Influence of Three Modification Methods on the Structure, Physicochemical, and Functional Properties of Insoluble Dietary Fiber from Rosa roxburghii Tratt Pomace
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.2. Structural Analysis
2.2.1. Surface Morphology
2.2.2. FTIR Spectroscopy
2.3. WHO, OHC, and SC Analysis
2.4. Functional Analysis
2.4.1. Nitrite Ion Adsorption Capacity (NIAC)
2.4.2. Cholesterol Adsorption Capacity (CAC)
2.4.3. Bile Salt Adsorption Capacity (BSAC)
2.5. Total Phenolic Content (TPC)
2.6. Antioxidant Activities
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Extraction of Insoluble Dietary Fiber from RRTP
3.3. Modification of Insoluble Dietary Fiber
3.3.1. Ultrasonic Modification
3.3.2. Cellulase Modification
3.3.3. Ultrasonic-Assisted Cellulase Modification
3.4. Chemical Composition
3.5. Structural Characteristics
3.5.1. Scanning Electron Microscopy (SEM)
3.5.2. Fourier Transform Infrared Spectroscopy (FTIR)
3.6. Physicochemical Properties
3.6.1. Determination of Water-Holding Capacity (WHC)
3.6.2. Determination of Oil–Holding Capacity (OHC)
3.6.3. Determination of Swelling Capacity (SC)
3.7. Functional Properties
3.7.1. Determination of Nitrite Ion Adsorption Capacity (NIAC)
3.7.2. Determination of Cholesterol Adsorption Capacity (CAC)
3.7.3. Determination of Bile Salt Adsorption Capacity (BSAC)
3.8. Measurement of Total Phenolic Content (TPC)
3.9. Determination of Antioxidant Activity
3.10. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Chen, Q.; Su, J.; Zhang, Y.; Li, C.; Zhu, S. Phytochemical profile and bioactivity of bound polyphenols released from Rosa roxburghii fruit pomace dietary fiber by solid-state fermentation with Aspergillus niger. Molecules 2024, 29, 1689. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Li, C.; Chen, Q.; Xie, X.; Fu, X.; Chen, C.; Huang, Q.; Huang, Z.; Dong, H. Identification of polyphenols from Rosa roxburghii Tratt pomace and evaluation of in vitro and in vivo antioxidant activity. Food Chem. 2022, 377, 131922. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Fu, X.; Huang, Q.; Liu, G.; Li, C. Phytochemical profile, bioactivity and prebiotic potential of bound polyphenols released from Rosa roxburghii fruit pomace dietary fiber during in vitro digestion and fermentation. Food Funct. 2022, 13, 8880–8891. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Ao, H.; Liu, W.; Zheng, J.; Li, X.; Ren, D. Physicochemical and structural properties of dietary fiber from Rosa roxburghii pomace by steam explosion. J. Food Sci. Technol. 2021, 59, 2381–2391. [Google Scholar] [CrossRef] [PubMed]
- Post, R.E.; Mainous, A.G.; King, D.E.; Simpson, K.N. Dietary fiber for the treatment of Type 2 diabetes mellitus: A meta-analysis. J. Am. Board. Fam. Med. 2012, 25, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liang, J.; Liang, C.; Liang, G.; Lai, J.; Zhang, R.; Wang, Q.; Xiao, G. Physicochemical properties of dietary fiber of bergamot and its effect on diabetic mice. Front. Nutr. 2022, 9, 1040825. [Google Scholar] [CrossRef]
- Iqbal, S.; Tirpanalan-Staben, Ö.; Franke, K. Modification of dietary fibers to valorize the by-products of cereal, fruit and vegetable industry-a review on treatment methods. Plants 2022, 11, 3466. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.R.; Ding, X.N.; Zhao, Y.S.; Li, Y.X.; Ma, H.L. Modification of insoluble dietary fiber from garlic straw with ultrasonic treatment. J. Food Process. Preserv. 2018, 42, e13399. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Lei, Y.; Qi, S.R.; Fan, M.X.; Zheng, S.Y.; Huang, Q.B.; Lu, X. Ultrasonic-microwave-assisted extraction for enhancing antioxidant activity of polysaccharides: The difference mechanisms between single and combined assisted extraction. Ultrason. Sonochem. 2023, 95, 106356. [Google Scholar] [CrossRef]
- Kalla-Bertholdt, A.M.; Baier, A.K.; Rauh, C. Potential of modification of techno-functional properties and structural characteristics of citrus, apple, oat, and pea dietary fiber by high-intensity ultrasound. Foods 2023, 12, 3663. [Google Scholar] [CrossRef]
- Rajewska, K.; Mierzwa, D. Influence of ultrasound on the microstructure of plant tissue. Innov. Food Sci. Emerg. Technol. 2017, 43, 117–129. [Google Scholar] [CrossRef]
- Zhang, H.F.; Li, Y.; Cao, C.X.; Na, R.; Han, Y.M. Enzymatic modification of potato residue fiber improves cholesterol and sugar absorption. Am. J. Potato Res. 2023, 100, 305–313. [Google Scholar] [CrossRef]
- Zadeike, D.; Vaitkeviciene, R.; Degutyte, R.; Bendoraitiene, J.; Rukuiziene, Z.; Cernauskas, D.; Svazas, M.; Juodeikiene, G. A comparative study on the structural and functional properties of water-soluble and alkali-soluble dietary fibres from rice bran after hot-water, ultrasound, hydrolysis by cellulase, and combined pre-treatments. Int. J. Food Sci. Technol. 2021, 57, 1137–1149. [Google Scholar] [CrossRef]
- Bader Ul Ain, H.; Saeed, F.; Ahmed, A.; Asif Khan, M.; Niaz, B.; Tufail, T. Improving the physicochemical properties of partially enhanced soluble dietary fiber through innovative techniques: A coherent review. J. Food Process. Preserv. 2019, 43, e13917. [Google Scholar] [CrossRef]
- Kanwar, P.; Yadav, R.B.; Yadav, B.S. Cross-linking, carboxymethylation and hydroxypropylation treatment to sorghum dietary fiber: Effect on physicochemical, micro structural and thermal properties. Int. J. Biol. Macromol. 2023, 233, 123638. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Wang, J.D.; Cai, Z.H.; Huang, H.; Zhang, S.; Fu, L.N.; Zhao, P.Q.; Yan, X.Y.; Fu, Y.J. Improved physicochemical and functional properties of dietary fiber from Rosa roxburghii pomace fermented by Bacillus natto. Food Biosci. 2022, 50, 102030. [Google Scholar] [CrossRef]
- Wen, Y.; Niu, M.; Zhang, B.; Zhao, S.; Xiong, S. Structural characteristics and functional properties of rice bran dietary fiber modified by enzymatic and enzyme-micronization treatments. LWT 2017, 75, 344–351. [Google Scholar] [CrossRef]
- Li, Y.A.; Yu, Y.S.; Wu, J.J.; Xu, Y.J.; Xiao, G.S.; Li, L.; Liu, H.R. Comparison the structural, physicochemical, and prebiotic properties of litchi pomace dietary fibers before and after modification. Foods 2022, 11, 248. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wu, T.; Sheng, Y.; Li, L.; Wang, C. Effects of cavitation-jet technology combined with enzyme treatment on the structure properties and functional properties of OKARA insoluble dietary fiber. Food Chem. 2023, 423, 136286. [Google Scholar] [CrossRef]
- Li, S.; Hu, N.; Zhu, J.; Zheng, M.; Liu, H.; Liu, J. Influence of modification methods on physicochemical and structural properties of soluble dietary fiber from corn bran. Food Chem. X 2022, 14, 100298. [Google Scholar] [CrossRef]
- Nikonenko, N.A.; Buslov, D.K.; Sushko, N.I.; Zhbankov, R.G. Spectroscopic manifestation of stretching vibrations of glycosidic linkage in polysaccharides. J. Mol. Struct. 2005, 752, 20–24. [Google Scholar] [CrossRef]
- Xiao, Z.; Yang, X.; Zhao, W.; Wang, Z.; Ge, Q. Physicochemical properties of insoluble dietary fiber from pomelo (Citrus grandis) peel modified by ball milling. J. Food Process. Preserv. 2021, 46, e16242. [Google Scholar] [CrossRef]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Wang, S.K.; Xia, J.; De Paepe, K.; Zhang, B.; Fu, X.; Huang, Q.; Van de Wiele, T. Ultra-high pressure treatment controls fecal fermentation rate of insoluble dietary fiber from Rosa roxburghii Tratt pomace and induces butyrogenic shifts in microbiota composition. J. Agric. Food Chem. 2021, 69, 10638–10647. [Google Scholar] [CrossRef] [PubMed]
- Gan, J.P.; Huang, Z.Y.; Yu, Q.A.; Peng, G.A.; Chen, Y.; Xie, J.H.; Nie, S.P.; Xie, M.Y. Microwave assisted extraction with three modifications on structural and functional properties of soluble dietary fibers from grapefruit peel. Food Hydrocoll. 2020, 101, 105549. [Google Scholar] [CrossRef]
- Yang, F.; Yang, J.; Ruan, Z.; Wang, Z. Fermentation of dietary fibers modified by an enzymatic-ultrasonic treatment and evaluation of their impact on gut microbiota in mice. J. Food Process. Preserv. 2021, 45, e15337. [Google Scholar] [CrossRef]
- Zhang, F.F.; Yi, W.R.; Cao, J.; He, K.M.; Liu, Y.W.; Bai, X.P. Microstructure characteristics of tea seed dietary fibre and its effect on cholesterol, glucose and nitrite ion adsorption capacities: A comparison study among different modifications. Int. J. Food Sci. Technol. 2020, 55, 1781–1791. [Google Scholar] [CrossRef]
- Xie, F.Y.; Zhao, T.; Wan, H.C.; Li, M.; Sun, L.N.; Wang, Z.J.; Zhang, S. Structural and physicochemical characteristics of rice bran dietary fiber by cellulase and high-pressure homogenization. Appl. Sci. 2019, 9, 1270. [Google Scholar] [CrossRef]
- Sen, N.P.; Miles, W.F.; Donaldson, B.; Panalaks, T.; Iyengar, J.R. Formation of nitrosamines in a meat curing mixture. Nature 1973, 245, 104–105. [Google Scholar] [CrossRef]
- Qi, J.; Yokoyama, W.; Masamba, K.G.; Majeed, H.; Zhong, F.; Li, Y. Structural and physico-chemical properties of insoluble rice bran fiber: Effect of acid–base induced modifications. RSC Adv. 2015, 5, 79915–79923. [Google Scholar] [CrossRef]
- van Bennekum, A.M.; Nguyen, D.V.; Schulthess, G.; Hauser, H.; Phillips, M.C. Mechanisms of cholesterol-lowering effects of dietary insoluble fibres: Relationships with intestinal and hepatic cholesterol parameters. Br. J. Nutr. 2007, 94, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Duca, F.A.; Lam, T.K.T. Bye, bye, bile: How altered bile acid composition changes small intestinal lipid sensing. Gut 2020, 69, 1549–1550. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Sun, Y.; Zheng, T.; Zeng, Y.Q.; Fu, L.P.; Zhou, T.T.; Jia, F.; Xu, Y.; He, K.; Yang, Y. Effects of shear emulsifying/ball milling/autoclave modification on structure, physicochemical properties, phenolic compounds, and antioxidant capacity of lotus (Nelumbo) leaves dietary fiber. Front. Nutr. 2023, 10, 1064662. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.W.; Liu, X.W.; Wang, K.; Zhao, L.; Wang, Y.; Zhang, X.; Hu, Z.Y. Impact of non-thermal modifications on the physicochemical properties and functionality of litchi pomace dietary fibre. LWT 2023, 182, 114878. [Google Scholar] [CrossRef]
- Jiang, G.H.; Bai, X.S.; Wu, Z.G.; Li, S.J.; Zhao, C.; Ramachandraiah, K. Modification of ginseng insoluble dietary fiber through alkaline hydrogen peroxide treatment and its impact on structure, physicochemical and functional properties. LWT 2021, 150, 111956. [Google Scholar] [CrossRef]
- Guo, Y.; Byambasuren, K.; Liu, X.; Wang, X.; Qiu, S.; Gao, Y.; Wang, Z. Extraction, purification, and characterization of insoluble dietary fiber from oat bran. Trans. Tianjin Univ. 2019, 27, 385–393. [Google Scholar] [CrossRef]
- Wang, C.F.; Song, R.Z.; Wei, S.Q.; Wang, W.L.; Li, F.; Tang, X.Z.; Li, N.Y. Modification of insoluble dietary fiber from ginger residue through enzymatic treatments to improve its bioactive properties. LWT 2020, 125, 109220. [Google Scholar] [CrossRef]
- Lee, S.C.; Prosky, L.; Vries, J.W.D. Determination of total, soluble, and insoluble dietary fiber in foods—Enzymatic-gravimetric method, MES-TRIS buffer: Collaborative study. J. AOAC Int. 1992, 75, 395–416. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International; AOAC International Gaithersburg: Gaithersburg, MD, USA, 2000; Volume 1. [Google Scholar]
- Liu, Y.L.; Zhang, H.B.; Yi, C.P.; Quan, K.; Lin, B.P. Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment. Food Chem. 2021, 342, 128352. [Google Scholar] [CrossRef]
- Huang, Q.Z.; Hong, T.; Zheng, M.J.; Yang, Y.F.; Zhu, Y.B.; Jiang, Z.D.; Ni, H.; Li, Q.B. High-pressure homogenization treatment of red seaweed Bangia fuscopurpurea affects the physicochemical, functional properties and enhances in vitro anti-glycation activity of its dietary fibers. Innov. Food Sci. Emerg. Technol. 2023, 86, 103369. [Google Scholar] [CrossRef]
- Luo, X.L.; Wang, Q.; Zheng, B.D.; Lin, L.M.; Chen, B.Y.; Zheng, Y.F.; Xiao, J.B. Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice. Food Chem. Toxicol. 2017, 109, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.J.; Hu, J.; Gao, H.Y.; Chen, H.J.; Fang, X.J.; Mu, H.L.; Han, Y.C.; Liu, R.L. The potential cholesterol-lowering and prebiotic effects of bamboo shoot dietary fibers and their structural characteristics. Food Chem. 2020, 332, 127372. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.J.; Wang, X.Y.; Tian, H.L.; Li, Y.; Shi, P.Q.; Guo, W.Y.; Zhu, Q.Q. Effect of four modification methods on adsorption capacities and in vitro hypoglycemic properties of millet bran dietary fibre. Food Res. Int. 2021, 147, 110565. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.; Dominguez-López, I.; Lamuela-Raventós, R.M. The chemistry behind the Folin-Ciocalteu method for the estimation of (poly)phenol content in food: Total phenolic intake in a mediterranean dietary pattern. J. Agric. Food Chem. 2023, 71, 17543–17553. [Google Scholar] [CrossRef] [PubMed]
- von Gadow, A.; Joubert, E.; Hansmann, C.F. Comparison of the antioxidant activity of aspalathin with that of other plant phenols of rooibos tea (Aspalathus linearis), α-tocopherol, BHT, and BHA. J. Agric. Food Chem. 1997, 45, 632–638. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
RIDF | U−RIDF | C−RIDF | UC−RIDF | |
---|---|---|---|---|
Fat (%) | 1.62 ± 0.03 a | 1.56 ± 0.03 a | 1.26 ± 0.10 b | 1.08 ± 0.05 c |
Protein (%) | 2.45 ± 0.11 a | 2.31 ± 0.05 a | 2.40 ± 0.05 a | 1.74 ± 0.21 b |
Ash (%) | 3.84 ± 0.05 b | 4.13 ± 0.05 a | 3.88 ± 0.07 b | 3.76 ± 0.02 b |
SDF (%) | 3.92 ± 0.01 d | 7.86 ± 0.02 c | 8.23 ± 0.01 b | 9.15 ± 0.02 a |
IDF (%) | 87.47 ± 0.02 a | 81.61 ± 0.01 c | 82.58 ± 0.02 b | 81.34 ± 0.17 b |
TDF (%) | 91.39 ± 0.04 a | 89.47 ± 0.02 d | 90.82 ± 0.03 b | 90.49 ± 0.16 c |
WHC (g/g) | OHC (g/g) | SC (mL/g) | |
---|---|---|---|
RIDF | 10.21 ± 0.19 d | 5.96 ± 0.03 c | 5.42 ± 0.05 c |
U−RIDF | 10.67 ± 0.28 c | 10.11 ± 0.09 b | 6.93 ± 0.07 c |
C−RIDF | 12.1 ± 0.1 a | 11.11 ± 0.07 a | 7.93 ± 0.08 b |
UC−RIDF | 11.44 ± 0.13 b | 11.01 ± 0.09 a | 10.37 ± 0.11 a |
FPC (mg GAE/100 g) | BPC (mg GAE/100 g) | TPC (mg GAE/100 g) | DPPH (μmol TE/g) | ABTS (μmol TE/g) | |
---|---|---|---|---|---|
RIDF | 180.19 ± 3.46 a | 344.18 ± 4.00 a | 524.37 ± 2.00 a | 41.01 ± 0.32 a | 33.42 ± 0.99 a |
U−RIDF | 98.19 ± 2.00 b | 323.48 ± 3.05 b | 421.00 ± 3.05 b | 33.82 ± 0.37 b | 27.12 ± 0.30 b |
C−RIDF | 86.18 ± 2.00 c | 310.79 ± 3.05 c | 396.98 ± 4.16 c | 33.72 ± 0.98 b | 24.25 ± 0.54 c |
UC−RIDF | 71.45 ± 1.15 d | 279.88 ± 2.00 d | 351.33 ± 1.15 d | 28.68 ± 0.19 c | 20.43 ± 0.94 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Li, C.; Zheng, S.; Fu, X.; Huang, Q.; Liu, G.; Chen, Q. Influence of Three Modification Methods on the Structure, Physicochemical, and Functional Properties of Insoluble Dietary Fiber from Rosa roxburghii Tratt Pomace. Molecules 2024, 29, 2111. https://doi.org/10.3390/molecules29092111
Huang Y, Li C, Zheng S, Fu X, Huang Q, Liu G, Chen Q. Influence of Three Modification Methods on the Structure, Physicochemical, and Functional Properties of Insoluble Dietary Fiber from Rosa roxburghii Tratt Pomace. Molecules. 2024; 29(9):2111. https://doi.org/10.3390/molecules29092111
Chicago/Turabian StyleHuang, Yumeng, Chao Li, Siyuan Zheng, Xiong Fu, Qiang Huang, Guang Liu, and Qing Chen. 2024. "Influence of Three Modification Methods on the Structure, Physicochemical, and Functional Properties of Insoluble Dietary Fiber from Rosa roxburghii Tratt Pomace" Molecules 29, no. 9: 2111. https://doi.org/10.3390/molecules29092111
APA StyleHuang, Y., Li, C., Zheng, S., Fu, X., Huang, Q., Liu, G., & Chen, Q. (2024). Influence of Three Modification Methods on the Structure, Physicochemical, and Functional Properties of Insoluble Dietary Fiber from Rosa roxburghii Tratt Pomace. Molecules, 29(9), 2111. https://doi.org/10.3390/molecules29092111