. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Wang, J.; Xia, Y.; Zhang, J.; Chen, L. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct. Target. Ther. 2024, 9, 211. [Google Scholar] [CrossRef]
- Cummings, J.L.; Osse, A.M.L.; Kinney, J.W.; Cammann, D.; Chen, J. Alzheimer’s disease: Combination therapies and clinical trials for combination therapy development. CNS Drugs 2024, 38, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Sharma, M.; Bharate, S.B. N-Benzyl piperidine Fragment in Drug Discovery. ChemMedChem. 2024, 19, e202400384. [Google Scholar] [CrossRef] [PubMed]
- Cecilia Rodrigues Simoes, M.; Pereira Dias Viegas, F.; Soares Moreira, M.; de Freitas Silva, M.; Maximo Riquiel, M.; Mattos da Rosa, P.; Castelli, M.R.; dos Santos, M.H.; Soares, M.G.; Viegas, C., Jr. Donepezil: An important prototype to the design of new drug candidates for Alzheimer’s disease. Mini Rev. Med. Chem. 2014, 14, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Kareem, R.T.; Abedinifar, F.; Mahmood, E.A.; Ebadi, A.G.; Rajabi, F.; Vessally, E. The recent development of donepezil structure-based hybrids as potential multifunctional anti-Alzheimer’s agents: Highlights from 2010 to 2020. RSC Adv. 2021, 11, 30781–30797. [Google Scholar] [CrossRef] [PubMed]
- Banoo, R.; Nuthakki, V.K.; Wadje, B.N.; Sharma, A.; Bharate, S.B. Design, synthesis, and pharmacological evaluation of indole-piperidine amides as Blood− brain barrier permeable dual cholinesterase and β-secretase inhibitors. Eur. J. Med. Chem. 2024, 266, 116131. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhang, Z.; Cai, Z.; Hu, P.; Yang, Z.; Wan, Y.; Li, H.; Xiong, J.; Feng, Y.; Fang, Y. Synthesis and Neuroprotective Evaluation of Substituted Indanone/Benzofuranone and Piperidine Hybrids. ACS Chem. Neurosci. 2024, 15, 2042–2057. [Google Scholar] [CrossRef]
- Zhai, J.; Hao, C.; Wang, X.; Cao, Y.; Pan, Y.; Zhou, M.; Sun, J.; Li, C. Design, synthesis, and evaluation of dual-target inhibitors for the treatment of Alzheimer’s disease. Arch. Der Pharm. 2024, 357, 2300693. [Google Scholar] [CrossRef]
- Mohammadi-Farani, A.; Nazari, S.; Mohammadi, M.; Navid, S.J.; Hosseini, A.; Aliabadi, A. Novel acetylcholinesterase inhibitors: Synthesis, docking and inhibitory activity evaluation of 4-benzamido-N-(1-benzylpiperidin-4-yl) benzamide derivatives. Results Chem. 2024, 7, 101273. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, W.; Li, Q.; Xie, H.; Xing, S.; Lu, X.; Lyu, W.; Xiong, B.; Wang, Y.; Qu, W.; et al. Discovery of 4-benzylpiperazinequinoline BChE inhibitor that suppresses neuroinflammation for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2024, 272, 116463. [Google Scholar] [CrossRef]
- Angelova, V.T.; Georgiev, B.; Pencheva, T.; Pajeva, I.; Rangelov, M.; Todorova, N.; Zheleva-Dimitrova, D.; Kalcheva-Yovkova, E.; Valkova, I.V.; Vassilev, N.; et al. Design, Synthesis, In Silico Studies and In Vitro Evaluation of New Indole-and/or Donepezil-like Hybrids as Multitarget-Directed Agents for Alzheimer’s Disease. Pharmaceuticals 2023, 16, 1194. [Google Scholar] [CrossRef]
- Mihaylova, R.; Angelova, V.T.; Tchekalarova, J.; Atanasova, D.; Ivanova, P.; Simeonova, R. Tailored Melatonin-and Donepezil-Based Hybrids Targeting Pathognomonic Changes in Alzheimer’s Disease: An In Vitro and In Vivo Investigation. Int. J. Mol. Sci. 2024, 25, 5969. [Google Scholar] [CrossRef] [PubMed]
- Tchekalarova, J.; Ivanova, P.; Krushovlieva, D.; Kortenska, L.; Angelova, V.T. Protective Effect of the Novel Melatonin Analogue Containing Donepezil Fragment on Memory Impairment via MT/ERK/CREB Signaling in the Hippocampus in a Rat Model of Pinealectomy and Subsequent Aβ1-42 Infusion. Int. J. Mol. Sci. 2024, 25, 1867. [Google Scholar] [CrossRef] [PubMed]
- Waiker, D.K.; Verma, A.; Akhilesh Singh, N.; Roy, A.; Dilnashin, H.; Tiwari, V.; Trigun, S.K.; Singh, S.P.; Krishnamurthy, S.; Lama, P.; et al. Design, synthesis, and biological evaluation of piperazine and N-benzylpiperidine hybrids of 5-phenyl-1, 3, 4-oxadiazol-2-thiol as potential multitargeted ligands for alzheimer’s disease therapy. ACS Chem. Neurosci. 2023, 14, 2217–2242. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Ran, Y.; Xie, F.; Liu, Y.; Wei, C.; Luan, X.; Wu, J. Design, synthesis, and biological evaluation of novel N-Benzyl piperidine derivatives as potent HDAC/AChE inhibitors for Alzheimer’s disease. Bioorganic Med. Chem. 2023, 80, 117178. [Google Scholar] [CrossRef] [PubMed]
- Waly, O.M.; Saad, K.M.; El-Subbagh, H.I.; Bayomi, S.M.; Ghaly, M.A. Synthesis, biological evaluation, and molecular modeling simulations of new heterocyclic hybrids as multi-targeted anti-Alzheimer’s agents. Eur. J. Med. Chem. 2022, 231, 114152. [Google Scholar] [CrossRef] [PubMed]
- Košak, U.; Strašek, N.; Knez, D.; Jukič, M.; Žakelj, S.; Zahirović, A.; Pišlar, A.; Brazzolotto, X.; Nachon, F.; Kos, J.; et al. N-alkylpiperidine carbamates as potential anti-Alzheimer’s agents. Eur. J. Med. Chem. 2020, 197, 112282. [Google Scholar] [CrossRef]
- van Greunen, D.G.; van der Westhuizen, C.J.; Cordier, W.; Nell, M.; Stander, A.; Steenkamp, V.; Panayides, J.L.; Riley, D.L. Novel N-benzylpiperidine carboxamide derivatives as potential cholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2019, 179, 680–693. [Google Scholar] [CrossRef]
- Sharma, P.; Tripathi, A.; Tripathi, P.N.; Prajapati, S.K.; Seth, A.; Tripathi, M.K.; Srivastava, P.; Tiwari, V.; Krishnamurthy, S.; Shrivastava, S.K. Design and development of multitarget-directed N-Benzylpiperidine analogs as potential candidates for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2019, 167, 510–524. [Google Scholar] [CrossRef]
- Yan, J.; Hu, J.; Liu, A.; He, L.; Li, X.; Wei, H. Design, synthesis, and evaluation of multitarget-directed ligands against Alzheimer’s disease based on the fusion of donepezil and curcumin. Bioorganic Med. Chem. 2017, 25, 2946–2955. [Google Scholar] [CrossRef]
- Costanzo, P.; Cariati, L.; Desiderio, D.; Sgammato, R.; Lamberti, A.; Arcone, R.; Salerno, R.; Nardi, M.; Masullo, M.; Oliverio, M. Design, synthesis, and evaluation of donepezil-like compounds as AChE and BACE-1 inhibitors. ACS Med. Chem. Lett. 2016, 7, 470–475. [Google Scholar] [CrossRef]
- Li, T.; Martin, E.; Abada, Y.-S.; Boucher, C.; Cès, A.; Youssef, I.; Fenaux, G.; Forand, Y.; Legrand, A.; Nachiket, N.; et al. Effects of chronic masitinib treatment in APPswe/PSEN1dE9 transgenic mice modeling Alzheimer’s disease. J. Alzheimer’s Dis. 2020, 76, 1339–1345. [Google Scholar] [CrossRef] [PubMed]
- Ettcheto, M.; Cano, A.; Sanchez-López, E.; Verdaguer, E.; Folch, J.; Auladell, C.; Camins, A. Masitinib for the treatment of Alzheimer’s disease. Neurodegener. Dis. Manag. 2021, 11, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Ryu, K.-Y.; Lee, H.-j.; Woo, H.; Kang, R.-J.; Han, K.-M.; Park, H.; Lee, S.M.; Lee, J.Y.; Jeong, Y.J.; Nam, H.W.; et al. Dasatinib regulates LPS-induced microglial and astrocytic neuroinflammatory responses by inhibiting AKT/STAT3 signaling. J. Neuroinflamm. 2019, 16, 190. [Google Scholar] [CrossRef] [PubMed]
- Schweiger, A.; Diniz, B.; Nicol, G.; Schweiger, J.; Dasklakis-Perez, A.E.; Lenze, E.J. Protocol for a pilot clinical trial of the senolytic drug combination Dasatinib Plus Quercetin to mitigate age-related health and cognitive decline in mental disorders. F1000Research 2024, 13, 1072. [Google Scholar] [CrossRef]
- Mohammadalipour, A.; Karimi, J.; Khodadadi, I.; Solgi, G.; Hashemnia, M.; Sheikh, N.; Bahabadi, M. Dasatinib prevent hepatic fibrosis induced by carbon tetrachloride (CCl4) via anti-inflammatory and antioxidant mechanism. Immunopharmacol. Immunotoxicol. 2017, 39, 19–27. [Google Scholar] [CrossRef]
- Das, V.; Miller, J.H.; Alladi, C.G.; Annadurai, N.; De Sanctis, J.B.; Hrubá, L.; Hajdúch, M. Antineoplastics for treating Alzheimer’s disease and dementia: Evidence from preclinical and observational studies. Med. Res. Rev. 2024, 44, 2078–2111. [Google Scholar] [CrossRef]
- Hamad, A.A.; Amer, B.E. Safety of masitinib in patients with neurodegenerative diseases: A meta-analysis of randomized controlled trials. Neurol. Sci. 2024, 45, 3503–3507. [Google Scholar] [CrossRef]
- Dubois, B.; López-Arrieta, J.; Lipschitz, S.; Doskas, T.; Spiru, L.; Moroz, S.; Venger, O.; Vermersch, P.; Moussy, A.; Mansfield, C.D.; et al. Masitinib for mild-to-moderate Alzheimer’s disease: Results from a randomized, placebo-controlled, phase 3, clinical trial. Alzheimer’s Res. Ther. 2023, 15, 39. [Google Scholar] [CrossRef]
- Roberts, J.A.; Varma, V.R.; An, Y.; Varma, S.; Candia, J.; Fantoni, G.; Tiwari, V.; Anerillas, C.; Williamson, A.; Saito, A.; et al. A brain proteomic signature of incipient Alzheimer’s disease in young APOE ε4 carriers identifies novel drug targets. Sci. Adv. 2021, 7, eabi8178. [Google Scholar] [CrossRef]
- Yajing, M.; Sufang, L.; Qingfeng, Z.; Zhonghua, L.; Zhang, Z.; Bin, Y. Approved drugs and natural products at clinical stages for treating Alzheimer’s disease. Chin. J. Nat. Med. 2024, 22, 699–710. [Google Scholar]
- Zhang, Z.; Xue, P.; Bendlin, B.B.; Zetterberg, H.; De Felice, F.; Tan, X.; Benedict, C. Melatonin: A potential nighttime guardian against Alzheimer’s. Mol. Psychiatry 2024, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Gurer-Orhan, H.; Suzen, S. Melatonin, its metabolites and its synthetic analogs as multi-faceted compounds: Antioxidant, prooxidant and inhibitor of bioactivation reactions. Curr. Med. Chem. 2015, 22, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Chuffa, L.G.d.A.; Seiva, F.R.F.; Novais, A.A.; Simão, V.A.; Martín Giménez, V.M.; Manucha, W.; Zuccari, D.A.P.C.; Reiter, R.J. Melatonin-loaded nanocarriers: New horizons for therapeutic applications. Molecules 2021, 26, 3562. [Google Scholar] [CrossRef] [PubMed]
- Davodi-Boroujerdi, G.; Naghadehi, A.K.; Nazari-Serenjeh, F.; Alijanpour, S.; Ghasemzadeh, Z.; Rastqar, A. Protective Roles of Melatonin in Alzheimer’s Disease: A Review of Experimental and Clinical Research. Jentashapir J. Cell. Mol. Biol. 2024, 15, e139844. [Google Scholar] [CrossRef]
- Xiong, Y.; Lim, C.-S. Understanding the modulatory effects of cannabidiol on Alzheimer’s disease. Brain Sci. 2021, 11, 1211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-B.; Li, J.; Gu, J.; Zeng, Y.-Q. Roles of Cannabidiol in the Treatment and Prevention of Alzheimer’s Disease by Multi-target Actions. Mini Rev. Med. Chem. 2022, 22, 43–51. [Google Scholar] [CrossRef]
- Iffland, K.; Grotenhermen, F. An update on safety and side effects of cannabidiol: A review of clinical data and relevant animal studies. Cannabis Cannabinoid Res. 2017, 2, 139–154. [Google Scholar] [CrossRef]
- Jha, S.K.; Nelson, V.K.; Suryadevara, P.R.; Panda, S.P.; Pullaiah, C.P.; Nuli, M.V.; Kamal, M.; Imran, M.; Ausali, S.; Abomughaid, M.M.; et al. Cannabidiol and neurodegeneration: From molecular mechanisms to clinical benefits. Ageing Res. Rev. 2024, 100, 102386. [Google Scholar] [CrossRef]
- Bhunia, S.; Kolishetti, N.; Arias, A.Y.; Vashist, A.; Nair, M. Cannabidiol for neurodegenerative disorders: A comprehensive review. Front. Pharmacol. 2022, 13, 989717. [Google Scholar] [CrossRef]
- Viana, M.d.B.; Aquino PEAd Estadella, D.; Ribeiro, D.A.; Viana, G.S.d.B. Cannabis sativa and cannabidiol: A therapeutic strategy for the treatment of neurodegenerative diseases? Med. Cannabis Cannabinoids 2022, 5, 207–219. [Google Scholar] [CrossRef]
- Chu, F.X.; Wang, X.; Li, B.; Xu, L.L.; Di, B. The NLRP3 inflammasome: A vital player in inflammation and mediating the anti-inflammatory effect of CBD. Inflamm. Res. 2024, 73, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Salgado, K.d.C.B.; de Freitas Nascimento, R.G.; Coelho, P.J.F.N.; Oliveira, L.A.M.; Nogueira, K.O.P.C. Cannabidiol protects mouse hippocampal neurons from neurotoxicity induced by amyloid β-peptide25–35. Toxicol. Vitr. 2024, 99, 105880. [Google Scholar] [CrossRef] [PubMed]
- Hickey, J.P.; Collins, A.E.; Nelson, M.L.; Chen, H.; Kalisch, B.E. Modulation of Oxidative Stress and Neuroinflammation by Cannabidiol (CBD): Promising Targets for the Treatment of Alzheimer’s Disease. Curr. Issues Mol. Biol. 2024, 46, 4379–4402. [Google Scholar] [CrossRef] [PubMed]
- Karl, T.; Garner, B.; Cheng, D. The therapeutic potential of the phytocannabinoid cannabidiol for Alzheimer’s disease. Behav. Pharmacol. 2017, 28, 142–160. [Google Scholar] [CrossRef]
- Kreilaus, F.; Przybyla, M.; Ittner, L.; Karl, T. Cannabidiol (CBD) treatment improves spatial memory in 14-month-old female TAU58/2 transgenic mice. Behav. Brain Res. 2022, 425, 113812. [Google Scholar] [CrossRef]
- Schiavon, A.P.; Bonato, J.M.; Milani, H.; Guimarães, F.S.; de Oliveira, R.M.W. Influence of single and repeated cannabidiol administration on emotional behavior and markers of cell proliferation and neurogenesis in non-stressed mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2016, 64, 27–34. [Google Scholar] [CrossRef]
- McManus, K.; Ash, E.; Harper, D.; Smith, R.; Gruber, S.; Forester, B. Caring for Behavioral Symptoms of Dementia (CBD): A New Investigation into Cannabidiol for the Treatment of Anxiety and Agitation in Alzheimer’s Dementia. Am. J. Geriatr. Psychiatry 2021, 29, S110–S111. [Google Scholar] [CrossRef]
- O’Donnell, B.; Meissner, H.; Gupta, V. Dronabinol. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Halsey, G. Dronabinol May Have a Role for Quelling Agitation in Alzheimer Disease: New Data. Patient Care (Online). 2024. Available online: https://openurl.ebsco.com/EPDB%3Agcd%3A10%3A21415994/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A180282160&crl=c&link_origin=scholar.google.com (accessed on 18 September 2024).
- Fan, L.; Zhang, Z. Therapeutic potential of curcumin on the cognitive decline in animal models of Alzheimer’s disease: A systematic review and meta-analysis. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 4499–4509. [Google Scholar] [CrossRef]
- Ahmed, T.; Gilani, A.H. Therapeutic potential of turmeric in Alzheimer’s disease: Curcumin or curcuminoids? Phytother. Res. 2014, 28, 517–525. [Google Scholar] [CrossRef]
- Ray, B.; Lahiri, D.K. Neuroinflammation in Alzheimer’s disease: Different molecular targets and potential therapeutic agents including curcumin. Curr. Opin. Pharmacol. 2009, 9, 434–444. [Google Scholar] [CrossRef]
- Liu, K.; Ding, Q.; Cao, D.; Xi, E.; Zhao, Y.; Gao, N.; Yang, Y.; Yuan, Y. Interface potential-induced natural antioxidant mimic system for the treatment of Alzheimer’s disease. Commun. Chem. 2024, 7, 206. [Google Scholar] [CrossRef] [PubMed]
- Nunes, Y.C.; Mendes, N.M.; Pereira de Lima, E.; Chehadi, A.C.; Lamas, C.B.; Haber, J.F.; Dos Santos Bueno, M.; Araújo, A.C.; Catharin, V.C.S.; Detregiachi, C.R.P.; et al. Curcumin: A Golden Approach to Healthy Aging: A Systematic Review of the Evidence. Nutrients 2024, 16, 2721. [Google Scholar] [CrossRef] [PubMed]
- Francis, A.J.; Sreenivasan, C.; Parikh, A.; AlQassab, O.; Kanthajan, T.; Pandey, M.; Nwosu, M. Curcumin and Cognitive Function: A Systematic Review of the Effects of Curcumin on Adults With and Without Neurocognitive Disorders. Cureus 2024, 16, e67706. [Google Scholar] [CrossRef] [PubMed]
- Cheriki, M.; Habibian, M.; Moosavi, S.J. Curcumin attenuates brain aging by reducing apoptosis and oxidative stress. Metab. Brain Dis. 2024, 39, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.T.; Pieniz, S. Curcumin in Alzheimer’s Disease and Depression: Therapeutic Potential and Mechanisms of Action. Braz. Arch. Biol. Technol. 2024, 67, e24220004. [Google Scholar] [CrossRef]
- Abdul-Rahman, T.; Awuah, W.A.; Mikhailova, T.; Kalmanovich, J.; Mehta, A.; Ng, J.C.; Coghlan, M.A.; Zivcevska, M.; Tedeschi, A.J.; de Oliveira, E.C.; et al. Antioxidant, anti-inflammatory and epigenetic potential of curcumin in Alzheimer’s disease. BioFactors 2024, 50, 693–708. [Google Scholar] [CrossRef]
- Lou, S.; Gong, D.; Yang, M.; Qiu, Q.; Luo, J.; Chen, T. Curcumin Improves Neurogenesis in Alzheimer’s Disease Mice via the Upregulation of Wnt/β-Catenin and BDNF. Int. J. Mol. Sci. 2024, 25, 5123. [Google Scholar] [CrossRef]
- Lim, J.L.; Lin, C.-J.; Huang, C.-C.; Chang, L.-C. Curcumin-derived carbon quantum dots: Dual actions in mitigating tau hyperphosphorylation and amyloid beta aggregation. Colloids Surf. B Biointerfaces 2024, 234, 113676. [Google Scholar] [CrossRef]
- Shao, S.; Ye, X.; Su, W.; Wang, Y. Curcumin alleviates Alzheimer’s disease by inhibiting inflammatory response, oxidative stress and activating the AMPK pathway. J. Chem. Neuroanat. 2023, 134, 102363. [Google Scholar] [CrossRef]
- Huang, H.-C.; Tang, D.; Xu, K.; Jiang, Z.-F. Curcumin attenuates amyloid-β-induced tau hyperphosphorylation in human neuroblastoma SH-SY5Y cells involving PTEN/Akt/GSK-3β signaling pathway. J. Recept. Signal Transduct. 2014, 34, 26–37. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Y.; Wu, Y.; Sun, J.; Lu, X.; Dai, K.; Zhang, Y.; Luo, C.; Zhang, J. Curcumin Alleviates Microglia-Mediated Neuroinflammation and Neuronal Ferroptosis Following Experimental Subarachnoid Hemorrhage by Modulating the Nrf2/HO-1 Signaling Pathway. Mol. Neurobiol. 2024, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Esmaealzadeh, N.; Miri, M.S.; Mavaddat, H.; Peyrovinasab, A.; Ghasemi Zargar, S.; Sirous Kabiri, S.; Razavi, S.M.; Abdolghaffari, A.H. The regulating effect of curcumin on NF-κB pathway in neurodegenerative diseases: A review of the underlying mechanisms. Inflammopharmacology 2024, 32, 2125–2151. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Han, Y.; Li, M.; Nie, C. Curcumin promotes proliferation of adult neural stem cells and the birth of neurons in Alzheimer’s disease mice via Notch signaling pathway. Cell. Reprogramming 2019, 21, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Song, D.; Chen, L.; Xiao, H.; Ma, X.; Jiang, Q.; Cheng, O. Curcumin promotes neurogenesis of hippocampal dentate gyrus via Wnt/β-catenin signal pathway following cerebral ischemia in mice. Brain Res. 2021, 1751, 147197. [Google Scholar] [CrossRef]
- Wu L-w Zhang, H.; Wu, T.; Chen, N. Research progress on the regulation of resveratrol on Alzheimer’s disease. Food Sci. 2023, 44, 237–245. [Google Scholar]
- Kou, X.; Chen, N. Resveratrol as a natural autophagy regulator for prevention and treatment of Alzheimer’s disease. Nutrients 2017, 9, 927. [Google Scholar] [CrossRef]
- Subhan, I.; Siddique, Y.H. Resveratrol: Protective Agent Against Alzheimer’s Disease. Cent. Nerv. Syst. Agents Med. Chem. (Former. Curr. Med. Chem.-Cent. Nerv. Syst. Agents) 2024, 24, 249–263. [Google Scholar] [CrossRef]
- Al-Bishri, W.M.; Hamza, A.H.; Farran, S.K. Resveratrol Treatment Attenuates Amyloid Beta, Tau Protein and Markers of Oxidative Stress, and Inflammation in Alzheimer’s disease Rat Model. Int. J. Pharm. Res. Allied Sci. 2017, 6, 71–78. [Google Scholar]
- Ashrafizadeh, M.; Zarrabi, A.; Najafi, M.; Samarghandian, S.; Mohammadinejad, R.; Ahn, K.S. Resveratrol targeting tau proteins, amyloid-beta aggregations, and their adverse effects: An updated review. Phytother. Res. 2020, 34, 2867–2888. [Google Scholar] [CrossRef]
- Rahman, M.H.; Akter, R.; Bhattacharya, T.; Abdel-Daim, M.M.; Alkahtani, S.; Arafah, M.W.; Al-Johani, N.S.; Alhoshani, N.M.; Alkeraishan, N.; Alhenaky, A.; et al. Resveratrol and neuroprotection: Impact and its therapeutic potential in Alzheimer’s disease. Front. Pharmacol. 2020, 11, 619024. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, N.; Liu, X. Resveratrol and amyloid-beta: Mechanistic insights. Nutrients 2017, 9, 1122. [Google Scholar] [CrossRef] [PubMed]
- Shati, A.A.; Alfaifi, M.Y. Trans-resveratrol inhibits tau phosphorylation in the brains of control and cadmium chloride-treated rats by activating PP2A and PI3K/Akt induced-inhibition of GSK3β. Neurochem. Res. 2019, 44, 357–373. [Google Scholar] [CrossRef] [PubMed]
- Azargoonjahromi, A.; Abutalebian, F. Unraveling the therapeutic efficacy of resveratrol in Alzheimer’s disease: An umbrella review of systematic evidence. Nutr. Metab. 2024, 21, 15. [Google Scholar] [CrossRef] [PubMed]
- Bartra, C.; Yuan, Y.; Vuraić, K.; Valdés-Quiroz, H.; Garcia-Baucells, P.; Slevin, M.; Pastorello, Y.; Suñol, C.; Sanfeliu, C. Resveratrol activates antioxidant protective mechanisms in cellular models of Alzheimer’s disease inflammation. Antioxidants 2024, 13, 177. [Google Scholar] [CrossRef]
- Yadav, V.; Mythri, C.; Kumarasamy, M. Natural products as potential modulators of pro-inflammatory cytokines signalling in Alzheimer’s disease. Brain Behav. Immun. Integr. 2024, 5, 100048. [Google Scholar] [CrossRef]
- Rashet, A.; Abdi, A.; Barari, A. Synergistic Role of Aerobic Training and Resveratrol on AMPK/PGC1-α/SIRT1 Pathway in the Hippocampus of Rats with Alzheimer’s Disease. J. Arch. Mil. Med. 2024, 12, e144281. [Google Scholar] [CrossRef]
- Zhao, H.; Li, N.; Wang, Q.; Cheng, X.; Li, X.; Liu, T. Resveratrol decreases the insoluble Aβ1–42 level in hippocampus and protects the integrity of the blood–brain barrier in AD rats. Neuroscience 2015, 310, 641–649. [Google Scholar] [CrossRef]
- Islam, F.; Nafady, M.H.; Islam, M.R.; Saha, S.; Rashid, S.; Akter, A.; Or-Rashid, M.H.; Akhtar, M.F.; Perveen, A.; Md Ashraf, G.; et al. Resveratrol and neuroprotection: An insight into prospective therapeutic approaches against Alzheimer’s disease from bench to bedside. Mol. Neurobiol. 2022, 59, 4384–4404. [Google Scholar] [CrossRef]
- Daraban, B.S.; Popa, A.S.; Stan, M.S. Latest Perspectives on Alzheimer’s Disease Treatment: The Role of Blood-Brain Barrier and Antioxidant-Based Drug Delivery Systems. Molecules 2024, 29, 4056. [Google Scholar] [CrossRef]
- Devi, P.; Sharma, P.; Rathore, C.; Negi, P. Novel drug delivery systems of resveratrol to bioavailability and therapeutic effects. In Resveratrol-Adding Life to Years, not Adding Years to Life; BoD–Books on Demand: Norderstedt, Germany, 2019. [Google Scholar]
- Pei, M.-Q.; Xu, L.-M.; Yang, Y.-S.; Chen, W.-C.; Chen, X.-L.; Fang, Y.-M.; Lin, S.; He, H.F. Latest advances and clinical application prospects of resveratrol therapy for neurocognitive disorders. Brain Res. 2024, 1830, 148821. [Google Scholar] [CrossRef]
- Goyal, R.; Mittal, G.; Khurana, S.; Malik, N.; Kumar, V.; Soni, A.; Chopra, H.; Kamal, M.A. Insights on quercetin therapeutic potential for neurodegenerative diseases and its nano-technological perspectives. Curr. Pharm. Biotechnol. 2024, 25, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-W.; Chen, J.-Y.; Ouyang, D.; Lu, J.-H. Quercetin in animal models of Alzheimer’s disease: A systematic review of preclinical studies. Int. J. Mol. Sci. 2020, 21, 493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hu, J.; Zhong, L.; Wang, N.; Yang, L.; Liu, C.-C.; Li, H.; Wang, X.; Zhou, Y.; Zhang, Y.; et al. Quercetin stabilizes apolipoprotein E and reduces brain Aβ levels in amyloid model mice. Neuropharmacology 2016, 108, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Safarzadeh, E.; Ataei, S.; Akbari, M.; Abolhasani, R.; Baziar, M.; Asghari-Azar, V.; Dadkhah, M. Quercetin ameliorates cognitive deficit, expression of amyloid precursor gene, and pro-inflammatory cytokines in an experimental models of Alzheimer’s disease in Wistar rats. Exp. Gerontol. 2024, 193, 112466. [Google Scholar] [CrossRef]
- Tang, J.; Sun, R.; Wan, J.; Xu, Z.; Zou, Y.; Zhang, Q. Atomic insights into the inhibition of R3 domain of tau protein by epigallocatechin gallate, quercetin and gallic acid. Biophys. Chem. 2024, 305, 107142. [Google Scholar] [CrossRef]
- Nyarko, K. Investigating the Antioxidant Properties of Quercetin. In Quercetin-Effects on Human Health: Effects on Human Health; BoD–Books on Demand: Norderstedt, Germany, 2024; Volume 89. [Google Scholar]
- Fang, K.; Li, H.-R.; Chen, X.-X.; Gao, X.-R.; Huang, L.-L.; Du, A.-Q.; Jiang, C.; Li, H.; Ge, J.F. Quercetin alleviates LPS-induced depression-like behavior in rats via regulating BDNF-related imbalance of copine 6 and TREM1/2 in the hippocampus and PFC. Front. Pharmacol. 2020, 10, 1544. [Google Scholar] [CrossRef]
- Lasure, V.U.; Gautam, A.S.; Singh, R.K. Quercetin ameliorates neuroinflammatory and neurodegenerative biomarkers in the brain and improves neurobehavioral parameters in a repeated intranasal amyloid-beta exposed model of Alzheimer’s disease. Food Funct. 2024, 15, 8712–8728. [Google Scholar] [CrossRef]
- Zaplatic, E.; Bule, M.; Shah, S.Z.A.; Uddin, M.S.; Niaz, K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci. 2019, 224, 109–119. [Google Scholar] [CrossRef]
- Kaşıkcı, M.B.; Bağdatlıoğlu, N. Bioavailability of quercetin. Curr. Res. Nutr. Food Sci. J. 2016, 4, 146–151. [Google Scholar] [CrossRef]
- Grewal, A.K.; Singh, T.G.; Sharma, D.; Sharma, V.; Singh, M.; Rahman, M.H.; Najda, A.; Walasek-Janusz, M.; Kamel, M.; Albadrani, G.M.; et al. Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed. Pharmacother. 2021, 140, 111729. [Google Scholar] [CrossRef]
- Olloquequi, J.; Ettcheto, M.; Cano, A.; Fortuna, A.; Bicker, J.; Sánchez-Lopez, E.; Paz, C.; Ureña, J.; Verdaguer, E.; Auladell, C.; et al. Licochalcone A: A Potential Multitarget Drug for Alzheimer’s Disease Treatment. Int. J. Mol. Sci. 2023, 24, 14177. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Ling, Y.; Zhou, X.; Li, K.; Zhou, C. Licochalcone A Ameliorates Cognitive Dysfunction in an Alzheimer’s Disease Model by Inhibiting Endoplasmic Reticulum Stress-Mediated Apoptosis. J. Geriatr. Psychiatry Neurol. 2024, 08919887241295730. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.; Lee, E.J.; Ahmad, K.; Choi, I. Therapeutic potential and action mechanisms of licochalcone B: A mini review. Front. Mol. Biosci. 2024, 11, 1440132. [Google Scholar] [CrossRef] [PubMed]
- Amini, R.; Moradi, S.; Najafi, R.; Mazdeh, M.; Taherkhani, A. BACE1 Inhibition Utilizing Organic Compounds Holds Promise as a Potential Treatment for Alzheimer’s and Parkinson’s Diseases. Oxidative Med. Cell. Longev. 2024, 2024, 6654606. [Google Scholar] [CrossRef]
- Mohamed, E.M.; HElmaidomy, A.; Alaaeldin, R.; Alsenani, F.; Altemani, F.H.; Algehainy, N.A.; Alanazi, M.A.; Bagalagel, A.; Althagafi, A.; Elrehany, M.A.; et al. Anti-Alzheimer Potential of a New (+)-Pinitol Glycoside Isolated from Tamarindus indica Pulp: In Vivo and In Silico Evaluations. Metabolites 2023, 13, 732. [Google Scholar] [CrossRef]
Hybrid Compound | AChE Inhibitor, IC50 μM BchE Inhibitor, IC50 μM | β-Amyloid Antiaggregation | Antioxidant Potential | BBB Permeability | Other Activities | Experimental Studies | References |
---|---|---|---|---|---|---|---|
Indole-piperidine amides (1) | -EeAChE: IC50 0.52 μM -eqBChE: IC50 19.16 μM -hAChE: IC50 0.32 μM -hBChE: IC50 0.39 μM | NT | NT | yes | NT | in vitro | [90] |
Indanone/benzofuranone and piperidine hybrids (2) | NT | NT | NT | yes | -Good neuroprotection; -Low cytotoxicity. | in vitro and in vivo in rats | [91] |
Hybrid structures of baicalein and donepezil (3) | AChE: IC50 0.05 ± 0.02 µM BuChE: IC50 0.946 µM | yes | yes | yes | -Protect nerve cells. | in vitro | [92] |
Benzamide derivatives (4) | AChE: IC50 0.14 ± 0.03 nM | NT | NT | NT | NT | in vitro | [93] |
Benzylpiperazinequinoline hybrids (5) | eqBChE: IC50 0.059 ± 0.006 μM, hBChE: IC50 0.162 ± 0.069 μM AChE: NA (Not Active) SI: eeAChE/eqBChE: 508.47 eeAChE/hBChE: 190.44 | yes | yes | yes | -Metabolic stability; -High oral bioavailability; -Protected neural cells from toxicity and inflammation in vitro; -Weak toxicity in neural cells (SH-SY5Y, anti-neuroinflammatory effect); -Improving cognitive function in mouse models. | in vitro and in vivo in rats | [94] |
Indole- and/or donepezil-like hybrids (6a) (6b) | 6a: AChE: IC50 (10.76 ± 1.66 μM) 26.32 ± 3.11 hBChE: IC50 26.32 ± 3.11 SI:AchE = 2.45 6b:BChE IC50 21.12 ± 1.48 μM; SI: BChE = 47.34 | 6a yes 6b yes | 6a yes 6b yes | 6a yes 6b yes | -Effectively targets AD biomarkers Aβ1-42 and pTAU in a rat model; -Facilitates non-amyloidogenic signaling through MT1A and MT2B/ERK/CREB pathways. | in vitro, in vivo and ex vivo | [95,96,97] |
Piperazine and N-benzylpiperidine hybrids of 5-phenyl-1, 3, 4-oxadiazol-2-thiol (7a) (7b) | 7a: hAChE: IC50 0.076 μM hBChE: IC50 1.204 μM hBChE-1: IC50 0.230 μM 7b: hAChE: IC50 0.113 μM hBChE: IC50 1.480 μM hBChE-1: IC50 0.318 μM | 7a yes 7b yes | NT | 7a yes 7b yes | -β-secretase-1 (hBACE-1); -Improved learning and memory; -Reduced MDA, NO levels; -Increased GSH; -Lowered pro-inflammatory cytokines. | in vitro, in vivo, and ex vivo | [98] |
N-Benzyl piperidine derivatives (8a) and (8b) | 8a: HDAC: IC50 0.17 μM, AchE: IC50 6.89 μM; histone deacetylases (HDACs) 8b: HDAC: IC50 0.45 μM, AchE: IC50 3.22 μM). | yes | yes | NT | -Neuroprotective effects in PC-12 cells; -Good selectivity for AchE; -Protected PC-12 cells from H2O2 induced cytotoxicity. | in vitro | [99] |
Pyrazolopyridine and tetrahydroacridine (THA) hybrids (9) | hAChE and binding to the peripheral anionic site (PAS) | yes | yes | yes | -Safety in hepG2 cells LD50 values; -Exceeding 120 mg/kg. | in vitro and in vivo | [100] |
N-alkylpiperidine carbamates (10) and (11) | 10: multiple AchE: IC50 = 7.31 μM, BchE: (IC50 = 0.56 μM) and MAO-B: (IC50 = 26.1 μM) 11: selective MAO-B: (IC50 = 0.18 μM). | yes | NT | yes | -Not cytotoxic to human neuronal-like SH-SY5Y; -Liver HepG2 cells; -Inhibit monoamine oxidases [monoamine oxidase A (MAO-A and monoamine oxidase B (MAO-B)]. | in vitro | [101] |
N-benzylpiperidine carboxamide derivatives (12) | AchE: IC50: 5.94 ± 1.08 μM | NT | NT | yes | NT | in vitro | [102] |
N-benzylpiperidine analogs (13) | AchE: (IC50: 1. 0.11 ± 0.02) BchE: (IC50 = 3.0 ± 0.06) hBACE-1: (IC50 = 0.22 ± 0.02) hAChE SI = 28.2 | yes | yes | yes | -Devoid of neurotoxicity towards SH-SY5Y neuroblastoma cell lines; -Amelioration of scopolamine- and Aβ-induced cognitive impairment in AD rat models. | in vitro and in vivo | [103] |
Donepezil and curcumin hybrids (14) | AchE: IC50 = 187 nM highest selectivity for BuChE over AChE (66.3) | yes | yes | yes | NT | in vitro and in silico | [104] |
Donepezil analogs (15) and (16) | hAChE: (IC50 = 0.058 ± 0.033) BuChE: (IC50 = 4.740 ± 0.750) hAChE: (IC50 = 0.043 ± 0.007 BuChE: (IC50 = 5.734 ± 0.130 | NT | NT | NT | -Did not influence the cell viability in SH-SY5Y neuroblastoma cells. | in vitro | [105] |
Masitinib Clinical trial—Phase 3 study is ongoing. NCT01872598, NCT05564169 (17) | no | yes | no | yes | -Multi-kinase inhibitor with additional FGF receptor inhibition; characterized as synaptoprotective agent—tau protein signaling pathway; -Prevention of synaptic damage; -Significantly improved cognition in Phase 3 study. | in vitro and in vivo | [106,107] |
Dasatinib plus quercetin Clinical trial—Phase 1/2 study NCT04063124, NCT04785300, (18) | no | yes | yes | yes | Senolytic for ephrins, PI3Kδ, p21, BCL-xL, and plasminogen-activator inhibitor 2 | in vitro and in vivo | [108,109,110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelova, V.T.; Stoyanov, B.P.; Simeonova, R. New Insights into the Development of Donepezil-Based Hybrid and Natural Molecules as Multi-Target Drug Agents for Alzheimer’s Disease Treatment. Molecules 2024, 29, 5314. https://doi.org/10.3390/molecules29225314
Angelova VT, Stoyanov BP, Simeonova R. New Insights into the Development of Donepezil-Based Hybrid and Natural Molecules as Multi-Target Drug Agents for Alzheimer’s Disease Treatment. Molecules. 2024; 29(22):5314. https://doi.org/10.3390/molecules29225314
Chicago/Turabian StyleAngelova, Violina T., Boris P. Stoyanov, and Rumyana Simeonova. 2024. "New Insights into the Development of Donepezil-Based Hybrid and Natural Molecules as Multi-Target Drug Agents for Alzheimer’s Disease Treatment" Molecules 29, no. 22: 5314. https://doi.org/10.3390/molecules29225314
APA StyleAngelova, V. T., Stoyanov, B. P., & Simeonova, R. (2024). New Insights into the Development of Donepezil-Based Hybrid and Natural Molecules as Multi-Target Drug Agents for Alzheimer’s Disease Treatment. Molecules, 29(22), 5314. https://doi.org/10.3390/molecules29225314