CO2 Hydrogenation to Methanol over In2O3 Decorated by Metals of the Iron Triad
Abstract
:1. Introduction
2. Results
2.1. Catalysts Properties
2.2. Catalytic Activity
2.3. Spent Catalysts Characterisations
3. Discussion
4. Materials and Methods
4.1. In2O3 Synthesis
4.2. Characterization Methods
4.3. Activity Test
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rafiee, A.; Khalilpour, K.R.; Milani, D.; Panahi, M. Trends in CO2 Conversion and Utilization: A Review from Process Systems Perspective. J. Environ. Chem. Eng. 2018, 6, 5771–5794. [Google Scholar] [CrossRef]
- Huang, C.H.; Tan, C.S. A Review: CO2 Utilization. Aerosol Air Qual. Res. 2014, 14, 480–499. [Google Scholar] [CrossRef]
- Qin, Z.; Zhou, Y.; Jiang, Y.; Liu, Z.; Ji, H. Recent Advantages in Heterogeneous Catalytic Hydrogenation of CO2 to Methane. In New Advances in Hydrogenation Processes—Fundamentals and Applications; InTechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Liu, M.; Yi, Y.; Wang, L.; Guo, H.; Bogaerts, A. Hydrogenation of Carbon Dioxide to Value-Added Chemicals by Heterogeneous Catalysis and Plasma Catalysis. Catalysts 2019, 9, 275. [Google Scholar] [CrossRef]
- Jadhav, S.G.; Vaidya, P.D.; Bhanage, B.M.; Joshi, J.B. Catalytic Carbon Dioxide Hydrogenation to Methanol: A Review of Recent Studies. Chem. Eng. Res. Des. 2014, 92, 2557–2567. [Google Scholar] [CrossRef]
- Riebeek, H. The Carbon Cycle. Available online: https://earthobservatory.nasa.gov/features/CarbonCycle (accessed on 22 October 2024).
- Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions The European Green Deal. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN (accessed on 11 September 2024).
- Len, T.; Luque, R. Addressing the CO2 challenge through thermocatalytic hydrogenation to carbon monoxide, methanol and methane. Green Chem. 2023, 25, 490. [Google Scholar] [CrossRef]
- Ren, M.; Zhang, Y.; Wang, X.; Qiu, H. Catalytic Hydrogenation of CO2 to Methanol: A Review. Catalysts 2022, 12, 403. [Google Scholar] [CrossRef]
- Chou, C.-Y.; Lobo, R.F. Direct Conversion of CO2 into Methanol over Promoted Indium Oxide-Based Catalysts. Appl. Catal. A Gen. 2019, 583, 117144. [Google Scholar] [CrossRef]
- Wang, G.; Mao, D.; Guo, X.; Yu, J. Methanol Synthesis from CO2 Hydrogenation over CuO-ZnO-ZrO2-MxOy Catalysts (M = Cr, Mo and W). Int. J. Hydrogen Energy 2019, 44, 4197–4207. [Google Scholar] [CrossRef]
- Dang, S.; Yang, H.; Gao, P.; Wang, H.; Li, X.; Wei, W.; Sun, Y. A Review of Research Progress on Heterogeneous Catalysts for Methanol Synthesis from Carbon Dioxide Hydrogenation. Catal. Today 2019, 330, 61–75. [Google Scholar] [CrossRef]
- Posada-Borbón, A.; Grönbeck, H. CO2 Adsorption on Hydroxylated In2O3 (110). Phys. Chem. Chem. Phys. 2019, 21, 21698–21708. [Google Scholar] [CrossRef]
- Jiang, X.; Nie, X.; Guo, X.; Song, C.; Chen, J.G. Recent Advantages in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chem. Rev. 2020, 120, 7984–8034. [Google Scholar] [CrossRef] [PubMed]
- Nestler, F.; Schütze, A.R.; Ouda, M.; Hadrich, M.J.; Schaadt, A.; Bajohr, S.; Kolb, T. Kinetic Modelling of Methanol Synthesis over Commercial Catalysts: A Critical Assessment. Chem. Eng. J. 2020, 394, 124881. [Google Scholar] [CrossRef]
- Kattel, S.; Liu, P.; Chen, J.G. Tuning Selectivity of CO2 Hydrogenation Reactions at the Metal/Oxide Interface. J. Am. Chem. Soc. 2017, 139, 9739–9754. [Google Scholar] [CrossRef] [PubMed]
- Frei, M.S.; Capdevila-Cortada, M.; García-Muelas, R.; Mondelli, C.; López, N.; Stewart, J.A.; Ferré, D.C.; Pérez-Ramírez, J. Mechanism and Microkinetics of Methanol Synthesis via CO2 Hydrogenation on Indium Oxide. J. Catal. 2018, 361, 313–321. [Google Scholar] [CrossRef]
- Tsoukalou, A.; Abdala, P.M.; Stoian, D.; Huang, X.; Willinger, M.-G.; Fedorov, A.; Müller, C.R. Structural Evolution and Dynamics of an In2O3 Catalyst for CO2 Hydrogenation to Methanol: An Operando XAS-XRD and In Situ TEM Study. J. Am. Chem. Soc. 2019, 141, 13497–13505. [Google Scholar] [CrossRef]
- Stryšovský, T.; Kajabová, M.; Prucek, R.; Panáček, A.; Simkovičová, K.; Vajda, Š.; Bastl, Z.; Kvítek, L. Temperature switching of product selectivity in CO2 reduction on Cu/In2O3 catalysts. J. CO2 Util. 2023, 77, 102617. [Google Scholar] [CrossRef]
- Kajabová, M.; Stryšovský, T.; Bikbashev, A.; Kovářová, Z.; Simkovičová, K.; Prucek, R.; Panáček, A.; Novák, P.; Kopp, J.; Kašlík, J.; et al. Electron traps as a valuable criterium of iron oxide catalysts’ performance in CO2 hydrogenation. J. CO2 Util. 2024, 85, 102863. [Google Scholar] [CrossRef]
- Yang, Q.; Fedorova, E.A.; Petrov, S.A.; Weiss, J.; Lund, H.; Skrypnik, A.S.; Kreyenchulte, C.R.; Cychkov, V.Y.; Matvienko, A.A.; Brueckner, A.; et al. Activity and selectivity descriptors for iron carbides in CO2 hydrogenation. Appl. Catal. B 2023, 327, 122450. [Google Scholar] [CrossRef]
- Díez-Ramírez, J.; Sánchez, P.; Kyriakou, V.; Zafeiratos, S.; Marnellos, G.E.; Konsolakis, M.; Dorado, F. Effect of support nature on the cobalt-catalyzed CO2 hydrogenation. J. CO2 Util. 2017, 21, 562–571. [Google Scholar] [CrossRef]
- Srisawad, N.; Chaitree, W.; Mekasuwandumrong, O.; Shotipruk, A.; Jongsomjit, B.; Panpranot, J. CO2 hydrogenation over Co/Al2O3 catalysts prepared via a solid-state reaction of fine gibbsite and cobalt precursors. React. Kinet. Mech. Catal. 2012, 107, 179–188. [Google Scholar] [CrossRef]
- Zhu, Y.; Ma, H.; Qian, W.; Zhang, H.; Ying, W. Co- and Ni-promoted indium oxide for CO2 hydrogenation to methanol. Catal. Sci. Technol. 2024, 14, 3771–3783. [Google Scholar] [CrossRef]
- Frei, M.S.; Mondelli, C.; García-Muelas, R.; Morales-Vidal, J.; Philipp, M.; Safonova, O.V.; López, N.; Stewart, J.A.; Ferré, D.C.; Pérez-Ramírez, J. Nanostructure of nickel-promoted indium oxide catalysts drives selectivity in CO2 hydrogenation. Nat. Commun. 2021, 12, 1960. [Google Scholar] [CrossRef] [PubMed]
- Duyar, M.S.; Gallo, A.; Snider, J.L.; Jaramillo, T.F. Low-pressure methanol synthesis from CO2 over metal-promoted Ni-Ga intermetallic catalysts. J. CO2 Util. 2020, 39, 101151. [Google Scholar] [CrossRef]
- Choi, H.; Oh, S.; Tran, S.B.T.; Park, J.Y. Size-controlled model Ni catalysts on Ga2O3 for CO2 hydrogenation to methanol. J. Catal. 2019, 376, 68–76. [Google Scholar] [CrossRef]
- Jia, X.; Sun, K.; Wang, J.; Shen, C.; Liu, C.-J. Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalysts. J. Energy Chem. 2020, 50, 409–415. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, Y.; Bao, Y.; Yang, H.; Li, J.; Chang, C.; Li, S.; Gao, P. Nickel-modified In2O3 with inherent oxygen vacancies for CO2 hydrogenation to methanol. Sci. China Chem. 2024, 67, 1715–1728. [Google Scholar] [CrossRef]
- Zhu, J.; Cannizzaro, F.; Liu, L.; Zhang, H.; Kosimov, N.; Filot, I.A.W.; Rabeah, J.; Brückner, A.; Hensen, E.J.M. Ni-In Synergy in CO2 Hydrogenation to Methanol. ACS Catal. 2021, 11, 11371–11384. [Google Scholar] [CrossRef]
- Li, L.; Yang, B.; Gao, B.; Wang, Y.; Zhang, L.; Ishihara, T.; Qi, W.; Guo, L. CO2 hydrogenation selectivity shift over In-Co binary oxides catalysts: Catalytic mechanism and structure-property relationship. Chinese J. Catal. 2022, 43, 862–876. [Google Scholar] [CrossRef]
- Rui, N.; Zhang, F.; Sun, K.; Liu, Z.; Xu, W.; Stavitski, E.; Senanayke, S.D.; Rodriguez, J.A.; Liu, C.-J. Hydrogenation of CO2 to Methanol on Auδ+-In2O3−x Catalysts. ACS Catal. 2020, 10, 11307–11317. [Google Scholar] [CrossRef]
- Sun, K.; Rui, N.; Zhang, Z.; Sun, Z.; Ge, Q.; Liu, C.-J. A highly active Pt/In2O3 catalysts for CO2 hydrogenation to methanol with enhanced stability. Green Chem. 2020, 22, 5059. [Google Scholar] [CrossRef]
- Shi, Z.; Tan, Q.; Tian, C.; Pan, Y.; Sun, X.; Zhang, J.; Wu, D. CO2 hydrogenation to methanol over Cu-In intermetallic catalysts: Effect of reduction temperature. J. Catal. 2019, 379, 78–89. [Google Scholar] [CrossRef]
- Araújo, T.P.; Morales-Vidal, J.; Zou, T.; García-Muelas, R.; Willi, P.O.; Engel, K.M.; Sarafova, O.V.; Akl, D.F.; Krumeich, F.; Grass, R.N.; et al. Flame Spray Pyrolysis as a Synthesis Platform to Assess Metal Promotion in In2O3-Catalyzed CO2 Hydrogenation. Adv. Energy Mater. 2022, 12, 2103707. [Google Scholar] [CrossRef]
- Tu, J.; Wu, H.; Qian, Q.; Han, S.; Chu, M.; Jia, S.; Feng, R.; Zhai, J.; He, M.; Han, B. Low temperature methanation of CO2 over an amorphous cobalt-based catalysts. Chem. Sci. 2021, 12, 3937–3943. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, J.; Anolleck, J.K.; Lösch, H.; Kureti, S. Methanation of CO2 on iron based catalysts. Appl. Catal. B 2018, 223, 47–59. [Google Scholar] [CrossRef]
- Halder, A.; Kilianová, M.; Yang, B.; Tyo, E.C.; Seifert, S.; Prucek, R.; Panáček, A.; Suchomel, P.; Tomanec, O.; Gosztola, D.J.; et al. Highly Efficient Cu-Decorated Iron Oxide Nanocatalyst for Low Pressure CO2 Conversion. Appl. Catal. B Environ. 2018, 225, 128–138. [Google Scholar] [CrossRef]
- Simkovičová, K.; Qadir, M.I.; Žilková, N.; Olsówka, J.E.; Sialini, P.; Kvítek, L.; Vajda, Š. Hydrogenation of CO2 on Nanostructured Cu/FeOx Catalysts: The Effect of Morphology and Cu Load on Selectivity. Catalysts 2022, 12, 516. [Google Scholar] [CrossRef]
Catalyst | Pressure (bar) | GHSV (mL/(gcat*h)) | Temperature (°C) | CO2 Conversion (%) | CH3OH Selectivity (%) | STY (gmet/(gcat*h)) | Reference |
---|---|---|---|---|---|---|---|
Ni/In2O3 | 50 | 21,000 | 300 | 18.47 | 55 | 0.55 | [28] |
Ni/In2O3 | 50 | 9000 | 300 | ~11.5 | ~46 | ~0.16 | [29] |
Co/In2O3 | 50 | 9000 | 300 | ~8 | ~57 | ~0.13 | [29] |
NiO(6)-In2O3 | 30 | 60,000 | 250 | ~3 | 53 | 0.26 | [30] |
NiO(6)-In2O3 | 30 | 60,000 | 300 | --- | 27 | 0.41 | [30] |
In1-Co4 | 40 | 24,000 | 300 | 8.9 | 46.5 | 0.31 | [31] |
Au/In2O3 | 50 | 21,000 | 300 | 11.7 | 67.8 | 0.47 | [32] |
Pt/In2O3 | 50 | 21,000 | 300 | 17.6 | 54 | 0.54 | [33] |
Cu/In2O3 | 30 | 7500 | 280 | 11.4 | 80.5 | 0.197 | [34] |
Au/In2O3 | 50 | 24,000 | 280 | ~1.9 | 56 | 0.07 | [35] |
Co/In2O3 | 50 | 24,000 | 280 | 4 | 72 | 0.2 | [35] |
Ni/In2O3 | 50 | 24,000 | 280 | ~6.1 | 75 | 0.31 | [35] |
Fe/In2O3 | 30 | 21,000 | 325 | 10.2 | 44.3 | 0.26 | This work |
Co/In2O3 | 30 | 21,000 | 300 | 13.2 | 21.9 | 0.17 | This work |
Ni/In2O3 | 30 | 21,000 | 300 | 15.1 | 42 | 0.36 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stryšovský, T.; Kajabová, M.; Bikbashev, A.; Kovářová, Z.; Pocklanová, R.; Prucek, R.; Panáček, A.; Kašlík, J.; Petr, M.; Kvítek, L. CO2 Hydrogenation to Methanol over In2O3 Decorated by Metals of the Iron Triad. Molecules 2024, 29, 5325. https://doi.org/10.3390/molecules29225325
Stryšovský T, Kajabová M, Bikbashev A, Kovářová Z, Pocklanová R, Prucek R, Panáček A, Kašlík J, Petr M, Kvítek L. CO2 Hydrogenation to Methanol over In2O3 Decorated by Metals of the Iron Triad. Molecules. 2024; 29(22):5325. https://doi.org/10.3390/molecules29225325
Chicago/Turabian StyleStryšovský, Tomáš, Martina Kajabová, Arkadii Bikbashev, Zuzana Kovářová, Radka Pocklanová, Robert Prucek, Aleš Panáček, Josef Kašlík, Martin Petr, and Libor Kvítek. 2024. "CO2 Hydrogenation to Methanol over In2O3 Decorated by Metals of the Iron Triad" Molecules 29, no. 22: 5325. https://doi.org/10.3390/molecules29225325
APA StyleStryšovský, T., Kajabová, M., Bikbashev, A., Kovářová, Z., Pocklanová, R., Prucek, R., Panáček, A., Kašlík, J., Petr, M., & Kvítek, L. (2024). CO2 Hydrogenation to Methanol over In2O3 Decorated by Metals of the Iron Triad. Molecules, 29(22), 5325. https://doi.org/10.3390/molecules29225325