Visible Light-Driven Photocatalysis of Al-Doped SrTiO3: Experimental and DFT Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Photocatalytic Performance
2.2. Degradation Mechanism
2.3. Density Functional Theory (DFT) Calculation
3. Methodology
3.1. Materials
3.2. Synthesis of SrTiO3 Calcined at 1100 °C
3.3. Synthesis of SrTiO3@Al
3.4. Photodeposition of Double Co-Catalysts
3.5. Characteristics
3.6. Photocatalytic Test
3.7. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daulbayev, C.; Nursharip, A.; Tauanov, Z.; Busquets, R.; Baimenov, A. Mechanisms of Mercury Removal from Water with Highly Efficient MXene and Silver-Modified Polyethyleneimine Cryogel Composite Filters. Adv. Compos. Hybrid Mater. 2024, 7, 139. [Google Scholar] [CrossRef]
- Molla, M.A.I.; Ahmed, A.Z.; Kaneco, S. Chapter 3-Reaction Mechanism for Photocatalytic Degradation of Organic Pollutants. In Nanostructured Photocatalysts; Nguyen, V.-H., Vo, D.-V.N., Nanda, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 63–84. ISBN 978-0-12-823007-7. [Google Scholar]
- Du, F.; Yang, D.; Kang, T.; Ren, Y.; Hu, P.; Song, J.; Teng, F.; Fan, H. SiO2/Ga2O3 Nanocomposite for Highly Efficient Selective Removal of Cationic Organic Pollutant via Synergistic Electrostatic Adsorption and Photocatalysis. Sep. Purif. Technol. 2022, 295, 121221. [Google Scholar] [CrossRef]
- Serik, A.; Idrissov, N.; Baratov, A.; Dikov, A.; Kislitsin, S.; Daulbayev, C.; Kuspanov, Z. Recent Progress in Photocatalytic Applications of Electrospun Nanofibers: A Review. Molecules 2024, 29, 4824. [Google Scholar] [CrossRef]
- Gehlot, S.; Gupta, A.; Gupta, R. A CNN-Based Unified Framework Utilizing Projection Loss in Unison with Label Noise Handling for Multiple Myeloma Cancer Diagnosis. Med. Image Anal. 2021, 72, 102099. [Google Scholar] [CrossRef]
- Ye, H.; Luo, Y.; Yang, T.; Xue, M.; Yin, Z.; Gao, B. Effects of Ball Milling on Hydrochar for Integrated Adsorption and Photocatalysis Performance. Sep. Purif. Technol. 2025, 354, 128687. [Google Scholar] [CrossRef]
- Qian, W.; Xu, S.; Zhang, X.; Li, C.; Yang, W.; Bowen, C.R.; Yang, Y. Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges. Nano-Micro Lett. 2021, 13, 156. [Google Scholar] [CrossRef]
- Katrivesis, F.K.; Karela, A.D.; Papadakis, V.G.; Paraskeva, C.A. Revisiting of Coagulation-Flocculation Processes in the Production of Potable Water. J. Water Process Eng. 2019, 27, 193–204. [Google Scholar] [CrossRef]
- Sivaranjanee, R.; Kumar, P.S.; Mahalaxmi, S. A Review on Agro-Based Materials on the Separation of Environmental Pollutants from Water System. Chem. Eng. Res. Des. 2022, 181, 423–457. [Google Scholar] [CrossRef]
- Bhat, A.P.; Gogate, P.R. Degradation of Nitrogen-Containing Hazardous Compounds Using Advanced Oxidation Processes: A Review on Aliphatic and Aromatic Amines, Dyes, and Pesticides. J. Hazard. Mater. 2021, 403, 123657. [Google Scholar] [CrossRef]
- Vu, D.H.; Åkesson, D.; Taherzadeh, M.J.; Ferreira, J.A. Recycling Strategies for Polyhydroxyalkanoate-Based Waste Materials: An Overview. Bioresour. Technol. 2020, 298, 122393. [Google Scholar] [CrossRef]
- Mabalane, K.; Shooto, N.D.; Thabede, P.M. A Novel Permanganate and Peroxide Carbon-Based Avocado Seed Waste for the Adsorption of Manganese and Chromium Ions from Water. Case Stud. Chem. Environ. Eng. 2024, 10, 100782. [Google Scholar] [CrossRef]
- Regel-Rosocka, M.; Kruszelnicka, I.; Góra, W.; Baraniak, M.; Lota, G.; Ginter-Kramarczyk, D.; Staszak, K. Removal of Nickel(II) from Industrial Wastewater Using Selected Methods: A Review. Chem. Process Eng. 2022, 43, 437–448. [Google Scholar]
- Jafarinejad, S. 6-Treatment of Oily Wastewater. In Petroleum Waste Treatment and Pollution Control; Jafarinejad, S., Ed.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 185–267. ISBN 978-0-12-809243-9. [Google Scholar]
- Nunes, M.J.; Lopes, A.; Pacheco, M.J.; Ciríaco, L. Visible-Light-Driven AO7 Photocatalytic Degradation and Toxicity Removal at Bi-Doped SrTiO3. Materials 2022, 15, 2465. [Google Scholar] [CrossRef]
- Boyjoo, Y.; Sun, H.; Liu, J.; Pareek, V.K.; Wang, S. A Review on Photocatalysis for Air Treatment: From Catalyst Development to Reactor Design. Chem. Eng. J. 2017, 310, 537–559. [Google Scholar] [CrossRef]
- Kuspanov, Z.; Bakbolat, B.; Baimenov, A.; Issadykov, A.; Yeleuov, M.; Daulbayev, C. Photocatalysts for a Sustainable Future: Innovations in Large-Scale Environmental and Energy Applications. Sci. Total Environ. 2023, 885, 163914. [Google Scholar] [CrossRef] [PubMed]
- Keerthana, S.P.; Yuvakkumar, R.; Ravi, G.; Kungumadevi, L.; Ravi Sankar, V. Hydrothermal Synthesis of CeVO4/g-C3N4 Z-Scheme Photocatalyst for Removal of Dyes under Photocatalysis. Inorg. Chem. Commun. 2024, 168, 112928. [Google Scholar] [CrossRef]
- Tian, J.; Qian, F.; Zhang, Y.; Li, W.; Li, J.; Chen, S.; Wang, L. Z-Scheme Membrane CdZnS/TiO2 Heterojunction Photocatalyst for Efficient Photocatalytic Removal of Microcystis aeruginosa under Simulated Sunlight: Adjustable Suspended Depth and Flexible Assembly. J. Mater. Sci. Technol. 2025, 217, 70–79. [Google Scholar] [CrossRef]
- Nguyen Van, K.; Nguyen Thi, V.N.; Tran Thi, T.P.; Truong, T.T.; Lieu Le Thi, T.; Tran Huu, H.; Nguyen, V.T.; Vo, V. A Novel Preparation of GaN-ZnO/g-C3N4 Photocatalyst for Methylene Blue Degradation. Chem. Phys. Lett. 2021, 763, 138191. [Google Scholar] [CrossRef]
- Kuspanov, Z.; Serik, A.; Tattibay, A.; Baratov, A.; Abdikarimova, U.; Bissenova, M.; Yeleyov, M.; Sakhiyev, S.; Daulbayev, C. Investigating and Correlating the Photocatalytic Activity of Synthesised Strontium Titanate Nanopowder with Calcination Temperature. Environ. Technol. Innov. 2024, 36, 103852. [Google Scholar] [CrossRef]
- Wang, Q.; Nakabayashi, M.; Hisatomi, T.; Sun, S.; Akiyama, S.; Wang, Z.; Pan, Z.; Xiao, X.; Watanabe, T.; Yamada, T.; et al. Oxysulfide Photocatalyst for Visible-Light-Driven Overall Water Splitting. Nat. Mater. 2019, 18, 827–832. [Google Scholar] [CrossRef]
- Serik, A.; Kuspanov, Z.; Bissenova, M.; Idrissov, N.; Yeleuov, M.; Umirzakov, A.; Daulbayev, C. Effective Photocatalytic Degradation of Sulfamethoxazole Using Pan/SrTiO3 Nanofibers 2024. J. Water Process Eng. 2024, 66, 106052. [Google Scholar] [CrossRef]
- Li, H.; Xiao, J.; Vequizo, J.J.M.; Hisatomi, T.; Nakabayashi, M.; Pan, Z.; Shibata, N.; Yamakata, A.; Takata, T.; Domen, K. One-Step Excitation Overall Water Splitting over a Modified Mg-Doped BaTaO2N Photocatalyst. ACS Catal. 2022, 12, 10179–10185. [Google Scholar] [CrossRef]
- Bissenova, M.; Umirzakov, A.; Mit, K.; Mereke, A.; Yerubayev, Y.; Serik, A.; Kuspanov, Z. Synthesis and Study of SrTiO3/TiO2 Hybrid Perovskite Nanotubes by Electrochemical Anodization. Molecules 2024, 29, 1101. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Xiao, J.; Vequizo, J.J.M.; Hisatomi, T.; Ma, Y.; Nakabayashi, M.; Takata, T.; Yamakata, A.; Shibata, N.; Domen, K. Overall Water Splitting by a SrTaO2N-Based Photocatalyst Decorated with an Ir-Promoted Ru-Based Cocatalyst. J. Am. Chem. Soc. 2023, 145, 3839–3843. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-Based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef]
- Qin, Y.; Fang, F.; Xie, Z.; Lin, H.; Zhang, K.; Yu, X.; Chang, K. La,Al-Codoped SrTiO3 as a Photocatalyst in Overall Water Splitting: Significant Surface Engineering Effects on Defect Engineering. ACS Catal. 2021, 11, 11429–11439. [Google Scholar] [CrossRef]
- Fang, F.; Zhang, J.; Su, Z.; Xu, F.; Li, J.; Chang, K. Boost of Solar Water Splitting on SrTiO3 by Designing V-Ions Center for Localizing Defect Charge to Suppress Deep Trap. J. Catal. 2023, 425, 422–431. [Google Scholar] [CrossRef]
- Abdi, M.; Mahdikhah, V.; Sheibani, S. Visible Light Photocatalytic Performance of La-Fe Co-Doped SrTiO3 Perovskite Powder. Opt. Mater. 2020, 102, 109803. [Google Scholar] [CrossRef]
- Iriani, Y.; Sandi, D.K.; Hikmah, D.N.; Afriani, R.; Nurosyid, F.; Handoko, E.; Faquelle, D. Comparison Study of Aluminum (Al)-Doped Strontium Titanate (SrAlxTi1-xO3; x = 3% and 5%) Photocatalyst for Methylene Blue Degradation. Mater. Today Proc. 2024. [Google Scholar] [CrossRef]
- Abd Elkodous, M.; El-Khawaga, A.M.; Abouelela, M.M.; Abdel Maksoud, M.I.A. Cocatalyst Loaded Al-SrTiO3 Cubes for Congo Red Dye Photo-Degradation under Wide Range of Light. Sci. Rep. 2023, 13, 6331. [Google Scholar] [CrossRef]
- Kuspanov, Z.; Serik, A.; Matsko, N.; Bissenova, M.; Issadykov, A.; Yeleuov, M.; Daulbayev, C. Efficient Photocatalytic Degradation of Methylene Blue via Synergistic Dual Co-Catalyst on SrTiO3@Al under Visible Light: Experimental and DFT Study. J. Taiwan Inst. Chem. Eng. 2024, 165, 105806. [Google Scholar] [CrossRef]
- Bae, H.S.; Manikandan, V.; Hwang, J.H.; Seo, Y.-S.; Chung, H.-S.; Ryu, H.I.; Chae, W.-S.; Cho, M.; Ekambe, P.S.; Jang, J.S. Photocatalytic Degradation of Organic Pollutants and Inactivation of Pathogens under Visible Light via CoOx Surface-Modified Rh/Sb-Doped SrTiO3 Nanocube. J. Mater. Sci. 2021, 56, 17235–17253. [Google Scholar] [CrossRef]
- Anitha, B.G.; Devi, L.G. Study of Reaction Dynamics of Photocatalytic Degradation of 4-Chlorophenol Using SrTiO3, Sulfur Doped SrTiO3, Silver Metallized SrTiO3 and Silver Metallized Sulfur Doped SrTiO3 Catalysts: Detailed Analysis of Kinetic Results. Surf. Interfaces 2019, 16, 50–58. [Google Scholar] [CrossRef]
- Shen, Q.; Kang, W.; Ma, L.; Sun, Z.; Jin, B.; Li, H.; Miao, Y.; Jia, H.; Xue, J. Tuning the Anisotropic Facet of SrTiO3 to Promote Spatial Charge Separation for Enhancing Photocatalytic CO2 Reduction Properties. Chem. Eng. J. 2023, 478, 147338. [Google Scholar] [CrossRef]
- Wang, S.; Teramura, K.; Hisatomi, T.; Domen, K.; Asakura, H.; Hosokawa, S.; Tanaka, T. Effective Driving of Ag-Loaded and Al-Doped SrTiO3 under Irradiation at λ > 300 Nm for the Photocatalytic Conversion of CO2 by H2O. ACS Appl. Energy Mater. 2020, 3, 1468–1475. [Google Scholar] [CrossRef]
- Faisal, M.; Harraz, F.A.; Ismail, A.A.; El-Toni, A.M.; Al-Sayari, S.A.; Al-Hajry, A.; Al-Assiri, M.S. Polythiophene/Mesoporous SrTiO3 Nanocomposites with Enhanced Photocatalytic Activity under Visible Light. Sep. Purif. Technol. 2018, 190, 33–44. [Google Scholar] [CrossRef]
- Konstas, P.-S.; Konstantinou, I.; Petrakis, D.; Albanis, T. Development of SrTiO3 Photocatalysts with Visible Light Response Using Amino Acids as Dopant Sources for the Degradation of Organic Pollutants in Aqueous Systems. Catalysts 2018, 8, 528. [Google Scholar] [CrossRef]
- Kiran, K.S.; Shashanka, R.; Lokesh, S.V. Enhanced Photocatalytic Activity of Hydrothermally Synthesized Perovskite Strontium Titanate Nanocubes. Top. Catal. 2022. [Google Scholar] [CrossRef]
- Zhao, Z.; Goncalves, R.V.; Barman, S.K.; Willard, E.J.; Byle, E.; Perry, R.; Wu, Z.; Huda, M.N.; Moulé, A.J.; Osterloh, F.E. Electronic Structure Basis for Enhanced Overall Water Splitting Photocatalysis with Aluminum Doped SrTiO3 in Natural Sunlight. Energy Environ. Sci. 2019, 12, 1385–1395. [Google Scholar] [CrossRef]
- Li, R.; Takata, T.; Zhang, B.; Feng, C.; Wu, Q.; Cui, C.; Zhang, Z.; Domen, K.; Li, Y. Criteria for Efficient Photocatalytic Water Splitting Revealed by Studying Carrier Dynamics in a Model Al-Doped SrTiO3 Photocatalyst. Angew. Chem. Int. Ed. 2023, 62, e202313537. [Google Scholar] [CrossRef]
- Suwannaruang, T.; Kidkhunthod, P.; Butburee, T.; Shivaraju, H.P.; Shahmoradi, B.; Wantala, K. Facile Synthesis of Cooperative Mesoporous-Assembled CexSr1-xFexTi1-xO3 Perovskite Catalysts for Enhancement Beta-Lactam Antibiotic Photodegradation under Visible Light Irradiation. Surf. Interfaces 2021, 23, 101013. [Google Scholar] [CrossRef]
- Baek, J.-Y.; Duy, L.T.; Lee, S.Y.; Seo, H. Aluminum Doping for Optimization of Ultrathin and High-k Dielectric Layer Based on SrTiO3. J. Mater. Sci. Technol. 2020, 42, 28–37. [Google Scholar] [CrossRef]
- Bakbolat, B.; Daulbayev, C.; Sultanov, F.; Beissenov, R.; Umirzakov, A.; Mereke, A.; Bekbaev, A.; Chuprakov, I. Recent Developments of TiO2-Based Photocatalysis in the Hydrogen Evolution and Photodegradation: A Review. Nanomaterials 2020, 10, 1790. [Google Scholar] [CrossRef]
- Asgari, S.; Mohammadi Ziarani, G.; Badiei, A.; Vasseghian, Y. A Ternary Composite Nanofibrous Photocatalyst: FcLR-gC3N4/Polyisothianaphthene/Polyacrylonitrile for Degradation of Organic Dyes. J. Taiwan Inst. Chem. Eng. 2024, 163, 105672. [Google Scholar] [CrossRef]
- Sohrabian, M.; Mahdikhah, V.; Alimohammadi, E.; Sheibani, S. Improved Photocatalytic Performance of SrTiO3 through a Z-Scheme Polymeric-Perovskite Heterojunction with g-C3N4 and Plasmonic Resonance of Ag Mediator. Appl. Surf. Sci. 2023, 618, 156682. [Google Scholar] [CrossRef]
- Wang, B.; Li, P.; Du, C.; Wang, Y.; Gao, D.; Li, S.; Zhang, L.; Wen, F. Synergetic Effect of Dual Co-Catalysts on the Activity of BiVO4 for Photocatalytic Carbamazepine Degradation. RSC Adv. 2019, 9, 41977–41983. [Google Scholar] [CrossRef]
- Wang, Y.R.; Tao, H.L.; Cui, Y.; Liu, S.M.; He, M.; Song, B.; Jian, J.K.; Zhang, Z.H. Investigations on Tuning the Band Gaps of Al Doped SrTiO3. Chem. Phys. Lett. 2020, 757, 137879. [Google Scholar] [CrossRef]
- Fang, F.; Xu, F.; Su, Z.; Li, X.; Han, W.; Qin, Y.; Ye, J.; Chang, K. Understanding Targeted Modulation Mechanism in SrTiO3 Using K+ for Solar Water Splitting. Appl. Catal. B Environ. 2022, 316, 121613. [Google Scholar] [CrossRef]
- Kuspanov, Z.; Serik, A.; Baratov, A.; Abdikarimova, U.; Idrissov, N.; Bissenova, M.; Daulbayev, C. Efficient Photocatalytic Hydrogen Evolution via Cocatalyst Loaded Al-Doped SrTiO3. Eurasian Chem. Technol. J. 2024, 26, 133–140. [Google Scholar] [CrossRef]
- Amor, L.B.; Belgacem, B.; Filhol, J.-S.; Doublet, M.-L.; Yahia, M.B.; Hassen, R.B. New P-Type Al-Substituted SrSnO3 Perovskites for TCO Applications? Chem. Commun. 2020, 56, 2566–2569. [Google Scholar] [CrossRef]
- Toyoda, T.; Yabe, M. The Temperature Dependence of the Refractive Indices of Fused Silica and Crystal Quartz. J. Phys. D Appl. Phys. 1983, 16, L97. [Google Scholar] [CrossRef]
- Higuchi, T.; Tsukamoto, T.; Yamaguchi, S.; Kobayashi, K.; Sata, N.; Ishigame, M.; Shin, S. Observation of Acceptor Level of P-Type SrTiO3 by High-Resolution Soft-X-Ray Absorption Spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003, 199, 255–259. [Google Scholar] [CrossRef]
- Guo, H.; Liu, L.; Fei, Y.; Xiang, W.; Lü, H.; Dai, S.; Zhou, Y.; Chen, Z. Optical Properties of P-Type In-Doped SrTiO3 Thin Films. J. Appl. Phys. 2003, 94, 4558–4562. [Google Scholar] [CrossRef]
- Kudaibergen, A.D.; Kuspanov, Z.B.; Issadykov, A.N.; Beisenov, R.E.; Mansurov, Z.A.; Yeleuov, M.A.; Daulbayev, C.B. Synthesis, Structure, and Energetic Characteristics of Perovskite Photocatalyst SrTiO3: An Experimental and DFT Study. Eurasian Chem. Technol. J. 2023, 25, 139–146. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. Quantum Espresso: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Phys. Rev. B 1998, 57, 1505–1509. [Google Scholar] [CrossRef]
- Ghosez, P.; Gonze, X.; Lambin, P.; Michenaud, J.-P. Born Effective Charges of Barium Titanate: Band-by-Band Decomposition and Sensitivity to Structural Features. Phys. Rev. B 1995, 51, 6765–6768. [Google Scholar] [CrossRef]
- Shah, S.H.; Bristowe, P.D.; Kolpak, A.M.; Rappe, A.M. First Principles Study of Three-Component SrTiO3/BaTiO3/PbTiO3 Ferroelectric Superlattices. J. Mater. Sci. 2008, 43, 3750–3760. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdikarimova, U.; Bissenova, M.; Matsko, N.; Issadykov, A.; Khromushin, I.; Aksenova, T.; Munasbayeva, K.; Slyamzhanov, E.; Serik, A. Visible Light-Driven Photocatalysis of Al-Doped SrTiO3: Experimental and DFT Study. Molecules 2024, 29, 5326. https://doi.org/10.3390/molecules29225326
Abdikarimova U, Bissenova M, Matsko N, Issadykov A, Khromushin I, Aksenova T, Munasbayeva K, Slyamzhanov E, Serik A. Visible Light-Driven Photocatalysis of Al-Doped SrTiO3: Experimental and DFT Study. Molecules. 2024; 29(22):5326. https://doi.org/10.3390/molecules29225326
Chicago/Turabian StyleAbdikarimova, Ulzhan, Madina Bissenova, Nikita Matsko, Aidos Issadykov, Igor Khromushin, Tatyana Aksenova, Karlygash Munasbayeva, Erasyl Slyamzhanov, and Aigerim Serik. 2024. "Visible Light-Driven Photocatalysis of Al-Doped SrTiO3: Experimental and DFT Study" Molecules 29, no. 22: 5326. https://doi.org/10.3390/molecules29225326
APA StyleAbdikarimova, U., Bissenova, M., Matsko, N., Issadykov, A., Khromushin, I., Aksenova, T., Munasbayeva, K., Slyamzhanov, E., & Serik, A. (2024). Visible Light-Driven Photocatalysis of Al-Doped SrTiO3: Experimental and DFT Study. Molecules, 29(22), 5326. https://doi.org/10.3390/molecules29225326