Metabolomic Analysis of Specific Metabolites in Codonopsis pilosula Soil Under Different Stubble Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Principal Component Analysis of the Soil Samples
2.2. Screening for Differentially Expressed Metabolites
2.3. Cluster Analysis of Differentially Abundant Metabolites
2.4. Correlation Analysis of Metabolites
2.5. KEGG Pathway Analysis of Metabolites
3. Materials and Methods
3.1. Experimental Site and Sample Collection
3.2. Metabolite Extraction
3.3. LC–MS/MS Analysis
3.4. Sample Data Preprocessing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, S.M.; Liu, J.S.; Wang, M.; Cao, T.T.; Qi, Y.D.; Zhang, B.G.; Xiao, P.G. Traditional uses, phytochemistry, pharmacology and toxicology of Codonopsis: A review. J. Ethnopharmacol. 2018, 219, 50–70. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Chen, Z.; Yang, J.; Liu, X.; Su, Y.; Wang, M.; Li, F. Review on the biological activities of Codonopsis Radix Tonic. J. Ethnopharmacol. 2024, 332, 118334. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Won, E.K.; Jang, Y.P.; Choung, S.Y. Antiobesity Effect of Codonopsis lanceolata in High-Calorie/High-Fat-Diet-Induced Obese Rats. Evid.-Based Complement. Altern. Med. 2013, 2013, 210297. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Na, Y.; Hou, A.; Zhang, S.; Yu, H.; Zheng, S.; Yang, L. A review of the botany, ethnopharmacology, phytochemistry, analysis method and quality control, processing methods, pharmacological effects, pharmacokinetics and toxicity of codonopsis radix. Front. Pharmacol. 2023, 14, 1162036. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; Xiao, Y.; Chen, W. Insights into Genus Codonopsis: From past Achievements to Future Perspectives. Crit. Rev. Anal. Chem. 2023, 16, 1–32. [Google Scholar] [CrossRef]
- Zou, Y.F.; Zhang, Y.Y.; Paulsen, B.S.; Fu, Y.P.; Huang, C.; Feng, B.; Yin, Z.Q. Prospects of Codonopsis pilosula polysaccharides: Structural features and bioactivities diversity. Trends Food Sci. Technol. 2020, 103, 1–11. [Google Scholar] [CrossRef]
- Luan, F.; Ji, Y.; Peng, L.; Liu, Q.; Cao, H.; Yang, Y.; Zeng, N. Extraction, purification, structural characteristics and biological properties of the polysaccharides from Codonopsis pilosula: A review. Carbohydr. Polym. 2021, 261, 117863. [Google Scholar] [CrossRef]
- Lu, S.; Gu, W.; Ma, Q.; Tian, R.; Qiu, R.; Ma, L.; Tang, J. Extraction, structural characterization, and biological activities of a new glucan from Codonopsis pilosula. Sci. Rep. 2023, 13, 4504. [Google Scholar] [CrossRef]
- Qiang, M.; Cai, P.; Ao, M.; Li, X.; Chen, Z.; Yu, L. Polysaccharides from Chinese materia medica: Perspective toward cancer management. Int. J. Biol. Macromol. 2023, 224, 496–509. [Google Scholar] [CrossRef]
- Pervaiz, Z.H.; Iqbal, J.; Zhang, Q.; Chen, D.; Wei, H.; Saleem, M. Continuous cropping alters multiple biotic and abiotic indicators of soil health. Soil Syst. 2020, 4, 59. [Google Scholar] [CrossRef]
- Panth, M.; Hassler, S.C.; Baysal-Gurel, F. Methods for management of soilborne diseases in crop production. Agriculture 2020, 10, 16. [Google Scholar] [CrossRef]
- Reddy, P.P. Sustainable Intensification of Crop Production; Springer: Singapore, 2016; pp. 143–154. [Google Scholar]
- Wu, L.; Chen, J.; Wu, H.; Qin, X.; Wang, J.; Wu, Y.; Lin, W. Insights into the regulation of rhizosphere bacterial communities by application of bio-organic fertilizer in Pseudostellaria heterophylla monoculture regime. Front. Microbiol. 2016, 7, 1788. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Lin, W.X.; Yang, Y.H.; Chen, H.; Chen, X.J. Effects of consecutively monocultured Rehmannia glutinosa L. on diversity of fungal community in rhizospheric soil. Agric. Sci. China 2011, 10, 1374–1384. [Google Scholar] [CrossRef]
- Hamel, C.; Vujanovic, V.; Jeannotte, R.; Nakano-Hylander, A.; St-Arnaud, M. Negative feedback on a perennial crop: Fusarium crown and root rot of asparagus is related to changes in soil microbial community structure. Plant Soil 2005, 268, 75–87. [Google Scholar] [CrossRef]
- Zeeshan Ul Haq, M.; Yu, J.; Yao, G.; Yang, H.; Iqbal, H.A.; Tahir, H.; Wu, Y. A systematic review on the continuous cropping obstacles and control strategies in medicinal plants. Int. J. Mol. Sci. 2023, 24, 12470. [Google Scholar] [CrossRef]
- Chen, G.; Xue, Y.; Yu, X.; Li, C.; Hou, Y.; Zhu, H.; Zhang, X. The structure and function of microbial community in rhizospheric soil of american ginseng (Panax quinquefolius L.) changed with planting years. Curr. Microbiol. 2022, 79, 281. [Google Scholar] [CrossRef]
- Leng, Y.; Li, X.Y.; Li, Q.; Wang, S.M.; Wang, E.P.; Chen, X.; Chen, C.B. Research progress on causes and methods to reduce continuous cropping problems of ginseng. Allelopath. J. 2024, 61, 115. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Yu, Z.; Yao, Q.; Li, Y.; Liang, A.; Wang, G. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition. Soil Tillage Res. 2020, 197, 104503. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y.; Yue, L.; Tian, Y.; Zhou, Q.; Wang, Y.; Wang, R. Continuous monoculture alters the fungal community and accumulates potential pathogenic strains in the rhizosphere of Codonopsis pilosula. Phytobiomes J. 2024, 8, PBIOMES-11. [Google Scholar] [CrossRef]
- Louis Baumhardt, R.; Anderson, R.L. Crop choices and rotation principles. Dryland Agric. 2006, 23, 113–139. [Google Scholar]
- Li, B.; Zhang, Q.; Chen, Y.; Su, Y.; Sun, S.; Chen, G. Different crop rotation systems change the rhizosphere bacterial community structure of Astragalus membranaceus (Fisch) Bge. var. mongholicus (Bge.) Hsiao. Appl. Soil Ecol. 2021, 166, 104003. [Google Scholar] [CrossRef]
- Shrestha, J.; Subedi, S.; Timsina, K.P.; Chaudhary, A.; Kandel, M.; Tripathi, S. Conservation agriculture as an approach toward sustainable crop production: A review. Farming Manag. 2020, 5, 7–15. [Google Scholar]
- Boincean, B.; Dent, D.; Boincean, B.; Dent, D. Farming the Black Earth: Sustainable and Climate-Smart Management of Chernozem Soils; Springer: Berlin, Germany, 2019; pp. 89–124. [Google Scholar]
- Jena, J.; Maitra, S.; Hossain, A.; Pramanick, B.; Gitari, H.I.; Praharaj, S.; Jatav, H.S. Role of legumes in cropping system for soil ecosystem improvement. In Ecosystem Services: Types, Management and Benefits; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2022. [Google Scholar]
- Ouda, S.; Zohry, A.E.H.; Noreldin, T.; Zohry, A.; Ouda, S. Crop rotation defeats pests and weeds. In Crop Rotation: An Approach to Secure Future Food; Springer: Berlin, Germany, 2018; pp. 77–88. [Google Scholar]
- Venter, Z.S.; Jacobs, K.; Hawkins, H.J. The impact of crop rotation on soil microbial diversity: A meta-analysis. Pedobiologia 2016, 59, 215–223. [Google Scholar] [CrossRef]
- Ball, B.C.; Bingham, I.; Rees, R.M.; Watson, C.A.; Litterick, A. The role of crop rotations in determining soil structure and crop growth conditions. Can. J. Soil Sci. 2005, 85, 557–577. [Google Scholar] [CrossRef]
- Tiemann, L.K.; Grandy, A.S.; Atkinson, E.E.; Marin-Spiotta, E.; McDaniel, M.D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 2015, 18, 761–771. [Google Scholar] [CrossRef]
- Karlovsky, P. Secondary metabolites in soil ecology. In Secondary Metabolites in Soil Ecology; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–19. [Google Scholar]
- Chomel, M.; Guittonny-Larchevêque, M.; Fernandez, C.; Gallet, C.; DesRochers, A.; Paré, D.; Jackson, B.G.; Baldy, V. Plant secondary metabolites: A key driver of litter decomposition and soil nutrient cycling. J. Ecol. 2016, 104, 1527–1541. [Google Scholar] [CrossRef]
- Alamgir, A.N.M. Phytoconstituents—Active and inert constituents, metabolic pathways, chemistry and application of phytoconstituents, primary metabolic products, and bioactive compounds of primary metabolic origin. In Therapeutic Use of Medicinal Plants and Their Extracts: Volume 2: Phytochemistry and Bioactive Compounds; Springer: Cham, Switzerland, 2018; pp. 25–164. [Google Scholar]
- Heaven, M.W.; Benheim, D. Soil microbial metabolomics. In Microbial Metabolomics: Applications in Clinical, Environmental, and Industrial Microbiology; Springer: Cham, Switzerland, 2016; pp. 147–198. [Google Scholar]
- Fallah, N.; Pang, Z.; Zhang, C.; Tayyab, M.; Yang, Z.; Lin, Z.; Zhang, H. Complementary effects of biochar, secondary metabolites, and bacteria biocontrol agents rejuvenate ratoon sugarcane traits and stimulate soil fertility. Ind. Crops Prod. 2023, 202, 117081. [Google Scholar] [CrossRef]
- Panchal, P.; Miller, A.J.; Giri, J. Organic acids: Versatile stress-response roles in plants. J. Exp. Bot. 2021, 72, 4038–4052. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Zhang, Y.; Fei, J.; Rong, X.; Peng, J.; Luo, G. Crop rotation-driven changes in rhizosphere metabolite profiles regulate soil microbial diversity and functional capacity. Agric. Ecosyst. Environ. 2023, 358, 108716. [Google Scholar] [CrossRef]
- Trovato, M.; Funck, D.; Forlani, G.; Okumoto, S.; Amir, R. Amino acids in plants: Regulation and functions in development and stress defense. Front. Plant Sci. 2021, 12, 772810. [Google Scholar] [CrossRef]
- Li, H.; Yang, Y.; Lei, J.; Gou, W.; Crabbe, M.J.C.; Qi, P. Effects of Continuous Cropping of Codonopsis pilosula on Rhizosphere Soil Microbial Community Structure and Metabolomics. Agronomy 2024, 14, 2014. [Google Scholar] [CrossRef]
- Yang, Y. Effects of Different Continuous Cropping Years on the Microbial Community Structure and Physicochemical Characteristics of Codonopsis pilosula Rhizosphere Soil. Doctoral Dissertation, Northwest Normal University, Lanzhou, China, 2023. [Google Scholar]
- Thakur, R.; Sawarkar, S.D.; Vaishya, U.K.; Singh, M. Impact of continuous use of inorganic fertilizers and organic manure on soil properties and productivity under soybean–wheat intensive cropping of a Vertisol. J. Indian Soc. Soil Sci. 2011, 59, 74–81. [Google Scholar]
- Chen, Y.; Du, J.; Li, Y.; Tang, H.; Yin, Z.; Yang, L.; Ding, X. Evolutions and managements of soil microbial community structure drove by continuous cropping. Front. Microbiol. 2022, 13, 839494. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Xia, P. Continuous Cropping Obstacles of Medicinal Plants: Focus on the plant–soil-microbe interaction system in the rhizosphere. Sci. Hortic. 2024, 328, 112927. [Google Scholar] [CrossRef]
- He, L.; Wang, N. Research progress on formation mechanism of plant continuous cropping disorder. Sci. J. Technol. Vol. 2022, 4, 8–13. [Google Scholar]
- Ma, L.; Ma, S.; Chen, G.; Lu, X.; Chai, Q.; Li, S. Mechanisms and Mitigation Strategies for the Occurrence of Continuous Cropping Obstacles of Legumes in China. Agronomy 2023, 14, 104. [Google Scholar] [CrossRef]
- Bao, L.; Liu, Y.; Ding, Y.; Shang, J.; Wei, Y.; Tan, Y.; Zi, F. Interactions between phenolic acids and microorganisms in rhizospheric soil from continuous cropping of Panax notoginseng. Front. Microbiol. 2022, 13, 791603. [Google Scholar] [CrossRef]
- Ku, Y.; Li, W.; Mei, X.; Yang, X.; Cao, C.; Zhang, H.; Cao, L.; Li, M. Biological control of melon continuous cropping obstacles: Weakening the negative effects of the vicious cycle in continuous cropping soil. Microbiol. Spectr. 2022, 10, e01776-22. [Google Scholar] [CrossRef]
- Chen, M.; Li, X.; Yang, Q.; Chi, X.; Pan, L.; Chen, N.; Yu, S. Soil eukaryotic microorganism succession as affected by continuous cropping of peanut-pathogenic and beneficial fungi were selected. PLoS ONE 2012, 7, e40659. [Google Scholar] [CrossRef]
- Gao, Z.; Han, M.; Hu, Y.; Li, Z.; Liu, C.; Wang, X.; Tian, Q.; Jiao, W.; Hu, J.; Liu, L.; et al. Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil. Front. Microbiol. 2019, 10, 2269. [Google Scholar] [CrossRef]
- Li, H.; Li, C.; Song, X.; Liu, Y.; Gao, Q.; Zheng, R.; Liu, X. Impacts of continuous and rotational cropping practices on soil chemical properties and microbial communities during peanut cultivation. Sci. Rep. 2022, 12, 2758. [Google Scholar] [CrossRef] [PubMed]
- Musilova, L.; Ridl, J.; Polivkova, M.; Macek, T.; Uhlik, O. Effects of secondary plant metabolites on microbial populations: Changes in community structure and metabolic activity in contaminated environments. Int. J. Mol. Sci. 2016, 17, 1205. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Li, M.; Liu, Y.; Shi, L. Integration of the metabolome and transcriptome reveals the resistance mechanism to low nitrogen in wild soybean seedling roots. Environ. Exp. Bot. 2020, 175, 104043. [Google Scholar] [CrossRef]
- Gong, X.; Feng, Y.; Dang, K.; Jiang, Y.; Qi, H.; Feng, B. Linkages of microbial community structure and root exudates: Evidence from microbial nitrogen limitation in soils of crop families. Sci. Total Environ. 2023, 881, 163536. [Google Scholar] [CrossRef] [PubMed]
- Broughton RC, I.; Newsham, K.K.; Hill, P.W.; Stott, A.; Jones, D.L. Differential acquisition of amino acid and peptide enantiomers within the soil microbial community and its implications for carbon and nitrogen cycling in soil. Soil Biol. Biochem. 2015, 88, 83–89. [Google Scholar] [CrossRef]
- Sameem, B.; Khan, F.; Niaz, K. l-Cysteine. In Nonvitamin and Nonmineral Nutritional Supplements; Academic Press: Cambridge, MA, USA, 2019; pp. 53–58. [Google Scholar]
- Návarová, H.; Bernsdorff, F.; Döring, A.C.; Zeier, J. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 2012, 24, 5123–5141. [Google Scholar] [CrossRef]
- Adeleke, R.; Nwangburuka, C.; Oboirien, B. Origins, roles and fate of organic acids in soils: A review. S. Afr. J. Bot. 2017, 108, 393–406. [Google Scholar] [CrossRef]
- Macias-Benitez, S.; Garcia-Martinez, A.M.; Caballero Jimenez, P.; Gonzalez, J.M.; Tejada Moral, M.; Parrado Rubio, J. Rhizospheric organic acids as biostimulants: Monitoring feedbacks on soil microorganisms and biochemical properties. Front. Plant Sci. 2020, 11, 633. [Google Scholar] [CrossRef]
- Hei, J.; Li, Y.; Wang, Q.; Wang, S.; He, X. Effects of Exogenous Organic Acids on the Soil Metabolites and Microbial Communities of Panax notoginseng from the Forest Understory. Agronomy 2024, 14, 601. [Google Scholar] [CrossRef]
- Guo, J. Molecular Characterization of Shikimate and Quinate Biosynthesis in Populus trichocarpa: Functional Diversification of the Dehydroquinate Dehydratase/Shikimate (Quinate) Dehydrogenase (DQD/SDH/QDH) Superfamily via Gene Duplication. Doctoral Dissertation, University of Victoria, Victoria, BC, Canada, 2013. [Google Scholar]
- Stotzky, G.; Pramer, D. Activity, ecology, and population dynamics of microorganisms in soil. CRC Crit. Rev. Microbiol. 1972, 2, 59–137. [Google Scholar] [CrossRef]
- Zrenner, R.; Stitt, M.; Sonnewald, U.; Boldt, R. Pyrimidine and purine biosynthesis and degradation in plants. Annu. Rev. Plant Biol. 2006, 57, 805–836. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhao, Y.; Li, T.; Chen, L.; Chen, Y.; Sui, P. Changes in soil microbial biomass, diversity, and activity with crop rotation in cropping systems: A global synthesis. Appl. Soil Ecol. 2023, 186, 104815. [Google Scholar] [CrossRef]
- Shi, X.; Zhou, Y.; Zhao, X.; Guo, P.; Ren, J.; Zhang, H.; Wan, S. Soil metagenome and metabolome of peanut intercropped with sorghum reveal a prominent role of carbohydrate metabolism in salt-stress response. Environ. Exp. Bot. 2023, 209, 105274. [Google Scholar] [CrossRef]
- Sadak, M.S.; Sekara, A.; Al-Ashkar, I.; Habib-ur-Rahman, M.; Skalicky, M.; Brestic, M.; Abdelhamid, M.T. Exogenous aspartic acid alleviates salt stress-induced decline in growth by enhancing antioxidants and compatible solutes while reducing reactive oxygen species in wheat. Front. Plant Sci. 2022, 13, 987641. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Zaheer Akbar, M.; Shakoor, M.B.; Mahmood, A.; Ishaque, W.; Hussain, A. Foliar application of aspartic acid lowers cadmium uptake and Cd-induced oxidative stress in rice under Cd stress. Environ. Sci. Pollut. Res. 2017, 24, 21938–21947. [Google Scholar] [CrossRef] [PubMed]
- Tuteja, N.; Sopory, S.K. Plant signaling in stress: G-protein coupled receptors, heterotrimeric G-proteins and signal coupling via phospholipases. Plant Signal. Behav. 2008, 3, 79–86. [Google Scholar] [CrossRef]
- Choi, H.; Young, J.Y.; Choi, S.; Hwang, J.U.; Kim, Y.Y.; Suh, M.C.; Lee, Y. An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. Plant J. 2011, 65, 181–193. [Google Scholar] [CrossRef]
- Dahuja, A.; Kumar, R.R.; Sakhare, A.; Watts, A.; Singh, B.; Goswami, S.; Praveen, S. Role of ATP-binding cassette transporters in maintaining plant homeostasis under abiotic and biotic stresses. Physiol. Plant. 2021, 171, 785–801. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Yu, O. Metabolic engineering of flavonoids in plants and microorganisms. Appl. Microbiol. Biotechnol. 2011, 91, 949–956. [Google Scholar] [CrossRef]
- Yadav, B.; Jogawat, A.; Rahman, M.S.; Narayan, O.P. Secondary metabolites in the drought stress tolerance of crop plants: A review. Gene Rep. 2021, 23, 101040. [Google Scholar] [CrossRef]
- Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011, 82, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Isah, T. Stress and defense responses in plant secondary metabolites production. Biol. Res. 2019, 52, 39. [Google Scholar] [CrossRef] [PubMed]
KEGG Metabolic Pathway Name | Hits | −log(p) | Compounds | Pathway |
---|---|---|---|---|
Taurine and hypotaurine metabolism | 6 | 16.388 | C00022; C00025; C00026; C00097; C00227; C00245 | map00430 |
Central carbon metabolism in cancer | 6 | 13.074 | C00022; C00025; C00026; C00097; C00149; C00186 | map05230 |
cAMP signaling pathway | 5 | 12.141 | C00186; C00212; C00334; C00547; C01996 | map04024 |
Synaptic vesicle cycle | 4 | 12.114 | C00025; C00334; C00547; C01996 | map04721 |
Alanine, aspartate, and glutamate metabolism | 5 | 11.55 | C00022; C00025; C00026; C00169; C00334 | map00250 |
Microbial metabolism in diverse environments | 25 | 11.099 | C00022; C00025; C00026; C00097; C00149; C00169; C00180; and 25 others | map01120 |
Neuroactive ligand–receptor interaction | 6 | 11.03 | C00025; C00212; C00245; C00334; C00547; C01996 | map04080 |
Taste transduction | 5 | 10.866 | C00025; C00149; C00334; C00547; C01996 | map04742 |
Carbon metabolism | 8 | 10.617 | C00022; C00025; C00026; C00097; C00149; C00169; C00227; C00257 | map01200 |
Nicotine addiction | 3 | 10.143 | C00025; C00334; C01996 | map05033 |
GABAergic synapse | 3 | 9.2824 | C00025; C00026; C00334 | map04727 |
Biosynthesis of plant secondary metabolites | 8 | 9.0946 | C00022; C00025; C00026; C00097; C00149; C00408; C00712; C07130 | map01060 |
Glucagon signaling pathway | 4 | 8.8181 | C00022; C00026; C00149; C00186 | map04922 |
Arginine and proline metabolism | 6 | 8.7114 | C00022; C00025; C00334; C00791; C03771; C05942 | map00330 |
Lysine degradation | 5 | 8.6606 | C00026; C00322; C00408; C00489; C03196 | map00310 |
Pantothenate and CoA biosynthesis | 4 | 8.2442 | C00022; C00097; C00106; C00429 | map00770 |
Pyruvate metabolism | 4 | 8.114 | C00022; C00149; C00186; C00227 | map00620 |
Biosynthesis of amino acids | 7 | 7.8525 | C00022; C00025; C00026; C00097; C00169; C00322; C00680 | map01230 |
HIF-1 signaling pathway | 3 | 7.6388 | C00022; C00026; C00186 | map04066 |
Sphingolipid signaling pathway | 3 | 7.6388 | C00212; C00346; C00836 | map04071 |
Biosynthesis of alkaloids derived from histidine and purine | 4 | 7.6368 | C00022; C00026; C00149; C07130 | map01065 |
Biosynthesis of alkaloids derived from ornithine, lysine, and nicotinic acid | 5 | 7.2832 | C00022; C00025; C00026; C00149; C00408 | map01064 |
Proximal tubule bicarbonate reclamation | 3 | 7.2522 | C00025; C00026; C00149 | map04964 |
Butanoate metabolism | 4 | 6.933 | C00022; C00025; C00026; C00334 | map00650 |
Citrate cycle (TCA cycle) | 3 | 6.7584 | C00022; C00026; C00149 | map00020 |
Carbon fixation pathways in prokaryotes | 4 | 6.756 | C00022; C00026; C00149; C00227 | map00720 |
Arginine biosynthesis | 3 | 6.3407 | C00025; C00026; C00169 | map00220 |
Metabolic pathways | 42 | 6.0254 | C00022; C00025; C00026; C00097; C00106; C00149; C00169; and 42 others | map01100 |
Morphine addiction | 2 | 5.8055 | C00212; C00334 | map05032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Qiu, D.; Hu, Y.; Chen, X.; Li, Z.; Li, Q. Metabolomic Analysis of Specific Metabolites in Codonopsis pilosula Soil Under Different Stubble Conditions. Molecules 2024, 29, 5333. https://doi.org/10.3390/molecules29225333
Xu F, Qiu D, Hu Y, Chen X, Li Z, Li Q. Metabolomic Analysis of Specific Metabolites in Codonopsis pilosula Soil Under Different Stubble Conditions. Molecules. 2024; 29(22):5333. https://doi.org/10.3390/molecules29225333
Chicago/Turabian StyleXu, Fengbin, Daiyu Qiu, Yurong Hu, Xianxian Chen, Zhonghu Li, and Qian Li. 2024. "Metabolomic Analysis of Specific Metabolites in Codonopsis pilosula Soil Under Different Stubble Conditions" Molecules 29, no. 22: 5333. https://doi.org/10.3390/molecules29225333
APA StyleXu, F., Qiu, D., Hu, Y., Chen, X., Li, Z., & Li, Q. (2024). Metabolomic Analysis of Specific Metabolites in Codonopsis pilosula Soil Under Different Stubble Conditions. Molecules, 29(22), 5333. https://doi.org/10.3390/molecules29225333