Palbociclib as an Antitumor Drug: A License to Kill
Abstract
:1. Introduction
2. Palbociclib as an Antitumor Drug
2.1. CDK4/6 as Targets for Anticancer Therapy
2.2. Palbociclib in Clinical Trials
2.2.1. Breast Cancer
NCT Number | Phase | Status | Conditions | Sponsor/Study Start | Intervention | Literature |
---|---|---|---|---|---|---|
NCT01320592 | I | completed | advanced ER+/HER2− HER2 overexpressing and TNBC | Abramson Cancer Center at Penn Medicine/2011 | paclitaxel, palbociclib | [64] |
NCT02605486 | I/II | active, not recruiting | postmenopausal AR+ TN MBC | Memorial Sloan Kettering Cancer Center/2015 | bicalutamide, palbociclib | [66] |
NCT03756090 | not applicable | unknown | neoadjuvant therapy in TNBC | Zhejiang Cancer Hospital/2018 | epirubicin, cyclofosfamid, paclitaxel, palbociclib, placebo | |
NCT04360941 (PAveMenT) | I | recruiting | AR+ TNBC | Royal Marsden NHS Foundation Trust/2020 | avelumab, palbociclib | [65] |
NCT04494958 (PALBOBIN) | I/II | completed | TN ABC with ERK and CDK4/6 activation | Foundacion Oncosur/2020 | binimetinib, palbociclib | |
NCT05067530 (CAREGIVER) | II | not yet recruiting | untreated TNBC | Medical University of Gdansk/2022 | paclitaxel, carboplatin, palbociclib |
2.2.2. Solid Tumors
2.2.3. Hematopoietic Cancers
NCT Number | Phase | Status | Conditions | Sponsor/Study Start | Intervention | Literature |
---|---|---|---|---|---|---|
NCT00420056 | I | completed | previously treated MCL | Pfizer/2007 | palbociclib, | [84] |
NCT00555906 | II | completed | patients with MM after prior treatment | Pfizer/2008 | bortezomib dexamethasone, palbociclib | [82] |
NCT01111188 | I | terminated | relapsed MCL | Weill Medical College of Cornell University/2010 | bortezomib, palbociclib | [85] |
NCT02030483 | I | terminated | relapsed or refractory MM | Weill Medical College of Cornell University/2014 | dexamethasone, lenalidomide, palbociclib | |
NCT02159755 | I | active, not recruiting | recurrent MCL | National Cancer Institute/2014 | ibrutinib, palbociclib | [86] |
NCT03478514 | II | active, not recruiting | previously treated MCL | Alliance Foundation Trials, LLC/2018 | ibrutinib, palbociclib | |
NCT03472573 | I | completed | relapsed or refractory BCALL | Sidney Kimmel Cancer Center at Thomas Jefferson University/2018 | dexamethasone, palbociclib | [87] |
2.3. Resistance to Palbociclib
2.4. Palbociclib—The Molecule
2.5. Palbociclib as a Building Part of CDK4/6 Degraders
3. Discussion
4. Future Directions
Funding
Conflicts of Interest
References
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zou, W.; Zhang, J.; Zhang, Y.; Xu, Q.; Li, S.; Chen, C. Mechanisms of CDK4/6 Inhibitor Resistance in Luminal Breast Cancer. Front. Pharmacol. 2020, 11, 580251. [Google Scholar] [CrossRef] [PubMed]
- Sherr, C.J.; Roberts, J.M. Living with or without Cyclins and Cyclin-Dependent Kinases. Genes Dev. 2004, 18, 2699–2711. [Google Scholar] [CrossRef] [PubMed]
- Sherr, C.J.; Beach, D.; Shapiro, G.I. Targeting CDK4 and CDK6: From Discovery to Therapy. Cancer Discov. 2016, 6, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Wander, S.A.; O’Brien, N.; Litchfield, L.M.; O’Dea, D.; Guimaraes, C.M.; Slamon, D.J.; Goel, S. Targeting CDK4 and 6 in Cancer Therapy: Emerging Preclinical Insights Related to Abemaciclib. Oncologist 2022, 27, 811–821. [Google Scholar] [CrossRef]
- Nebenfuehr, S.; Kollmann, K.; Sexl, V. The Role of CDK6 in Cancer. Int. J. Cancer 2020, 147, 2988–2995. [Google Scholar] [CrossRef]
- Malumbres, M.; Barbacid, M. To Cycle or Not to Cycle: A Critical Decision in Cancer. Nat. Rev. Cancer 2001, 1, 222–231. [Google Scholar] [CrossRef]
- Braal, C.L.; Jongbloed, E.M.; Wilting, S.M.; Mathijssen, R.H.J.J.; Koolen, S.L.W.W.; Jager, A. Inhibiting CDK4/6 in Breast Cancer with Palbociclib, Ribociclib, and Abemaciclib: Similarities and Differences. Drugs 2021, 81, 317–331. [Google Scholar] [CrossRef]
- Vermeulen, K.; Bockstaele, D.R.V.; Berneman, Z.N. The Cell Cycle: A Review of Regulation, Deregulation and Therapeutic Targets in Cancer. Cell Prolif. 2003, 36, 131–149. [Google Scholar] [CrossRef]
- Arooz, T.; Yam, C.H.; Siu, W.Y.; Lau, A.; Li, K.K.W.; Poon, R.Y.C. On the Concentrations of Cyclins and Cyclin-Dependent Kinases in Extracts of Cultured Human Cells. Biochemistry 2000, 39, 9494–9501. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Jang, H.; Nussinov, R. CDK2 and CDK4: Cell Cycle Functions Evolve Distinct, Catalysis-Competent Conformations, Offering Drug Targets. JACS Au 2024, 4, 1911–1927. [Google Scholar] [CrossRef]
- Yang, H.W.; Cappell, S.D.; Jaimovich, A.; Liu, C.; Chung, M.; Daigh, L.H.; Pack, L.R.; Fan, Y.; Regot, S.; Covert, M.; et al. Stress-Mediated Exit to Quiescence Restricted by Increasing Persistence in CDK4/6 Activation. eLife 2020, 9, e44571. [Google Scholar] [CrossRef]
- Álvarez-Fernández, M.; Malumbres, M. Mechanisms of Sensitivity and Resistance to CDK4/6 Inhibition. Cancer Cell 2020, 37, 514–529. [Google Scholar] [CrossRef]
- Dai, M.; Boudreault, J.; Wang, N.; Poulet, S.; Daliah, G.; Yan, G.; Moamer, A.; Burgos, S.A.; Sabri, S.; Ali, S.; et al. Differential Regulation of Cancer Progression by CDK4/6 Plays a Central Role in DNA Replication and Repair Pathways. Cancer Res. 2021, 81, 1332–1346. [Google Scholar] [CrossRef]
- Kollmann, K.; Heller, G.; Schneckenleithner, C.; Warsch, W.; Scheicher, R.; Ott, R.G.; Schäfer, M.; Fajmann, S.; Schlederer, M.; Schiefer, A.-I.; et al. A Kinase-Independent Function of CDK6 Links the Cell Cycle to Tumor Angiogenesis. Cancer Cell 2013, 24, 167–181, Erratum in Cancer Cell 2016, 30, P359–P360. [Google Scholar] [CrossRef]
- Finn, R.S.; Dering, J.; Conklin, D.; Kalous, O.; Cohen, D.J.; Desai, A.J.; Ginther, C.; Atefi, M.; Chen, I.; Fowst, C.; et al. PD 0332991, a Selective Cyclin D Kinase 4/6 Inhibitor, Preferentially Inhibits Proliferation of Luminal Estrogen Receptor-Positive Human Breast Cancer Cell Lines in Vitro. Breast Cancer Res. 2009, 11, R77. [Google Scholar] [CrossRef]
- Thangavel, C.; Dean, J.L.; Ertel, A.; Knudsen, K.E.; Aldaz, C.M.; Witkiewicz, A.K.; Clarke, R.; Knudsen, E.S. Therapeutically Activating RB: Reestablishing Cell Cycle Control in Endocrine Therapy-Resistant Breast Cancer. Endocr. Relat. Cancer 2011, 18, 333–345. [Google Scholar] [CrossRef]
- Goodwin, C.M.; Waters, A.M.; Klomp, J.E.; Javaid, S.; Bryant, K.L.; Stalnecker, C.A.; Drizyte-Miller, K.; Papke, B.; Yang, R.; Amparo, A.M.; et al. Combination Therapies with CDK4/6 Inhibitors to Treat KRAS-Mutant Pancreatic Cancer. Cancer Res. 2023, 83, 141–157. [Google Scholar] [CrossRef]
- Palmbos, P.L.; Daignault-Newton, S.; Tomlins, S.A.; Agarwal, N.; Twardowski, P.; Morgans, A.K.; Kelly, W.K.; Arora, V.K.; Antonarakis, E.S.; Siddiqui, J.; et al. A Randomized Phase II Study of Androgen Deprivation Therapy with or without Palbociclib in RB-Positive Metastatic Hormone-Sensitive Prostate Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 3017–3027. [Google Scholar] [CrossRef]
- Bride, K.L.; Hu, H.; Tikhonova, A.; Fuller, T.J.; Vincent, T.L.; Shraim, R.; Li, M.M.; Carroll, W.L.; Raetz, E.A.; Aifantis, I.; et al. Rational Drug Combinations with CDK4/6 Inhibitors in Acute Lymphoblastic Leukemia. Haematologica 2022, 107, 1746–1757. [Google Scholar] [CrossRef]
- Pérez-Galán, P.; Dreyling, M.; Wiestner, A. Mantle Cell Lymphoma: Biology, Pathogenesis, and the Molecular Basis of Treatment in the Genomic Era. Blood 2011, 117, 26–38. [Google Scholar] [CrossRef]
- Sedlacek, H.; Czech, J.; Naik, R.; Kaur, G.; Worland, P.; Losiewicz, M.; Parker, B.; Carlson, B.; Smith, A.; Senderowicz, A.; et al. Flavopiridol (L86 8275; NSC 649890), a New Kinase Inhibitor for Tumor Therapy. Int. J. Oncol. 1996, 9, 1143–1168. [Google Scholar] [CrossRef]
- Asghar, U.; Witkiewicz, A.K.; Turner, N.C.; Knudsen, E.S. The History and Future of Targeting Cyclin-Dependent Kinases in Cancer Therapy. Nat. Rev. Drug Discov. 2015, 14, 130–146. [Google Scholar] [CrossRef]
- Chen, P.; Lee, N.V.; Hu, W.; Xu, M.; Ferre, R.A.; Lam, H.; Bergqvist, S.; Solowiej, J.; Diehl, W.; He, Y.-A.; et al. Spectrum and Degree of CDK Drug Interactions Predicts Clinical Performance. Mol. Cancer Ther. 2016, 15, 2273–2281. [Google Scholar] [CrossRef]
- Daniel, D.; Kuchava, V.; Bondarenko, I.; Ivashchuk, O.; Reddy, S.; Jaal, J.; Kudaba, I.; Hart, L.; Matitashvili, A.; Pritchett, Y.; et al. Trilaciclib Prior to Chemotherapy and Atezolizumab in Patients with Newly Diagnosed Extensive-Stage Small Cell Lung Cancer: A Multicentre, Randomised, Double-Blind, Placebo-Controlled Phase II Trial. Int. J. Cancer 2021, 148, 2557–2570. [Google Scholar] [CrossRef]
- Weiss, J.M.; Csoszi, T.; Maglakelidze, M.; Hoyer, R.J.; Beck, J.T.; Domine Gomez, M.; Lowczak, A.; Aljumaily, R.; Rocha Lima, C.M.; Boccia, R.V.; et al. Myelopreservation with the CDK4/6 Inhibitor Trilaciclib in Patients with Small-Cell Lung Cancer Receiving First-Line Chemotherapy: A Phase Ib/Randomized Phase II Trial. Ann. Oncol. 2019, 30, 1613–1621. [Google Scholar] [CrossRef]
- Dominici, M.D.; Porazzi, P.; Xiao, Y.; Chao, A.; Tang, H.Y.; Kumar, G.; Fortina, P.; Spinelli, O.; Rambaldi, A.; Peterson, L.F.; et al. Selective Inhibition of Ph-Positive ALL Cell Growth through Kinase-Dependent and -Independent Effects by CDK6-Specific PROTACs. Blood 2020, 135, 1560–1573. [Google Scholar] [CrossRef]
- Krönke, J.; Steinebach, C.; Ng, Y.L.D.; Sosič, I.; Lee, C.S.; Chen, S.; Lindner, S.; Vu, L.P.; Bricelj, A.; Haschemi, R.; et al. Systematic Exploration of Different E3 Ubiquitin Ligases: An Approach towards Potent and Selective CDK6 Degraders. Chem. Sci. 2020, 11, 3474–3486. [Google Scholar] [CrossRef]
- Otto, T.; Sicinski, P. Cell Cycle Proteins as Promising Targets in Cancer Therapy. Nat. Rev. Cancer 2017, 17, 93–115. [Google Scholar] [CrossRef]
- Afifi, N.; Barrero, C.A. Understanding Breast Cancer Aggressiveness and Its Implications in Diagnosis and Treatment. J. Clin. Med. 2023, 12, 1375. [Google Scholar] [CrossRef]
- Höller, A.; Nguyen-Sträuli, B.D.; Frauchiger-Heuer, H.; Ring, A. Diagnostic and Prognostic Biomarkers of Luminal Breast Cancer: Where Are We Now? Breast Cancer Targets Ther. 2023, 15, 525–540. [Google Scholar] [CrossRef] [PubMed]
- Shaath, H.; Elango, R.; Alajez, N.M. Molecular Classification of Breast Cancer Utilizing Long Non-Coding RNA (LncRNA) Transcriptomes Identifies Novel Diagnostic LncRNA Panel for Triple-Negative Breast Cancer. Cancers 2021, 13, 5350. [Google Scholar] [CrossRef]
- Finn, R.S.; Crown, J.P.; Lang, I.; Boer, K.; Bondarenko, I.M.; Kulyk, S.O.; Ettl, J.; Patel, R.; Pinter, T.; Schmidt, M.; et al. The Cyclin-Dependent Kinase 4/6 Inhibitor Palbociclib in Combination with Letrozole versus Letrozole Alone as First-Line Treatment of Oestrogen Receptor-Positive, HER2-Negative, Advanced Breast Cancer (PALOMA-1/TRIO-18): A Randomised Phase 2 Study. Lancet Oncol. 2015, 16, 25–35. [Google Scholar] [CrossRef]
- Tamura, K.; Mukai, H.; Naito, Y.; Yonemori, K.; Kodaira, M.; Tanabe, Y.; Yamamoto, N.; Osera, S.; Sasaki, M.; Mori, Y.; et al. Phase I Study of Palbociclib, a Cyclin-Dependent Kinase 4/6 Inhibitor, in Japanese Patients. Cancer Sci. 2016, 107, 755–763. [Google Scholar] [CrossRef]
- Takahashi, M.; Masuda, N.; Nishimura, R.; Inoue, K.; Ohno, S.; Iwata, H.; Hashigaki, S.; Muramatsu, Y.; Umeyama, Y.; Toi, M. Palbociclib-Letrozole as First-Line Treatment for Advanced Breast Cancer: Updated Results from a Japanese Phase 2 Study. Cancer Med. 2020, 9, 4929–4940. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Martin, M.; Rugo, H.S.; Jones, S.; Im, S.-A.; Gelmon, K.; Harbeck, N.; Lipatov, O.N.; Walshe, J.M.; Moulder, S.; et al. Palbociclib and Letrozole in Advanced Breast Cancer. N. Engl. J. Med. 2016, 375, 1925–1936. [Google Scholar] [CrossRef]
- Xu, B.; Hu, X.; Li, W.; Sun, T.; Shen, K.; Wang, S.; Cheng, Y.; Zhang, Q.; Cui, S.; Tong, Z.; et al. Palbociclib plus Letrozole versus Placebo plus Letrozole in Asian Postmenopausal Women with Oestrogen Receptor–Positive/Human Epidermal Growth Factor Receptor 2–Negative Advanced Breast Cancer: Primary Results from PALOMA-4. Eur. J. Cancer 2022, 175, 236–245. [Google Scholar] [CrossRef]
- Johnston, S.; Puhalla, S.; Wheatley, D.; Ring, A.; Barry, P.; Holcombe, C.; Boileau, J.F.; Provencher, L.; Robidoux, A.; Rimawi, M.; et al. Randomized Phase II Study Evaluating Palbociclib in Addition to Letrozole as Neoadjuvant Therapy in Estrogen Receptor–Positive Early Breast Cancer: PALLET Trial. J. Clin. Oncol. 2018, 37, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Fein, L.; Lazaretti, N.; Chuken, Y.L.; Benfield, J.R.G.R.; Mano, M.S.; Lobaton, J.; Korbenfeld, E.; Damian, F.; Lu, D.R.; Mori, A.; et al. Expanded Access Study of Palbociclib Plus Letrozole for Postmenopausal Women with HR+/HER2− Advanced Breast Cancer in Latin America for Whom Letrozole Therapy Is Deemed Appropriate. Clin. Drug Investig. 2023, 43, 699–706. [Google Scholar] [CrossRef]
- Loi, S.; Karapetis, C.S.; McCarthy, N.; Oakman, C.; Redfern, A.; White, M.; Khasraw, M.; Doval, D.C.; Gore, V.; Alam, M.; et al. Palbociclib plus Letrozole as Treatment for Postmenopausal Women with Hormone Receptor–Positive/Human Epidermal Growth Factor Receptor 2–Negative Advanced Breast Cancer for Whom Letrozole Therapy Is Deemed Appropriate: An Expanded Access Study in Australi. Asia. Pac. J. Clin. Oncol. 2022, 18, 560–569. [Google Scholar] [CrossRef]
- Ademuyiwa, F.O.; Northfelt, D.W.; O’Connor, T.; Levine, E.; Luo, J.; Tao, Y.; Hoog, J.; Laury, M.L.; Summa, T.; Hammerschmidt, T.; et al. A Phase II Study of Palbociclib plus Letrozole plus Trastuzumab as Neoadjuvant Treatment for Clinical Stages II and III ER+ HER2+ Breast Cancer (PALTAN). NPJ Breast Cancer 2023, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Sedrak, M.S.; Lee, M.K.; Ji, J.; Satele, D.V.; Freedman, R.A.; Poorvu, P.D.; O’Connor, T.; Williams, G.R.; Hopkins, J.O.; Muss, H.B.; et al. Palbociclib in Adults Aged 70 Years and Older with Advanced Breast Cancer: A Phase 2 Multicenter Trial (Alliance A171601). J. Geriatr. Oncol. 2024, 15, 101813. [Google Scholar] [CrossRef] [PubMed]
- Cristofanilli, M.; Rugo, H.S.; Im, S.-A.; Slamon, D.J.; Harbeck, N.; Bondarenko, I.; Masuda, N.; Colleoni, M.; DeMichele, A.; Loi, S.; et al. Overall Survival (OS) with Palbociclib (PAL) + Fulvestrant (FUL) in Women with Hormone Receptor–Positive (HR+), Human Epidermal Growth Factor Receptor 2–Negative (HER2–) Advanced Breast Cancer (ABC): Updated Analyses from PALOMA-3. J. Clin. Oncol. 2021, 39, 1000. [Google Scholar] [CrossRef]
- Malorni, L.; Tyekucheva, S.; Hilbers, F.S.; Ignatiadis, M.; Neven, P.; Colleoni, M.; Henry, S.; Ballestrero, A.; Bonetti, A.; Jerusalem, G.; et al. Serum Thymidine Kinase Activity in Patients with Hormone Receptor-Positive and HER2-Negative Metastatic Breast Cancer Treated with Palbociclib and Fulvestrant. Eur. J. Cancer 2022, 164, 39–51. [Google Scholar] [CrossRef]
- Parulekar, W.R.; Joy, A.A.; Gelmon, K.; Mates, M.; Desbiens, C.; Clemons, M.; Taylor, S.; Lemieux, J.; Bartlett, J.; Whelan, T.; et al. Abstract PD1-10: Randomized Phase II Study Comparing Two Different Schedules of Palbociclib plus Second Line Endocrine Therapy in Women with Estrogen Receptor Positive, HER2 Negative Advanced/Metastatic Breast Cancer: CCTG MA38 (NCT02630693). Cancer Res. 2019, 79, PD1–PD10. [Google Scholar] [CrossRef]
- Mayer, E.L.; Ren, Y.; Wagle, N.; Mahtani, R.; Ma, C.; DeMichele, A.; Cristofanilli, M.; Meisel, J.; Miller, K.D.; Abdou, Y.; et al. PACE: A Randomized Phase II Study of Fulvestrant, Palbociclib, and Avelumab After Progression on Cyclin-Dependent Kinase 4/6 Inhibitor and Aromatase Inhibitor for Hormone Receptor–Positive/Human Epidermal Growth Factor Receptor–Negative Metastatic Breast Cancer. J. Clin. Oncol. 2024, 42, 2050–2060. [Google Scholar] [CrossRef]
- Mayer, I.A.; Haley, B.B.; Abramson, V.G.; Brufsky, A.; Rexer, B.; Stringer-Reasor, E.; Jhaveri, K.L.; Sanders, M.; Ericsson-Gonzalez, P.I.; Ye, F.; et al. Abstract PD1-03: A Phase Ib Trial of Fulvestrant + CDK4/6 Inhibitor (CDK4/6i) Palbociclib + Pan-FGFR Tyrosine Kinase Inhibitor (TKI) Erdafitinib in FGFR -Amplified/ER+/HER2-Negative Metastatic Breast Cancer (MBC). Cancer Res. 2021, 81, PD1–PD3. [Google Scholar] [CrossRef]
- Bagegni, N.; Thomas, S.; Liu, N.; Luo, J.; Hoog, J.; Northfelt, D.W.; Goetz, M.P.; Forero, A.; Bergqvist, M.; Karen, J.; et al. Serum Thymidine Kinase 1 Activity as a Pharmacodynamic Marker of Cyclin-Dependent Kinase 4/6 Inhibition in Patients with Early-Stage Breast Cancer Receiving Neoadjuvant Palbociclib. Breast Cancer Res. 2017, 19, 123. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, J.; Li, T.; Grinshpun, A.; Coorens, T.; Russo, D.; Anderson, L.; Rees, R.; Nardone, A.; Patterson, C.; Lennon, N.J.; et al. Clinical Efficacy and Whole-Exome Sequencing of Liquid Biopsies in a Phase IB/II Study of Bazedoxifene and Palbociclib in Advanced Hormone Receptor–Positive Breast Cancer. Clin. Cancer Res. 2022, 28, 5066–5078. [Google Scholar] [CrossRef]
- Gómez Tejeda Zañudo, J.; Barroso-Sousa, R.; Jain, E.; Jin, Q.; Li, T.; Buendia-Buendia, J.E.; Pereslete, A.; Abravanel, D.L.; Ferreira, A.R.; Wrabel, E.; et al. Exemestane plus Everolimus and Palbociclib in Metastatic Breast Cancer: Clinical Response and Genomic/Transcriptomic Determinants of Resistance in a Phase I/II Trial. Nat. Commun. 2024, 15, 2446. [Google Scholar] [CrossRef]
- Jerusalem, G.; Prat, A.; Salgado, R.; Reinisch, M.; Saura, C.; Borrego, M.R.; Nikolinakos, P.; Ades, F.; Filian, J.; Huang, N.; et al. Neoadjuvant Nivolumab + Palbociclib + Anastrozole for Oestrogen Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Primary Breast Cancer: Results from CheckMate 7A8. Breast 2023, 72, 103580. [Google Scholar] [CrossRef]
- Hurvitz, S.A.; Bardia, A.; Quiroga, V.; Park, Y.H.; Blancas, I.; Alonso-Romero, J.L.; Vasiliev, A.; Adamchuk, H.; Salgado, M.; Yardley, D.A.; et al. Neoadjuvant Palbociclib plus Either Giredestrant or Anastrozole in Oestrogen Receptor-Positive, HER2-Negative, Early Breast Cancer (CoopERA Breast Cancer): An Open-Label, Randomised, Controlled, Phase 2 Study. Lancet Oncol. 2023, 24, 1029–1041. [Google Scholar] [CrossRef] [PubMed]
- Samjoo, I.A.; Hall, A.; Chen, C.; Nguyen, B.-N.; Bartlett, M.; Smith, M.L.; Harbeck, N.; Cappelleri, J.C.; Karuturi, M.; Makari, D.; et al. A Systematic Review of Health-Related Quality of Life Outcomes in Patients with Advanced Breast Cancer Treated with Palbociclib. J. Comp. Eff. Res. 2024, 13, e240111. [Google Scholar] [CrossRef] [PubMed]
- Brain, E.; Chen, C.; Simon, S.; Pasupuleti, V.; Pfitzer, K.V.; Gelmon, K.A. Palbociclib in Older Patients with Advanced/Metastatic Breast Cancer: A Systematic Review. Target. Oncol. 2024, 19, 303–320. [Google Scholar] [CrossRef]
- Foulkes, W.D.; Smith, I.E.; Reis-Filho, J.S. Triple-Negative Breast Cancer. N. Engl. J. Med. 2024, 363, 1938–1948. [Google Scholar] [CrossRef]
- Robson, M.E.; Tung, N.; Conte, P.; Im, S.A.; Senkus, E.; Xu, B.; Masuda, N.; Delaloge, S.; Li, W.; Armstrong, A.; et al. OlympiAD Final Overall Survival and Tolerability Results: Olaparib versus Chemotherapy Treatment of Physician’s Choice in Patients with a Germline BRCA Mutation and HER2-Negative Metastatic Breast Cancer. Ann. Oncol. 2019, 30, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Tutt, A.N.J.; Garber, J.E.; Kaufman, B.; Viale, G.; Fumagalli, D.; Rastogi, P.; Gelber, R.D.; de Azambuja, E.; Fielding, A.; Balmaña, J.; et al. Adjuvant Olaparib for Patients with BRCA1- or BRCA2-Mutated Breast Cancer. N. Engl. J. Med. 2021, 384, 2394–2405. [Google Scholar] [CrossRef]
- Schmid, P.; Rugo, H.S.; Adams, S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Henschel, V.; Molinero, L.; Chui, S.Y.; et al. Atezolizumab plus Nab-Paclitaxel as First-Line Treatment for Unresectable, Locally Advanced or Metastatic Triple-Negative Breast Cancer (IMpassion130): Updated Efficacy Results from a Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2020, 21, 44–59. [Google Scholar] [CrossRef]
- Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef]
- Patel, J.M.; Goss, A.; Garber, J.E.; Torous, V.; Richardson, E.T.; Haviland, M.J.; Hacker, M.R.; Freeman, G.J.; Nalven, T.; Alexander, B.; et al. Retinoblastoma Protein Expression and Its Predictors in Triple-Negative Breast Cancer. NPJ Breast Cancer 2020, 6, 19. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, H.; Li, X. Novel Sequential Treatment with Palbociclib Enhances the Effect of Cisplatin in RB-Proficient Triple-Negative Breast Cancer. Cancer Cell Int. 2020, 20, 501. [Google Scholar] [CrossRef] [PubMed]
- Estepa-Fernández, A.; García-Fernández, A.; Lérida-Viso, A.; Blandez, J.F.; Galiana, I.; Sancenon-Galarza, F.; Orzáez, M.; Martínez-Máñez, R. Combination of Palbociclib with Navitoclax Based-Therapies Enhances in Vivo Antitumoral Activity in Triple-Negative Breast Cancer. Pharmacol. Res. 2023, 187, 106628. [Google Scholar] [CrossRef]
- Hu, Y.; Gao, J.; Wang, M.; Li, M. Potential Prospect of CDK4/6 Inhibitors in Triple-Negative Breast Cancer. Cancer Manag. Res. 2021, 13, 5223–5237. [Google Scholar] [CrossRef]
- Clark, A.S.; McAndrew, N.P.; Troxel, A.; Feldman, M.; Lal, P.; Rosen, M.; Burrell, J.; Redlinger, C.; Gallagher, M.; Bradbury, A.R.; et al. Combination Paclitaxel and Palbociclib: Results of a Phase I Trial in Advanced Breast Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 2072–2079. [Google Scholar] [CrossRef]
- Okines, A.F.; Moghadam, H.; Sparks, L.; Mohammed, K.; Dunne, K.; Nerurkar, A.; Osin, P.; Swift, C.; Sardinha, R.; Turner, N. Abstract P4-01-02: Results from a Dose Escalation Phase 1b Study of Palbociclib and Avelumab in Advanced Breast Cancer in the PAveMenT Trial. Cancer Res. 2023, 83, P4-01-02. [Google Scholar] [CrossRef]
- Gucalp, A.; Boyle, L.A.; Alano, T.; Arumov, A.; Gounder, M.M.; Patil, S.; Feigin, K.; Edelweiss, M.; D’Andrea, G.; Bromberg, J.; et al. Phase II Trial of Bicalutamide in Combination with Palbociclib for the Treatment of Androgen Receptor (+) Metastatic Breast Cancer. J. Clin. Oncol. 2020, 38, 1017. [Google Scholar] [CrossRef]
- Gopalan, P.K.; Pinder, M.C.; Chiappori, A.; Ivey, A.M.; Villegas, A.G.; Kaye, F.J. A Phase II Clinical Trial of the CDK 4/6 Inhibitor Palbociclib (PD 0332991) in Previously Treated, Advanced Non-Small Cell Lung Cancer (NSCLC) Patients with Inactivated CDKN2A. J. Clin. Oncol. 2014, 32, 8077. [Google Scholar] [CrossRef]
- Gopalan, P.K.; Gordillo Villegas, A.; Cao, C.; Pinder-Schenck, M.; Chiappori, A.; Hou, W.; Zajac-Kaye, M.; Ivey, A.M.; Kaye, F.J. CDK4/6 Inhibition Stabilizes Disease in Patients with P16-Null Non-Small Cell Lung Cancer and Is Synergistic with MTOR Inhibition. Oncotarget 2018, 9, 37352–37366. [Google Scholar] [CrossRef]
- Cho, B.C.; Goldberg, S.B.; Kim, D.W.; Socinski, M.A.; Burns, T.F.; Lwin, Z.; Pathan, N.; Ma, W.D.; Masters, J.C.; Cossons, N.; et al. A Phase 1b/2 Study of PF-06747775 as Monotherapy or in Combination with Palbociclib in Patients with Epidermal Growth Factor Receptor Mutant Advanced Non-Small Cell Lung Cancer. Expert Opin. Investig. Drugs 2022, 31, 747–757. [Google Scholar] [CrossRef]
- Al Baghdadi, T.; Halabi, S.; Garrett-Mayer, E.; Mangat, P.K.; Ahn, E.R.; Sahai, V.; Alvarez, R.H.; Kim, E.S.; Yost, K.J.; Rygiel, A.L.; et al. Palbociclib in Patients With Pancreatic and Biliary Cancer With CDKN2A Alterations: Results From the Targeted Agent and Profiling Utilization Registry Study. JCO Precis. Oncol. 2019, 3, 1–8. [Google Scholar] [CrossRef]
- Ahn, E.R.; Mangat, P.K.; Garrett-Mayer, E.; Halabi, S.; Dib, E.G.; Haggstrom, D.E.; Alguire, K.B.; Calfa, C.J.; Cannon, T.L.; Crilley, P.A.; et al. Palbociclib in Patients With Non–Small-Cell Lung Cancer With CDKN2A Alterations: Results From the Targeted Agent and Profiling Utilization Registry Study. JCO Precis. Oncol. 2020, 4, 757–766. [Google Scholar] [CrossRef]
- Schuetze, S.; Rothe, M.; Mangat, P.K.; Garrett-Mayer, E.; Meric-Bernstam, F.; Calfa, C.J.; Farrington, L.C.; Livingston, M.B.; Wentzel, K.; Behl, D.; et al. Palbociclib in Patients With Soft Tissue Sarcoma With CDK4 Amplifications: Results From the Targeted Agent and Profiling Utilization Registry Study. JCO Precis. Oncol. 2024, 8, e2400219. [Google Scholar] [CrossRef] [PubMed]
- Alese, O.B.; Bilen, M.A.; Hitron, E.; Lewis, C.; Collins, H.H.; Scott, S.; Carthon, B.; Cao, Y.; Switchenko, J.M.; Harvey, R.D.; et al. 469P A Phase I Study of Palbociclib in Combination with Cisplatin or Carboplatin in Advanced Solid Malignancies. Ann. Oncol. 2022, 33, S755. [Google Scholar] [CrossRef]
- Sorokin, A.V.; Marie, P.K.; Bitner, L.; Syed, M.; Woods, M.; Manyam, G.; Kwong, L.N.; Johnson, B.; Morris, V.K.; Jones, P.; et al. Targeting RAS Mutant Colorectal Cancer with Dual Inhibition of MEK and CDK4/6. Cancer Res. 2022, 82, 3335–3344. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, M.H.; Edmonds, C.; Farwell, M.; Perini, R.F.; Pryma, D.A.; Teitelbaum, U.R.; Giantonio, B.J.; Damjanov, N.; Lal, P.; Feldman, M.D.; et al. Phase II Pharmacodynamic Trial of Palbociclib in Patients with KRAS Mutant Colorectal Cancer. J. Clin. Oncol. 2015, 33, 626. [Google Scholar] [CrossRef]
- Konecny, G.E.; Hendrickson, A.E.W.; Jatoi, A.; Burton, J.K.; Paroly, J.; Glaspy, J.A.; Dowdy, S.C.; Slamon, D.J. A Multicenter Open-Label Phase II Study of the Efficacy and Safety of Palbociclib a Cyclin-Dependent Kinases 4 and 6 Inhibitor in Patients with Recurrent Ovarian Cancer. J. Clin. Oncol. 2016, 34, 5557. [Google Scholar] [CrossRef]
- Mirza, M.R.; Bjørge, L.; Marmé, F.; Christensen, R.D.; Gil-Martin, M.; Auranen, A.; Ataseven, B.; Rubio, M.J.; Salutari, V.; Lund, B.; et al. LBA28 A Randomised Double-Blind Placebo-Controlled Phase II Trial of Palbociclib Combined with Letrozole (L) in Patients (Pts) with Oestrogen Receptor-Positive (ER+) Advanced/Recurrent Endometrial Cancer (EC): NSGO-PALEO/ENGOT-EN3 Trial. Ann. Oncol. 2020, 31, S1160. [Google Scholar] [CrossRef]
- Ely, S.; Di Liberto, M.; Niesvizky, R.; Baughn, L.B.; Cho, H.J.; Hatada, E.N.; Knowles, D.M.; Lane, J.; Chen-Kiang, S. Mutually Exclusive Cyclin-Dependent Kinase 4/Cyclin D1 and Cyclin-Dependent Kinase 6/Cyclin D2 Pairing Inactivates Retinoblastoma Protein and Promotes Cell Cycle Dysregulation in Multiple Myeloma. Cancer Res. 2005, 65, 11345–11353. [Google Scholar] [CrossRef]
- Baughn, L.B.; Di Liberto, M.; Wu, K.; Toogood, P.L.; Louie, T.; Gottschalk, R.; Niesvizky, R.; Cho, H.; Ely, S.; Moore, M.A.S.; et al. A Novel Orally Active Small Molecule Potently Induces G1 Arrest in Primary Myeloma Cells and Prevents Tumor Growth by Specific Inhibition of Cyclin-Dependent Kinase 4/6. Cancer Res. 2006, 66, 7661–7667. [Google Scholar] [CrossRef]
- Menu, E.; Garcia, J.; Huang, X.; Di Liberto, M.; Toogood, P.L.; Chen, I.; Vanderkerken, K.; Chen-Kiang, S. A Novel Therapeutic Combination Using PD 0332991 and Bortezomib: Study in the 5T33MM Myeloma Model. Cancer Res. 2008, 68, 5519–5523. [Google Scholar] [CrossRef]
- Huang, X.; Liberto, M.D.; Jayabalan, D.; Liang, J.; Ely, S.; Bretz, J.; Shaffer, A.L., 3rd; Louie, T.; Chen, I.; Randolph, S.; et al. Prolonged Early G(1) Arrest by Selective CDK4/CDK6 Inhibition Sensitizes Myeloma Cells to Cytotoxic Killing through Cell Cycle-Coupled Loss of IRF4. Blood 2012, 120, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- Niesvizky, R.; Badros, A.Z.; Costa, L.J.; Ely, S.A.; Singhal, S.B.; Stadtmauer, E.A.; Haideri, N.A.; Yacoub, A.; Hess, G.; Lentzsch, S.; et al. Phase 1/2 Study of Cyclin-Dependent Kinase (CDK)4/6 Inhibitor Palbociclib (PD-0332991) with Bortezomib and Dexamethasone in Relapsed/Refractory Multiple Myeloma. Leuk. Lymphoma 2015, 56, 3320–3328. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Richter, J. Where We Stand With Precision Therapeutics in Myeloma: Prosperity, Promises, and Pipedreams. Front. Oncol. 2022, 11, 819127. [Google Scholar] [CrossRef] [PubMed]
- Leonard, J.P.; LaCasce, A.S.; Smith, M.R.; Noy, A.; Chirieac, L.R.; Rodig, S.J.; Yu, J.Q.; Vallabhajosula, S.; Schoder, H.; English, P.; et al. Selective CDK4/6 Inhibition with Tumor Responses by PD0332991 in Patients with Mantle Cell Lymphoma. Blood 2012, 119, 4597–4607. [Google Scholar] [CrossRef]
- Martin, P.; Ruan, J.; Furman, R.; Rutherford, S.; Allan, J.; Chen, Z.; Huang, X.; DiLiberto, M.; Chen-Kiang, S.; Leonard, J.P. A Phase I Trial of Palbociclib plus Bortezomib in Previously Treated Mantle Cell Lymphoma. Leuk. Lymphoma 2019, 60, 2917–2921. [Google Scholar] [CrossRef]
- Martin, P.; Bartlett, N.L.; Blum, K.A.; Park, S.; Maddocks, K.; Ruan, J.; Ridling, L.A.; Dittus, C.; Chen, Z.; Huang, X.; et al. A Phase 1 Trial of Ibrutinib plus Palbociclib in Previously Treated Mantle Cell Lymphoma. Blood 2019, 133, 1201–1204. [Google Scholar] [CrossRef]
- Wilde, L.; Porazzi, P.; Trotta, R.; De Dominici, M.; Palmisiano, N.; Keiffer, G.; Rancani, K.; Yingling, K.; Calabretta, B.; Kasner, M. A Phase I Study of the Combination of Palbociclib and Dexamethasone for the Treatment of Relapsed or Refractory B-Cell Acute Lymphoblastic Leukemia. Leuk. Res. 2023, 129, 107075. [Google Scholar] [CrossRef] [PubMed]
- Raetz, E.A.; Teachey, D.T.; Minard, C.; Liu, X.; Norris, R.; Reid, J.; Beeles, T.; Gore, L.; Fox, E.; Loh, M.L.; et al. Safety of Palbociclib in Combination with Chemotherapy in Pediatric and Young Adult Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia and Lymphoma: A Children’s Oncology Group Pilot Study. Blood 2020, 136, 20–21. [Google Scholar] [CrossRef]
- Ismail, R.K.; van Breeschoten, J.; Wouters, M.W.J.M.; van Dartel, M.; van der Flier, S.; Reyners, A.K.L.; de Graeff, P.; Pasmooij, A.M.G.; de Boer, A.; Broekman, K.E.; et al. Palbociclib Dose Reductions and the Effect on Clinical Outcomes in Patients with Advanced Breast Cancer. Breast 2021, 60, 263–271. [Google Scholar] [CrossRef]
- Watt, A.C.; Goel, S. Cellular Mechanisms Underlying Response and Resistance to CDK4/6 Inhibitors in the Treatment of Hormone Receptor-Positive Breast Cancer. Breast Cancer Res. 2022, 24, 17. [Google Scholar] [CrossRef]
- Stanciu, I.-M.; Parosanu, A.I.; Orlov-Slavu, C.; Iaciu, I.C.; Popa, A.M.; Olaru, C.M.; Pirlog, C.F.; Vrabie, R.C.; Nitipir, C. Mechanisms of Resistance to CDK4/6 Inhibitors and Predictive Biomarkers of Response in HR+/HER2-Metastatic Breast Cancer-A Review of the Literature. Diagnostics 2023, 13, 987. [Google Scholar] [CrossRef] [PubMed]
- McCartney, A.; Migliaccio, I.; Bonechi, M.; Biagioni, C.; Romagnoli, D.; Luca, F.D.; Galardi, F.; Risi, E.; Santo, I.D.; Benelli, M.; et al. Mechanisms of Resistance to CDK4/6 Inhibitors: Potential Implications and Biomarkers for Clinical Practice. Front. Oncol. 2019, 9, 666. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zheng, L.; Sun, Z.; Li, J. CDK4/6 Inhibitor Resistance Mechanisms and Treatment Strategies (Review). Int. J. Mol. Med. 2022, 50, 128. [Google Scholar] [CrossRef]
- Condorelli, R.; Spring, L.; O’Shaughnessy, J.; Lacroix, L.; Bailleux, C.; Scott, V.; Dubois, J.; Nagy, R.J.; Lanman, R.B.; Iafrate, A.J.; et al. Polyclonal RB1 Mutations and Acquired Resistance to CDK 4/6 Inhibitors in Patients with Metastatic Breast Cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2018, 29, 640–645. [Google Scholar] [CrossRef] [PubMed]
- George, M.A.; Qureshi, S.; Omene, C.; Toppmeyer, D.L.; Ganesan, S. Clinical and Pharmacologic Differences of CDK4/6 Inhibitors in Breast Cancer. Front. Oncol. 2021, 11, 693104. [Google Scholar] [CrossRef]
- Poratti, M.; Marzaro, G. Third-Generation CDK Inhibitors: A Review on the Synthesis and Binding Modes of Palbociclib, Ribociclib and Abemaciclib. Eur. J. Med. Chem. 2019, 172, 143–153. [Google Scholar] [CrossRef]
- Cho, Y.S.; Borland, M.; Brain, C.; Chen, C.H.-T.; Cheng, H.; Chopra, R.; Chung, K.; Groarke, J.; He, G.; Hou, Y.; et al. 4-(Pyrazol-4-Yl)-Pyrimidines as Selective Inhibitors of Cyclin-Dependent Kinase 4/6. J. Med. Chem. 2010, 53, 7938–7957. [Google Scholar] [CrossRef]
- Maganhi, S.H.; Jensen, P.; Caracelli, I.; Schpector, J.Z.; Fröhling, S.; Friedman, R. Palbociclib Can Overcome Mutations in Cyclin Dependent Kinase 6 That Break Hydrogen Bonds between the Drug and the Protein. Protein Sci. 2017, 26, 870–879. [Google Scholar] [CrossRef]
- Shan, H.; Ma, X.; Yan, G.; Luo, M.; Zhong, X.; Lan, S.; Yang, J.; Liu, Y.; Pu, C.; Tong, Y.; et al. Discovery of a Novel Covalent CDK4/6 Inhibitor Based on Palbociclib Scaffold. Eur. J. Med. Chem. 2021, 219, 113432. [Google Scholar] [CrossRef]
- Li, L.; Chen, F.; Li, M.; Liao, Y.; Wang, Y.; Jiang, W.; Luan, Y.; Xue, X. Development of Novel Palbociclib-Based CDK4/6 Inhibitors Exploring the Back Pocket behind the Gatekeeper. Investig. New Drugs 2023, 41, 638–651. [Google Scholar] [CrossRef]
- Wang, P.; Huang, J.; Wang, K.; Gu, Y. New Palbociclib Analogues Modified at the Terminal Piperazine Ring and Their Anticancer Activities. Eur. J. Med. Chem. 2016, 122, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhou, A.D.; Bai, L.F.; Zhang, X.Y.; Zhou, Y.T.; Yang, H.L.; Xu, L.T.; Guo, X.Q.; Zhu, X.Y.; Wang, D.J.; et al. Design, Synthesis, and Anticancer Activity of Three Novel Palbociclib Derivatives. Front. Oncol. 2022, 12, 959322. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: Chimeric Molecules That Target Proteins to the Skp1-Cullin-F Box Complex for Ubiquitination and Degradation. Proc. Natl. Acad. Sci. USA 2001, 98, 8554–8559. [Google Scholar] [CrossRef]
- Martín-Acosta, P.; Xiao, X. PROTACs to Address the Challenges Facing Small Molecule Inhibitors. Eur. J. Med. Chem. 2021, 210, 112993. [Google Scholar] [CrossRef]
- Bondeson, D.P.; Mares, A.; Smith, I.E.D.; Ko, E.; Campos, S.; Miah, A.H.; Mulholland, K.E.; Routly, N.; Buckley, D.L.; Gustafson, J.L.; et al. Catalytic in Vivo Protein Knockdown by Small-Molecule PROTACs. Nat. Chem. Biol. 2015, 11, 611–617. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Shi, L.; Yang, S.; Chang, J.; Zhong, Y.; Li, Q.; Xing, D. Recent Advances in IAP-Based PROTACs (SNIPERs) as Potential Therapeutic Agents. J. Enzyme Inhib. Med. Chem. 2022, 37, 1437–1453. [Google Scholar] [CrossRef]
- Zhao, B.; Burgess, K. PROTACs Suppression of CDK4/6, Crucial Kinases for Cell Cycle Regulation in Cancer. Chem. Commun. 2019, 55, 2704–2707. [Google Scholar] [CrossRef]
- Su, S.; Yang, Z.; Gao, H.; Yang, H.; Zhu, S.; An, Z.; Wang, J.; Li, Q.; Chandarlapaty, S.; Deng, H.; et al. Potent and Preferential Degradation of CDK6 via Proteolysis Targeting Chimera Degraders. J. Med. Chem. 2019, 62, 7575–7582. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Wang, E.S.; Donovan, K.A.; Liang, Y.; Fischer, E.S.; Zhang, T.; Gray, N.S. Development of Dual and Selective Degraders of Cyclin-Dependent Kinases 4 and 6. Angew. Chem. Int. Ed. Engl. 2019, 58, 6321–6326. [Google Scholar] [CrossRef]
- Rana, S.; Bendjennat, M.; Kour, S.; King, H.M.; Kizhake, S.; Zahid, M.; Natarajan, A. Selective Degradation of CDK6 by a Palbociclib Based PROTAC. Bioorg. Med. Chem. Lett. 2019, 29, 1375–1379. [Google Scholar] [CrossRef]
- Anderson, N.A.; Cryan, J.; Ahmed, A.; Dai, H.; McGonagle, G.A.; Rozier, C.; Benowitz, A.B. Selective CDK6 Degradation Mediated by Cereblon, VHL, and Novel IAP-Recruiting PROTACs. Bioorg. Med. Chem. Lett. 2020, 30, 127106. [Google Scholar] [CrossRef] [PubMed]
- Carter, B.Z.; Gronda, M.; Wang, Z.; Welsh, K.; Pinilla, C.; Andreeff, M.; Schober, W.D.; Nefzi, A.; Pond, G.R.; Mawji, I.A.; et al. Small-Molecule XIAP Inhibitors Derepress Downstream Effector Caspases and Induce Apoptosis of Acute Myeloid Leukemia Cells. Blood 2005, 105, 4043–4050. [Google Scholar] [CrossRef] [PubMed]
- Delbue, D.; Mendonça, B.S.; Robaina, M.C.; Lemos, L.G.T.; Lucena, P.I.; Viola, J.P.B.; Magalhães, L.M.; Crocamo, S.; Oliveira, C.A.B.; Teixeira, F.R.; et al. Expression of Nuclear XIAP Associates with Cell Growth and Drug Resistance and Confers Poor Prognosis in Breast Cancer. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118761. [Google Scholar] [CrossRef]
- Pu, C.; Liu, Y.; Deng, R.; Xu, Q.; Wang, S.; Zhang, H.; Luo, D.; Ma, X.; Tong, Y.; Li, R. Development of PROTAC Degrader Probe of CDK4/6 Based on DCAF16. Bioorg. Chem. 2023, 138, 106637. [Google Scholar] [CrossRef]
- Kappel, C.; Elliott, M.J.; Kumar, V.; Nadler, M.B.; Desnoyers, A.; Amir, E. Comparative Overall Survival of CDK4/6 Inhibitors in Combination with Endocrine Therapy in Advanced Breast Cancer. Sci. Rep. 2024, 14, 3129. [Google Scholar] [CrossRef]
- Desnoyers, A.; Nadler, M.B.; Kumar, V.; Saleh, R.; Amir, E. Comparison of Treatment-Related Adverse Events of Different Cyclin-Dependent Kinase 4/6 Inhibitors in Metastatic Breast Cancer: A Network Meta-Analysis. Cancer Treat. Rev. 2020, 90, 102086. [Google Scholar] [CrossRef]
- Cejuela, M.; Gil-Torralvo, A.; Castilla, M.Á.; Domínguez-Cejudo, M.Á.; Falcón, A.; Benavent, M.; Molina-Pinelo, S.; Ruiz-Borrego, M.; Bofill, J.S. Abemaciclib, Palbociclib, and Ribociclib in Real-World Data: A Direct Comparison of First-Line Treatment for Endocrine-Receptor-Positive Metastatic Breast Cancer. Int. J. Mol. Sci. 2023, 24, 8488. [Google Scholar] [CrossRef]
- Gehrchen, M.L.; Berg, T.; Garly, R.; Jensen, M.-B.; Eßer-Naumann, S.; Rønlev, J.D.; Nielsen, H.M.; Knoop, A.; Kümler, I. Real-World Effectiveness of CDK 4/6 Inhibitors in Estrogen-Positive Metastatic Breast Cancer. BJC Rep. 2024, 2, 44. [Google Scholar] [CrossRef]
- Békés, M.; Langley, D.R.; Crews, C.M. PROTAC Targeted Protein Degraders: The Past Is Prologue. Nat. Rev. Drug Discov. 2022, 21, 181–200. [Google Scholar] [CrossRef]
- Hamilton, E.P.; Schott, A.F.; Nanda, R.; Lu, H.; Keung, C.F.; Gedrich, R.; Parameswaran, J.; Han, H.S.; Hurvitz, S.A. ARV-471, an Estrogen Receptor (ER) PROTACdegrader, Combined with Palbociclib in Advanced ER+/Human Epidermal Growth Factor Receptor 2–Negative (HER2-) Breast Cancer: Phase 1b Cohort (Part C) of a Phase 1/2 Study. J. Clin. Oncol. 2022, 40, TPS1120. [Google Scholar] [CrossRef]
- Hamilton, E.P.; Ma, C.; Laurentiis, M.D.; Iwata, H.; Hurvitz, S.A.; Wander, S.A.; Danso, M.; Lu, D.R.; Smith, J.P.; Liu, Y.; et al. VERITAC-2: A Phase III Study of Vepdegestrant, a PROTAC ER Degrader, versus Fulvestrant in ER+/HER2- Advanced Breast Cancer. Futur. Oncol. 2024, 20, 2447–2455. [Google Scholar] [CrossRef] [PubMed]
- Toure, M.; Crews, C.M. Small-Molecule PROTACS: New Approaches to Protein Degradation. Angew. Chem.—Int. Ed. 2016, 55, 1966–1973. [Google Scholar] [CrossRef] [PubMed]
- Mullard, A. First Targeted Protein Degrader Hits the Clinic. Nat. Rev. Drug Discov. 2019. [Google Scholar] [CrossRef] [PubMed]
- Edmondson, S.D.; Yang, B.; Fallan, C. Proteolysis Targeting Chimeras (PROTACs) in “beyond Rule-of-Five” Chemical Space: Recent Progress and Future Challenges. Bioorg. Med. Chem. Lett. 2019, 29, 1555–1564. [Google Scholar] [CrossRef]
NCT Number | Phase | Status | Conditions | Sponsor/Study Start | Intervention | Literature |
---|---|---|---|---|---|---|
NCT00721409 (PALOMA-1/TRIO-18) | I/II | completed | ER+/HER2− ABC | Pfizer/2008 | letrozole, palbociclib | [33] |
NCT01684215 | I/II | completed | Japanese postmenopausal women with ER+/HER2− ABC | Pfizer/2012 | letrozole, palbociclib | [36,37] |
NCT01740427 (PALOMA-2) | III | completed | postmenopausal women with ER+/HER2− ABC | Pfizer/2013 | letrozole, palbociclib, placebo | [34] |
NCT02297438 (PALOMA-4) | III | active, not recruiting | Asian postmenopausal women with ER+/HER2− ABC | Pfizer/2015 | letrozole, palbociclib, placebo | [35] |
NCT02296801 (PALLET) | II | completed | ER+ EBC | NSABP Foundation Inc./2015 | letrozole, palbociclib | [38] |
NCT02600923 | III | completed | postmenopausal women with HR+/HER2− BC | Pfizer/2015 | letrozole, palbociclib | [39] |
NCT02679755 | IV | completed | postmenopausal women with HR+/HER2− BC | Pfizer/2016 | letrozole, palbociclib | [40] |
NCT02764541 (PELOPS) | II | active, not recruiting | HR+ early-stage BC | Dana-Farber Cancer Institute/2016 | letrozole, tamoxifen, palbociclib | |
NCT02907918 (PALTAN) | II | terminated | HR+/HER2+ early-stage BC | Washington University School of Medicine/2017 | letrozole, trastuzumab, gorselin, palbociclib | [41] |
NCT03633331 | II | active, not recruiting | HR+/HER2− MBC | Alliance for Clinical Trials in Oncology/2018 | letrozole, fulvestrant, palbociclib | [42] |
NCT Number | Phase | Status | Conditions | Sponsor/Study Start | Intervention | Literature |
---|---|---|---|---|---|---|
NCT01942135 (PALOMA-3) | III | completed | HR+/HER2− ABC | Pfizer/2013 | fulvestrant, gorselin, palbociclib placebo, | [43] |
NCT02536742 (PYTHIA) | II | completed | postmenopausal women with HR+/HER2− MBC | ETOP IBCSG Partners Foundation/2016 | fulvestrant, palbociclib | [44] |
NCT02630693 | II | completed | ER+/HER2− MBC | Canadian Cancer Trials Group/2016 | fulvestrant, palbociclib, tamoxifen | [45] |
NCT03147287 (PACE) | II | active, not recruiting | HR+/HER2− MBC that stop responding for palbociclib and endocrine therapy | Dana-Farber Cancer Institute/2017 | fulvestrant, avelumab, palbociclib | [46] |
NCT03238196 | I | active, not recruiting | ER+/HER2−/FGFR a MBC | Vanderbilt-Ingram Cancer Center/2017 | fulvestrant, erdafitinib, palbociclib | [47] |
NCT Number | Phase | Status | Conditions | Sponsor/Study Start | Intervention | Literature |
---|---|---|---|---|---|---|
NCT01723774 (NeoPalAna) | II | active, not recruiting | HR+/HER2− BC | Washington University School of Medicine/2013 | anastrozole, gorselin, | [48] |
NCT02448771 | I/II | completed | endocrine resistant HR+/HER2− ABC | Dana-Farber Cancer Institute/2015 | bazedoxifene, palbociclib | [49] |
NCT02871791 | I/II | completed | CDK4/6 inhibitor-resistant HR+/HER2− MBC | Dana-Farber Cancer Institute/2016 | everolimus, exemestane, palbociclib | [50] |
NCT04075604 (CheckMate 7A8) | II | completed | postmenopausal women and men ER+/HER2− PBC | Bristol-Myers Squibb/2019 | nivolumab, anastrozole, palbociclib | [51] |
NCT04436744 (coopERA) | II | completed | postmenopausal women HR+/HER2− EBC, untreated | Hoffmann-La Roche/2020 | giredestrant, anastrozole, palbociclib | [52] |
NCT Number | Phase | Status | Conditions | Sponsor/Study Start | Intervention | Literature |
---|---|---|---|---|---|---|
NCT01291017 | II | completed | previously treated advanced stage IV NSCLC with Rbwt and inactive (CDK)N2A | University of Florida/2011 | palbociclib | [67,68] |
NCT02022982 | I | completed | NSCLC with KRAS mutation | Dana-Farber Cancer Institute/2014 | mirdametinib, palbociclib | |
NCT02349633 | I/II | terminated | NSCLC | Pfizer/2015 | mavelertinib, avelumab, palbociclib | [69] |
NCT02693535 (TAPUR) | II | recruiting | patients with advanced tumors with gene alterations suitable for the mechanism of the therapy | American Society of Clinical Oncology/2016 | in general: FDA-approved targeted anticancer drugs prescribed for treatment of patients with advanced cancer; palbociclib monotherapy | [70,71,72] |
NCT02897375 | I | completed | patients with advanced solid malignancies | Emory University/2016 | carboplatin, cisplatin, palbociclib | [73] |
NCT03170206 | I | active, not recruiting | advanced NSCLC with KRAS gene alteration | Dana-Farber Cancer Institute/2017 | binimetinib, palbociclib | |
NCT03297606 (CAPTUR) | II | recruiting | patients with advanced tumors with gene alterations suitable for the mechanism of the therapy | Canadian Cancer Trials Group/2018 | in general: commercially available targeted agents | |
NCT03981614 | II | active, not recruiting | colorectal cancer with KRAS and NRAS alteration | Academic and Community Cancer Research United/2019 | binimetinib, palbociclib, trifluridine, and tipiracil hydrochloride | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łupicka-Słowik, A.; Cossu, F.; Sieńczyk, M. Palbociclib as an Antitumor Drug: A License to Kill. Molecules 2024, 29, 5334. https://doi.org/10.3390/molecules29225334
Łupicka-Słowik A, Cossu F, Sieńczyk M. Palbociclib as an Antitumor Drug: A License to Kill. Molecules. 2024; 29(22):5334. https://doi.org/10.3390/molecules29225334
Chicago/Turabian StyleŁupicka-Słowik, Agnieszka, Federica Cossu, and Marcin Sieńczyk. 2024. "Palbociclib as an Antitumor Drug: A License to Kill" Molecules 29, no. 22: 5334. https://doi.org/10.3390/molecules29225334
APA StyleŁupicka-Słowik, A., Cossu, F., & Sieńczyk, M. (2024). Palbociclib as an Antitumor Drug: A License to Kill. Molecules, 29(22), 5334. https://doi.org/10.3390/molecules29225334