Hydrothermally Synthesized ZnCr- and NiCr-Layered Double Hydroxides as Hydrogen Evolution Photocatalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of ZnCr- and NiCr-LDHs
2.2. Photocatalytic Activity of ZnCr- and NiCr-LDHs
3. Materials and Methods
3.1. Hydrothermal Synthesis of LDHs with Various Crystallite sizes
3.2. Determination of Quantitative Composition of LDHs
3.3. Determination of Bandgap Energy and Band Edge Potentials
3.4. Determination of Average Photoluminescence Lifetimes
3.5. Investigation of Photocatalytic Activity
3.6. Instrumentation
3.6.1. XRD
3.6.2. Raman Spectroscopy
3.6.3. SEM-EDX
3.6.4. ICP-AES
3.6.5. CHN Analysis
3.6.6. TG
3.6.7. DRS
3.6.8. VB-XPS
3.6.9. TR-PLS
3.6.10. BET
3.6.11. pH-Metry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodarzi, N.; Ashrafi-Peyman, Z.; Khani, E.; Moshfegh, A.Z. Recent Progress on Semiconductor Heterogeneous Photocatalysts in Clean Energy Production and Environmental Remediation. Catalysts 2023, 13, 1102. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Rozhkova, E.; Ariga, K. From Molecules to Materials: Pathways to Artificial Photosynthesis; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Ismail, A.A.; Bahnemann, D.W. Photochemical Splitting of Water for Hydrogen Production by Photocatalysis: A Review. Sol. Energy Mater. Sol. Cells 2014, 128, 85–101. [Google Scholar] [CrossRef]
- Ahmad, H.; Kamarudin, S.K.; Minggu, L.J.; Kassim, M. Hydrogen from Photo-Catalytic Water Splitting Process: A Review. Renew. Sustain. Energy Rev. 2015, 43, 599–610. [Google Scholar] [CrossRef]
- Takanabe, K. Photocatalytic Water Splitting: Quantitative Approaches toward Photocatalyst by Design. ACS Catal. 2017, 7, 8006–8022. [Google Scholar] [CrossRef]
- Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.; Lewis, N.S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446–6473. [Google Scholar] [CrossRef] [PubMed]
- Kausar, F.; Varghese, A.; Pinheiro, D.; Devi, K.R.S. Recent Trends in Photocatalytic Water Splitting Using Titania Based Ternary Photocatalysts—A Review. Int. J. Hydrogen Energy 2022, 47, 22371–22402. [Google Scholar] [CrossRef]
- Zhao, H.; Mao, Q.; Jian, L.; Dong, Y.; Zhu, Y. Photodeposition of Earth-Abundant Cocatalysts in Photocatalytic Water Splitting: Methods, Functions, and Mechanisms. Chin. J. Catal. 2022, 43, 1774–1804. [Google Scholar] [CrossRef]
- Moridon, S.N.F.; Arifin, K.; Yunus, R.M.; Minggu, L.J.; Kassim, M.B. Photocatalytic Water Splitting Performance of TiO2 Sensitized by Metal Chalcogenides: A Review. Ceram. Int. 2022, 48, 5892–5907. [Google Scholar] [CrossRef]
- Li, R.; Li, C. Scalable Solar Water Splitting Using Particulate Photocatalysts. Curr. Opin. Green Sustain. Chem. 2022, 33, 100577. [Google Scholar] [CrossRef]
- O’Neill, J.S.; Kearney, L.; Brandon, M.P.; Pryce, M.T. Design Components of Porphyrin-Based Photocatalytic Hydrogen Evolution Systems: A Review. Coord. Chem. Rev. 2022, 467, 214599. [Google Scholar] [CrossRef]
- Bellardita, M.; García-López, E.I.; Marcì, G.; Palmisano, L. Photocatalytic Formation of H2 and Value-Added Chemicals in Aqueous Glucose (Pt)-TiO2 Suspension. Int. J. Hydrogen Energy 2016, 41, 5934–5947. [Google Scholar] [CrossRef]
- Zhou, M.; Li, Y.; Peng, S.; Lu, G.; Li, S. Effect of Epimerization of D-Glucose on Photocatalytic Hydrogen Generation over Pt/TiO2. Catal. Commun. 2012, 18, 21–25. [Google Scholar] [CrossRef]
- Bahadori, E.; Ramis, G.; Zanardo, D.; Menegazzo, F.; Signoretto, M.; Gazzoli, D.; Pietrogiacomi, D.; Michele, A. Di Photoreforming of Glucose over CuO/TiO2. Catalysts 2020, 10, 477. [Google Scholar] [CrossRef]
- Bellardita, M.; García-López, E.I.; Marcì, G.; Nasillo, G.; Palmisano, L. Photocatalytic Solar Light H2 Production by Aqueous Glucose Reforming. Eur. J. Inorg. Chem. 2018, 2018, 4522–4532. [Google Scholar] [CrossRef]
- Iervolino, G.; Vaiano, V.; Murcia, J.J.; Rizzo, L.; Ventre, G.; Pepe, G.; Campiglia, P.; Hidalgo, M.C.; Navío, J.A.; Sannino, D. Photocatalytic Hydrogen Production from Degradation of Glucose over Fluorinated and Platinized TiO2 Catalysts. J. Catal. 2016, 339, 47–56. [Google Scholar] [CrossRef]
- Jiang, Z.; Ye, Z.; Shangguan, W. Recent Advances of Hydrogen Production through Particulate Semiconductor Photocatalytic Overall Water Splitting. Front. Energy 2022, 16, 49–63. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, X.; Meng, X. Recent Advances on Electrocatalytic and Photocatalytic Seawater Splitting for Hydrogen Evolution. Int. J. Hydrogen Energy 2021, 46, 9087–9100. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Q. Redox-Mediated Electrocatalytic and Photocatalytic Hydrogen Production. Curr. Opin. Electrochem. 2022, 35, 101097. [Google Scholar] [CrossRef]
- Sahani, S.; Malika Tripathi, K.; Il Lee, T.; Dubal, D.P.; Wong, C.P.; Chandra Sharma, Y.; Young Kim, T. Recent Advances in Photocatalytic Carbon-Based Materials for Enhanced Water Splitting under Visible-Light Irradiation. Energy Convers. Manag. 2022, 252, 115133. [Google Scholar] [CrossRef]
- Chen, J.; Abazari, R.; Adegoke, K.A.; Maxakato, N.W.; Bello, O.S.; Tahir, M.; Tasleem, S.; Sanati, S.; Kirillov, A.M.; Zhou, Y. Metal–Organic Frameworks and Derived Materials as Photocatalysts for Water Splitting and Carbon Dioxide Reduction. Coord. Chem. Rev. 2022, 469, 214664. [Google Scholar] [CrossRef]
- Jaryal, R.; Kumar, R.; Khullar, S. Mixed Metal-Metal Organic Frameworks (MM-MOFs) and Their Use as Efficient Photocatalysts for Hydrogen Evolution from Water Splitting Reactions. Coord. Chem. Rev. 2022, 464, 214542. [Google Scholar] [CrossRef]
- Pattanayak, P.; Singh, P.; Bansal, N.K.; Paul, M.; Dixit, H.; Porwal, S.; Mishra, S.; Singh, T. Recent Progress in Perovskite Transition Metal Oxide-Based Photocatalyst and Photoelectrode Materials for Solar-Driven Water Splitting. J. Environ. Chem. Eng. 2022, 10, 108429. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, B.; He, H.; Yang, S.; Duan, X.; Wang, S. Bismuth-Based Complex Oxides for Photocatalytic Applications in Environmental Remediation and Water Splitting: A Review. Sci. Total Environ. 2022, 804, 150215. [Google Scholar] [CrossRef] [PubMed]
- Subramanyam, P.; Meena, B.; Biju, V.; Misawa, H.; Challapalli, S. Emerging Materials for Plasmon-Assisted Photoelectrochemical Water Splitting. J. Photochem. Photobiol. C Photochem. Rev. 2022, 51, 100472. [Google Scholar] [CrossRef]
- Bie, C.; Wang, L.; Yu, J. Challenges for Photocatalytic Overall Water Splitting. Chem 2022, 8, 1567–1574. [Google Scholar] [CrossRef]
- Gupta, A.; Likozar, B.; Jana, R.; Chanu, W.C.; Singh, M.K. A Review of Hydrogen Production Processes by Photocatalytic Water Splitting—From Atomistic Catalysis Design to Optimal Reactor Engineering. Int. J. Hydrogen Energy 2022, 47, 33282–33307. [Google Scholar] [CrossRef]
- Hota, P.; Das, A.; Maiti, D.K. A Short Review on Generation of Green Fuel Hydrogen through Water Splitting. Int. J. Hydrogen Energy 2022, 48, 523–541. [Google Scholar] [CrossRef]
- Christoforidis, K.C.; Fornasiero, P. Photocatalytic Hydrogen Production: A Rift into the Future Energy Supply. ChemCatChem 2017, 9, 1523–1544. [Google Scholar] [CrossRef]
- Puga, A.V. Photocatalytic Production of Hydrogen from Biomass-Derived Feedstocks. Coord. Chem. Rev. 2016, 315, 1–66. [Google Scholar] [CrossRef]
- Liu, R.; Yoshida, H.; Fujita, S.-I.; Arai, M. Photocatalytic Hydrogen Production from Glycerol and Water with NiOx/TiO2 Catalysts. Appl. Catal. B Environ. 2014, 144, 41–45. [Google Scholar] [CrossRef]
- Taboada, E.; Angurell, I.; Llorca, J. Hydrogen Photoproduction from Bio-Derived Alcohols in an Optical Fiber Honeycomb Reactor Loaded with Au/TiO2. J. Photochem. Photobiol. A Chem. 2014, 281, 35–39. [Google Scholar] [CrossRef]
- Al-Azri, Z.H.N.; Chen, W.T.; Chan, A.; Jovic, V.; Ina, T.; Idriss, H.; Waterhouse, G.I.N. The Roles of Metal Co-Catalysts and Reaction Media in Photocatalytic Hydrogen Production: Performance Evaluation of M/TiO2 Photocatalysts (M = Pd, Pt, Au) in Different Alcohol-Water Mixtures. J. Catal. 2015, 329, 355–367. [Google Scholar] [CrossRef]
- Dosado, A.G.; Chen, W.T.; Chan, A.; Sun-Waterhouse, D.; Waterhouse, G.I.N. Novel Au/TiO2 Photocatalysts for Hydrogen Production in Alcohol-Water Mixtures Based on Hydrogen Titanate Nanotube Precursors. J. Catal. 2015, 330, 238–254. [Google Scholar] [CrossRef]
- Wang, X.; Dong, H.; Hu, Z.; Qi, Z.; Li, L. Fabrication of a Cu2O/Au/TiO2 Composite Film for Efficient Photocatalytic Hydrogen Production from Aqueous Solution of Methanol and Glucose. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2017, 219, 10–19. [Google Scholar] [CrossRef]
- Li, C.; Wang, H.; Ming, J.; Liu, M.; Fang, P. Hydrogen Generation by Photocatalytic Reforming of Glucose with Heterostructured CdS/MoS2 Composites under Visible Light Irradiation. Int. J. Hydrogen Energy 2017, 42, 16968–16978. [Google Scholar] [CrossRef]
- Jaswal, R.; Shende, R.; Nan, W.; Shende, A. Photocatalytic Reforming of Pinewood (Pinus Ponderosa) Acid Hydrolysate for Hydrogen Generation. Int. J. Hydrogen Energy 2017, 42, 2839–2848. [Google Scholar] [CrossRef]
- Wan, S.; Xu, J.; Cao, S.; Yu, J. Promoting Intramolecular Charge Transfer of Graphitic Carbon Nitride by Donor–Acceptor Modulation for Visible-light Photocatalytic H2 Evolution. Interdiscip. Mater. 2022, 1, 294–308. [Google Scholar] [CrossRef]
- Ding, Y.; Maitra, S.; Wang, C.; Halder, S.; Zheng, R.; Barakat, T.; Roy, S.; Chen, L.-H.; Su, B.-L. Vacancy Defect Engineering in Semiconductors for Solar Light-driven Environmental Remediation and Sustainable Energy Production. Interdiscip. Mater. 2022, 1, 213–255. [Google Scholar] [CrossRef]
- Huang, B.; Fu, X.; Wang, K.; Wang, L.; Zhang, H.; Liu, Z.; Liu, B.; Li, J. Chemically Bonded BiVO4/Bi19Cl3S27 Heterojunction with Fast Hole Extraction Dynamics for Continuous CO2 Photoreduction. Adv. Powder Mater. 2024, 3, 100140. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Y.; Huang, H. Layered Photocatalytic Nanomaterials for Environmental Applications. Chinese Chem. Lett. 2023, 34, 107523. [Google Scholar] [CrossRef]
- Schaak, R.E.; Mallouk, T.E. Perovskites by Design: A Toolbox of Solid-State Reactions. Chem. Mater. 2002, 14, 1455–1471. [Google Scholar] [CrossRef]
- Uppuluri, R.; Sen Gupta, A.; Rosas, A.S.; Mallouk, T.E. Soft Chemistry of Ion-Exchangeable Layered Metal Oxides. Chem. Soc. Rev. 2018, 47, 2401–2430. [Google Scholar] [CrossRef]
- Rodionov, I.A.; Zvereva, I.A. Photocatalytic Activity of Layered Perovskite-like Oxides in Practically Valuable Chemical Reactions. Russ. Chem. Rev. 2016, 85, 248–279. [Google Scholar] [CrossRef]
- Maeda, K.; Mallouk, T.E. Two-Dimensional Metal Oxide Nanosheets as Building Blocks for Artificial Photosynthetic Assemblies. Bull. Chem. Soc. Jpn. 2018, 92, 38–54. [Google Scholar] [CrossRef]
- Chen, Q.; Yu, Y.; Li, J.; Nan, H.; Luo, S.; Jia, C.; Deng, P.; Zhong, S.; Tian, X. Recent Progress in Layered Double Hydroxide-Based Electrocatalyst for Hydrogen Evolution Reaction. ChemElectroChem 2022, 9, e202101387. [Google Scholar] [CrossRef]
- Jo, Y.K.; Lee, J.M.; Son, S.; Hwang, S.J. 2D Inorganic Nanosheet-Based Hybrid Photocatalysts: Design, Applications, and Perspectives. J. Photochem. Photobiol. C Photochem. Rev. 2019, 40, 150–190. [Google Scholar] [CrossRef]
- Zhao, G.; Zou, J.; Chen, X.; Yu, J.; Jiao, F. Layered Double Hydroxides Materials for Photo(Electro-) Catalytic Applications. Chem. Eng. J. 2020, 397, 125407. [Google Scholar] [CrossRef]
- Janani, F.Z.; Taoufik, N.; Khiar, H.; Boumya, W.; Elhalil, A.; Sadiq, M.; Puga, A.V.; Barka, N. Nanostructured Layered Double Hydroxides Based Photocatalysts: Insight on Synthesis Methods, Application in Water Decontamination/Splitting and Antibacterial Activity. Surf. Interfaces 2021, 25, 101263. [Google Scholar] [CrossRef]
- Song, B.; Zeng, Z.; Zeng, G.; Gong, J.; Xiao, R.; Ye, S.; Chen, M.; Lai, C.; Xu, P.; Tang, X. Powerful Combination of G-C3N4 and LDHs for Enhanced Photocatalytic Performance: A Review of Strategy, Synthesis, and Applications. Adv. Colloid Interface Sci. 2019, 272, 101999. [Google Scholar] [CrossRef]
- Sherryna, A.; Tahir, M. Recent Developments in Layered Double Hydroxide Structures with Their Role in Promoting Photocatalytic Hydrogen Production: A Comprehensive Review. Int. J. Energy Res. 2022, 46, 2093–2140. [Google Scholar] [CrossRef]
- Yapryntsev, A.D.; Baranchikov, A.E.; Ivanov, V.K. Layered Rare-Earth Hydroxides: A New Family of Anion-Exchangeable Layered Inorganic Materials. Russ. Chem. Rev. 2020, 89, 629–666. [Google Scholar] [CrossRef]
- Ng, S.F.; Lau, M.Y.L.; Ong, W.J. Engineering Layered Double Hydroxide–Based Photocatalysts Toward Artificial Photosynthesis: State-of-the-Art Progress and Prospects. Sol. RRL 2021, 5, 2000535. [Google Scholar] [CrossRef]
- Boumeriame, H.; Da Silva, E.S.; Cherevan, A.S.; Chafik, T.; Faria, J.L.; Eder, D. Layered Double Hydroxide (LDH)-Based Materials: A Mini-Review on Strategies to Improve the Performance for Photocatalytic Water Splitting. J. Energy Chem. 2021, 64, 406–431. [Google Scholar] [CrossRef]
- Yang, Z.-Z.; Zhang, C.; Zeng, G.-M.; Tan, X.-F.; Huang, D.L.; Zhou, J.-W.; Fang, Q.-Z.; Yang, K.-H.; Wang, H.; Wei, J.; et al. State-of-the-Art Progress in the Rational Design of Layered Double Hydroxide Based Photocatalysts for Photocatalytic and Photoelectrochemical H2/O2 Production. Coord. Chem. Rev. 2021, 446, 214103. [Google Scholar] [CrossRef]
- Baliarsingh, N.; Mohapatra, L.; Parida, K. Design and Development of a Visible Light Harvesting Ni-Zn/Cr-CO32− LDH System for Hydrogen Evolution. J. Mater. Chem. A 2013, 1, 4236–4243. [Google Scholar] [CrossRef]
- Parida, K.; Mohapatra, L. Recent Progress in the Development of Carbonate-Intercalated Zn/Cr LDH as a Novel Photocatalyst for Hydrogen Evolution Aimed at the Utilization of Solar Light. Dalt. Trans. 2012, 41, 1173–1178. [Google Scholar] [CrossRef]
- Zhang, G.; Lin, B.; Qiu, Y.; He, L.; Chen, Y.; Gao, B. Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Generation by Immobilizing CdSe Nanocrystals on ZnCr-Layered Double Hydroxide Nanosheets. Int. J. Hydrogen Energy 2015, 40, 4758–4765. [Google Scholar] [CrossRef]
- Sohail, M.; Kim, H.; Kim, T.W. Enhanced Photocatalytic Performance of a Ti-Based Metal-Organic Framework for Hydrogen Production: Hybridization with ZnCr-LDH Nanosheets. Sci. Rep. 2019, 9, 7584. [Google Scholar] [CrossRef]
- Zheng, B.; Mao, L.; Shi, J.; Chen, Q.; Hu, Y.; Zhang, G.; Yao, J.; Lu, Y. Facile Layer-by-Layer Self-Assembly of 2D Perovskite Niobate and Layered Double Hydroxide Nanosheets for Enhanced Photocatalytic Oxygen Generation. Int. J. Hydrogen Energy 2021, 46, 34276–34286. [Google Scholar] [CrossRef]
- Fu, Y.; Ning, F.; Xu, S.; An, H.; Shao, M.; Wei, M. Terbium Doped ZnCr-Layered Double Hydroxides with Largely Enhanced Visible Light Photocatalytic Performance. J. Mater. Chem. A 2016, 4, 3907–3913. [Google Scholar] [CrossRef]
- Silva, C.G.; Bouizi, Y.; Fornés, V.; García, H. Layered Double Hydroxides as Highly Efficient Photocatalysts for Visible Light Oxygen Generation from Water. J. Am. Chem. Soc. 2009, 131, 13833–13839. [Google Scholar] [CrossRef]
- Chen, D.; Li, Y.; Zhang, J.; Zhou, J.Z.; Guo, Y.; Liu, H. Magnetic Fe3O4/ZnCr-Layered Double Hydroxide Composite with Enhanced Adsorption and Photocatalytic Activity. Chem. Eng. J. 2012, 185–186, 120–126. [Google Scholar] [CrossRef]
- Thao, N.T.; Nga, H.T.P.; Vo, N.Q.; Nguyen, H.D.K. Advanced Oxidation of Rhodamine B with Hydrogen Peroxide over Zn–Cr Layered Double Hydroxide Catalysts. J. Sci. Adv. Mater. Devices 2017, 2, 317–325. [Google Scholar] [CrossRef]
- Zhu, J.; Fan, H.; Sun, J.; Ai, S. Anion-Exchange Precipitation Synthesis of α-Ag2WO4/Zn-Cr Layered Double Hydroxides Composite with Enhanced Visible-Light-Driven Photocatalytic Activity. Sep. Purif. Technol. 2013, 120, 134–140. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, Z.; Sun, F.; Chen, Y.; Shi, C.; Zhang, Z.; Qian, G.; Ruan, X. Intercalated-Laurate-Enhanced Photocatalytic Activities of Ni/Cr-Layered Double Hydroxides. Catalysts 2023, 13, 698. [Google Scholar] [CrossRef]
- Xia, S.; Qian, M.; Zhou, X.; Meng, Y.; Xue, J.; Ni, Z. Theoretical and Experimental Investigation into the Photocatalytic Degradation of Hexachlorobenzene by ZnCr Layered Double Hydroxides with Different Anions. Mol. Catal. 2017, 435, 118–127. [Google Scholar] [CrossRef]
- Feng, X.; Li, X.; Luo, H.; Su, B.; Ma, J. Facile Synthesis of Ni-Based Layered Double Hydroxides with Superior Photocatalytic Performance for Tetracycline Antibiotic Degradation. J. Solid State Chem. 2022, 307, 122827. [Google Scholar] [CrossRef]
- Feng, X.; Li, X.; Su, B. Photocatalytic Degradation Performance of Antibiotics by Peanut Shell Biochar Anchored NiCr-LDH Nanocomposites Fabricated by One-Pot Hydrothermal Protocol. Colloids Surf. A Physicochem. Eng. Asp. 2023, 666, 131337. [Google Scholar] [CrossRef]
- Xiadong, M.; Yanqi, X.; Tan, L.; Zhao, Y.; Song, Y.-F. Visible-Light-Induced Hydrogenation of C=C Bonds by Hydrazine over Ultrathin Layered Double Hydroxide Nanosheets. Ind. Eng. Chem. Res. 2020, 59, 14315–14322. [Google Scholar] [CrossRef]
- Xia, S.; Zhang, L.; Zhou, X.; Pan, G.; Ni, Z. The Photocatalytic Property for Water Splitting and the Structural Stability of CuMgM Layered Double Hydroxides (M=Al, Cr, Fe, Ce). Appl. Clay Sci. 2015, 114, 577–585. [Google Scholar] [CrossRef]
- Parida, K.; Satpathy, M.; Mohapatra, L. Incorporation of Fe3+ into Mg/Al Layered Double Hydroxide Framework: Effects on Textural Properties and Photocatalytic Activity for H2 Generation. J. Mater. Chem. 2012, 22, 7350–7357. [Google Scholar] [CrossRef]
- Nayak, S.; Pradhan, A.C.; Parida, K.M. Topotactic Transformation of Solvated MgCr-LDH Nanosheets to Highly Efficient Porous MgO/MgCr2O4 Nanocomposite for Photocatalytic H2 Evolution. Inorg. Chem. 2018, 57, 8646–8661. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, C.; Zhang, Y.; Guo, Z.; Luo, Y.; Mao, C.J. Engineering Ultrafine NiS Cocatalysts as Active Sites to Boost Photocatalytic Hydrogen Production of MgAl Layered Double Hydroxide. Appl. Surf. Sci. 2020, 506, 144999. [Google Scholar] [CrossRef]
- Wang, B.; Pan, J.; Jiang, Z.; Dong, Z.; Zhao, C.; Wang, J.; Song, C.; Zheng, Y.; Li, C. The Bimetallic Iron−nickel Sulfide Modified g-C3N4 Nano-Heterojunction and Its Photocatalytic Hydrogen Production Enhancement. J. Alloys Compd. 2018, 766, 421–428. [Google Scholar] [CrossRef]
- Nayak, S.; Swain, G.; Parida, K. Enhanced Photocatalytic Activities of RhB Degradation and H2 Evolution from in Situ Formation of the Electrostatic Heterostructure MoS2/NiFe LDH Nanocomposite through the Z-Scheme Mechanism via p-n Heterojunctions. ACS Appl. Mater. Interfaces 2019, 11, 20923–20942. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.; Mohapatra, L.; Parida, K. Visible Light-Driven Novel g-C3N4/NiFe-LDH Composite Photocatalyst with Enhanced Photocatalytic Activity towards Water Oxidation and Reduction Reaction. J. Mater. Chem. A 2015, 3, 18622–18635. [Google Scholar] [CrossRef]
- Chen, Z.; Deng, H.; Zhang, M.; Yang, Z.; Hu, D.; Wang, Y.; Yan, K. One-Step Facile Synthesis of Nickel-Chromium Layered Double Hydroxide Nanoflakes for High-Performance Supercapacitors. Nanoscale Adv. 2020, 2, 2099–2105. [Google Scholar] [CrossRef]
- Ye, W.; Fang, X.; Chen, X.; Yan, D. A Three-Dimensional Nickel-Chromium Layered Double Hydroxide Micro/Nanosheet Array as an Efficient and Stable Bifunctional Electrocatalyst for Overall Water Splitting. Nanoscale 2018, 10, 19484–19491. [Google Scholar] [CrossRef]
- Megala, S.; Sathish, M.; Harish, S.; Navaneethan, M.; Sohila, S.; Liang, B.; Ramesh, R. Enhancement of Photocatalytic H2 Evolution from Water Splitting by Construction of Two Dimensional g-C3N4/NiAl Layered Double Hydroxides. Appl. Surf. Sci. 2020, 509, 144656. [Google Scholar] [CrossRef]
- Fei, W.; Song, Y.; Li, N.; Chen, D.; Xu, Q.; Li, H.; He, J.; Lu, J. Fabrication of Visible-Light-Active ZnO/ZnFe-LDH Heterojunction on Ni Foam for Pollutants Removal with Enhanced Photoelectrocatalytic Performance. Sol. Energy 2019, 188, 593–602. [Google Scholar] [CrossRef]
- Okamoto, K.; Iyi, N.; Sasaki, T. Factors Affecting the Crystal Size of the MgAl-LDH (Layered Double Hydroxide) Prepared by Using Ammonia-Releasing Reagents. Appl. Clay Sci. 2007, 37, 23–31. [Google Scholar] [CrossRef]
- Jiang, H.; Katsumata, K.-I.; Hong, J.; Yamaguchi, A.; Nakata, K.; Terashima, C.; Matsushita, N.; Miyauchi, M.; Fujishima, A. Photocatalytic Reduction of CO2 on Cu2O-Loaded Zn-Cr Layered Double Hydroxides. Appl. Catal. B Environ. 2018, 224, 783–790. [Google Scholar] [CrossRef]
- Luo, B.; Song, R.; Jing, D. ZnCr LDH Nanosheets Modified Graphitic Carbon Nitride for Enhanced Photocatalytic Hydrogen Production. Int. J. Hydrogen Energy 2017, 42, 23427–23436. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, X.; Terashima, C.; Fujishima, A.; Nakata, K. Thermodynamic and Kinetic Analysis of Heterogeneous Photocatalysis for Semiconductor Systems. Phys. Chem. Chem. Phys. 2014, 16, 8751–8760. [Google Scholar] [CrossRef] [PubMed]
- Kloprogge, J.T.; Wharton, D.; Hickey, L.; Frost, R.L. Infrared and Raman Study of Interlayer Anions CO32−, NO3−, SO42− and ClO4− in Mg/Al-Hydrotalcite. Am. Mineral. 2002, 87, 623–629. [Google Scholar] [CrossRef]
- Al-Jaberi, M.; Naille, S.; Dossot, M.; Ruby, C. Interlayer Interaction in Ca-Fe Layered Double Hydroxides Intercalated with Nitrate and Chloride Species. J. Mol. Struct. 2015, 1102, 253–260. [Google Scholar] [CrossRef]
- Frost, R.L.; Erickson, K.L. Raman Spectroscopic Study of the Hydrotalcite Desautelsite Mg6Mn2CO3(OH)16·4H2O. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2005, 61, 2697–2701. [Google Scholar] [CrossRef] [PubMed]
- Frost, R.L.; Reddy, B.J. Thermo-Raman Spectroscopic Study of the Natural Layered Double Hydroxide Manasseite. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2006, 65, 553–559. [Google Scholar] [CrossRef]
- Frost, R.L.; Scholz, R.; López, A.; Theiss, F.L. Vibrational Spectroscopic Study of the Natural Layered Double Hydroxide Manasseite Now Defined as Hydrotalcite-2H − Mg6Al2(OH)16[CO3]×4H2O. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2014, 118, 187–191. [Google Scholar] [CrossRef]
- Kloprogge, J.T.; Hickey, L.; Frost, R.L. Heating Stage Raman and Infrared Emission Spectroscopic Study of the Dehydroxylation of Synthetic Mg-Hydrotalcite. Appl. Clay Sci. 2001, 18, 37–49. [Google Scholar] [CrossRef]
- Manríquez, M.E.; Hernández-Cortez, J.G.; Wang, J.A.; Chen, L.F.; Zuñiga-Moreno, A.; Gómez, R. Synthesis of Transition Metal Doped Lamellar Double Hydroxides as Base Catalysts for Acetone Aldol Condensation. Appl. Clay Sci. 2015, 118, 188–194. [Google Scholar] [CrossRef]
- Mora, M.; Jiménez-Sanchidrián, C.; Rafael Ruiz, J. Raman Spectroscopy Study of Layered-Double Hydroxides Containing Magnesium and Trivalent Metals. Mater. Lett. 2014, 120, 193–195. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, X.; Zhu, Y.; Zhang, F. Experimental and Theoretical Investigation into the Elimination of Organic Pollutants from Solution by Layered Double Hydroxides. Appl. Catal. B Environ. 2013, 140–141, 241–248. [Google Scholar] [CrossRef]
- Xu, S.M.; Yan, H.; Wei, M. Band Structure Engineering of Transition-Metal-Based Layered Double Hydroxides toward Photocatalytic Oxygen Evolution from Water: A Theoretical-Experimental Combination Study. J. Phys. Chem. C 2017, 121, 2683–2695. [Google Scholar] [CrossRef]
- Wang, C.; Ma, B.; Xu, S.; Li, D.; He, S.; Zhao, Y.; Han, J.; Wei, M.; Evans, D.G.; Duan, X. Visible-Light-Driven Overall Water Splitting with a Largely-Enhanced Efficiency over a Cu2O@ZnCr-Layered Double Hydroxide Photocatalyst. Nano Energy 2017, 32, 463–469. [Google Scholar] [CrossRef]
- Kurnosenko, S.A.; Voytovich, V.V.; Silyukov, O.I.; Rodionov, I.A.; Kirichenko, S.O.; Minich, I.A.; Malygina, E.N.; Khramova, A.D.; Zvereva, I.A. Photocatalytic Activity of n-Alkylamine and n-Alkoxy Derivatives of Layered Perovskite-like Titanates H2Ln2Ti3O10 (Ln = La, Nd) in the Reaction of Hydrogen Production from an Aqueous Solution of Methanol. Catalysts 2021, 11, 1279. [Google Scholar] [CrossRef]
- Dani Nandiyanto, A.B.; Kito, Y.; Hirano, T.; Ragadhita, R.; Le, P.H.; Ogi, T. Spherical Submicron YAG:Ce Particles with Controllable Particle Outer Diameters and Crystallite Sizes and Their Photoluminescence Properties. RSC Adv. 2021, 11, 30305–30314. [Google Scholar] [CrossRef] [PubMed]
- Jena, S.; Mishra, D.K.; Soam, A.; Jakhar, N.; Mallick, P. Control Growth of NiFe2O4 Phase in Thermal Annealed α-Fe2O3/NiFe2O4 Nanocomposites for the Beneficial Magnetic Application. Appl. Phys. A Mater. Sci. Process. 2021, 127, 1–18. [Google Scholar] [CrossRef]
- Li, Q.; Kartikowati, C.W.; Horie, S.; Ogi, T.; Iwaki, T.; Okuyama, K. Correlation between Particle Size/Domain Structure and Magnetic Properties of Highly Crystalline Fe3O4 Nanoparticles. Sci. Rep. 2017, 7, 9894. [Google Scholar] [CrossRef]
- Voytovich, V.V.; Kurnosenko, S.A.; Silyukov, O.I.; Rodionov, I.A.; Minich, I.A.; Zvereva, I.A. Study of n-Alkylamine Intercalated Layered Perovskite-like Niobates HCa2Nb3O10 as Photocatalysts for Hydrogen Production from an Aqueous Solution of Methanol. Front. Chem. 2020, 8, 300. [Google Scholar] [CrossRef]
- Voytovich, V.V.; Kurnosenko, S.A.; Silyukov, O.I.; Rodionov, I.A.; Bugrov, A.N.; Minich, I.A.; Malygina, E.N.; Zvereva, I.A. Synthesis of n-Alkoxy Derivatives of Layered Perovskite-like Niobate HCa2Nb3O10 and Study of Their Photocatalytic Activity for Hydrogen Production from an Aqueous Solution of Methanol. Catalysts 2021, 11, 897. [Google Scholar] [CrossRef]
- Kurnosenko, S.A.; Voytovich, V.V.; Silyukov, O.I.; Rodionov, I.A.; Zvereva, I.A. Photocatalytic Activity and Stability of Organically Modified Layered Perovskite-like Titanates HLnTiO4 (Ln = La, Nd) in the Reaction of Hydrogen Evolution from Aqueous Methanol. Catalysts 2023, 13, 749. [Google Scholar] [CrossRef]
- Rodionov, I.A.; Maksimova, E.A.; Pozhidaev, A.Y.; Kurnosenko, S.A.; Silyukov, O.I.; Zvereva, I.A. Layered Titanate H2Nd2Ti3O10 Intercalated with n-Butylamine: A New Highly Efficient Hybrid Photocatalyst for Hydrogen Production from Aqueous Solutions of Alcohols. Front. Chem. 2019, 7, 863. [Google Scholar] [CrossRef]
- Kurnosenko, S.A.; Voytovich, V.V.; Silyukov, O.I.; Rodionov, I.A.; Zvereva, I.A. Photocatalytic Hydrogen Production from Aqueous Solutions of Glucose and Xylose over Layered Perovskite-like Oxides HCa2Nb3O10, H2La2Ti3O10 and Their Inorganic-Organic Derivatives. Nanomaterials 2022, 12, 2717. [Google Scholar] [CrossRef] [PubMed]
- Rodionov, I.A.; Gruzdeva, E.O.; Mazur, A.S.; Kurnosenko, S.A.; Silyukov, O.I.; Zvereva, I.A. Photocatalytic Hydrogen Generation from Aqueous Methanol Solution over n-Butylamine-Intercalated Layered Titanate H2La2Ti3O10: Activity and Stability of the Hybrid Photocatalyst. Catalysts 2022, 12, 1556. [Google Scholar] [CrossRef]
- Kurnosenko, S.A.; Voytovich, V.V.; Silyukov, O.I.; Rodionov, I.A.; Malygina, E.N.; Zvereva, I.A. Influence of HB2Nb3O10-Based Nanosheet Photocatalysts (B = Ca, Sr) Preparation Method on Hydrogen Production Efficiency. Catalysts 2023, 13, 614. [Google Scholar] [CrossRef]
- Minich, I.A.; Kurnosenko, S.A.; Silyukov, O.I.; Rodionov, I.A.; Kalganov, V.D.; Zvereva, I.A. Hydrothermal Synthesis and Photocatalytic Activity of Layered Perovskite-Like Titanate K2La2Ti3O10 Ultrafine Nanoplatelets. Russ. J. Phys. Chem. A 2023, 97, 1232–1238. [Google Scholar] [CrossRef]
- Akgül, G.; Kruse, A. Hydrothermal Disproportionation of Formaldehyde at Subcritical Conditions. J. Supercrit. Fluids 2013, 73, 43–50. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.L.; Abdi, F.F.; Ng, Y.H. Heterogeneous Photocatalysts: An Overview of Classic and Modern Approaches for Optical, Electronic, and Charge Dynamics Evaluation. Chem. Soc. Rev. 2019, 48, 1255–1271. [Google Scholar] [CrossRef] [PubMed]
- Chambers, S.A.; Droubay, T.; Kaspar, T.C.; Gutowski, M. Experimental Determination of Valence Band Maxima for SrTiO3, TiO2, and SrO and the Associated Valence Band Offsets with Si(001). J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 2004, 22, 2205–2215. [Google Scholar] [CrossRef]
- Li, Y.; Natakorn, S.; Chen, Y.; Safar, M.; Cunningham, M.; Tian, J.; Li, D.D.U. Investigations on Average Fluorescence Lifetimes for Visualizing Multi-Exponential Decays. Front. Phys. 2020, 8, 576862. [Google Scholar] [CrossRef]
Experiment Series | Temperature, °C | Duration, d | HMT Excess | MII:MIII Ratio | Heating Rate, °C∙h−1 | Stirring Rate, rpm |
---|---|---|---|---|---|---|
Default conditions | 150 | 1 | 3-fold | 2:1 | 150 | − |
Variable temperature | 100 | 1 | 3-fold | 2:1 | 150 | − |
125 | ||||||
150 | ||||||
175 | ||||||
200 | ||||||
Variable duration | 150 | 0.25 | 3-fold | 2:1 | 150 | − |
1 | ||||||
3 | ||||||
7 | ||||||
Variable HMT excess | 150 | 1 | 2-fold | 2:1 | 150 | − |
3-fold | ||||||
4-fold | ||||||
Variable MII:MIII ratio | 150 | 1 | 3-fold | 2:1 | 150 | − |
3:1 | ||||||
4:1 | ||||||
Slow heating and stirring | 150 (ZnCr) | 1 | 3-fold | 2:1 | 25 | 1000 |
200 (NiCr) |
Sample Abbreviation | L, nm | Synthesis Conditions | MII:MIII Ratio | y | S, m2∙g−1 | |
---|---|---|---|---|---|---|
EDX | ICP-AES | |||||
ZnCr-LDH | ||||||
ZnCr-100 | 11.0 | 100 °C, 1 d | 2:1 | 2:1.01 | 1.1 | 58 |
ZnCr-125 | 14.8 | 125 °C, 1 d | − | − | − | − |
ZnCr-150-6h | 16.0 | 150 °C, 6 h | 2:1 | 2:1.03 | 1.5 | 70 |
ZnCr-DC | 17.6 | 150 °C, 1 d | − | − | − | − |
ZnCr-SHS | 18.0 | 150 °C, 1 d, slow heating, stirring | 2:1 | 2:1.05 | 2.0 | 83 |
NiCr-LDH | ||||||
NiCr-100 | 2.0 | 100 °C, 1 d | 2:1 | 2:0.97 | 2.1 | 47 |
NiCr-125 | 5.8 | 125 °C, 1 d | − | − | − | − |
NiCr-DC | 12.3 | 150 °C, 1 d | 2:1 | 2:0.98 | 2.3 | 76 |
NiCr-200 | 16.4 | 200 °C, 1 d | − | − | − | − |
NiCr-SHS | 25.7 | 200 °C, 1 d, slow heating, stirring | 2:1 | 2:0.96 | 1.9 | 45 |
Sample | Eg, eV | λmax, nm | EV, V | EC, V | τ, μs |
---|---|---|---|---|---|
ZnCr-SHS | 2.37 | 523 | 2.02 | −0.35 | 1.8 |
NiCr-SHS | 2.47 | 502 | 1.87 | −0.60 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurnosenko, S.A.; Silyukov, O.I.; Rodionov, I.A.; Baeva, A.S.; Burov, A.A.; Kulagina, A.V.; Novikov, S.S.; Zvereva, I.A. Hydrothermally Synthesized ZnCr- and NiCr-Layered Double Hydroxides as Hydrogen Evolution Photocatalysts. Molecules 2024, 29, 2108. https://doi.org/10.3390/molecules29092108
Kurnosenko SA, Silyukov OI, Rodionov IA, Baeva AS, Burov AA, Kulagina AV, Novikov SS, Zvereva IA. Hydrothermally Synthesized ZnCr- and NiCr-Layered Double Hydroxides as Hydrogen Evolution Photocatalysts. Molecules. 2024; 29(9):2108. https://doi.org/10.3390/molecules29092108
Chicago/Turabian StyleKurnosenko, Sergei A., Oleg I. Silyukov, Ivan A. Rodionov, Anna S. Baeva, Andrei A. Burov, Alina V. Kulagina, Silvestr S. Novikov, and Irina A. Zvereva. 2024. "Hydrothermally Synthesized ZnCr- and NiCr-Layered Double Hydroxides as Hydrogen Evolution Photocatalysts" Molecules 29, no. 9: 2108. https://doi.org/10.3390/molecules29092108
APA StyleKurnosenko, S. A., Silyukov, O. I., Rodionov, I. A., Baeva, A. S., Burov, A. A., Kulagina, A. V., Novikov, S. S., & Zvereva, I. A. (2024). Hydrothermally Synthesized ZnCr- and NiCr-Layered Double Hydroxides as Hydrogen Evolution Photocatalysts. Molecules, 29(9), 2108. https://doi.org/10.3390/molecules29092108