Multifunctional Dy3+ Complexes with Triphenylmethanolates: Structural Diversity, Luminescence, and Magnetic Relaxation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Structures
2.2. Magnetic Properties
2.3. Photoluminescence
3. Materials and Methods
3.1. General Procedures
3.2. Syntheses
3.3. X-Ray Crystallography
3.4. Magnetic Measurements
3.5. Photoluminescence Spectra
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, F.-S.; Day, B.M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamäki, A.; Layfield, R.A. Magnetic Hysteresis up to 80 Kelvin in a Dysprosium Metallocene Single-Molecule Magnet. Science 2018, 362, 1400–1403. [Google Scholar] [CrossRef] [PubMed]
- McClain, K.R.; Gould, C.A.; Chakarawet, K.; Teat, S.J.; Groshens, T.J.; Long, J.R.; Harvey, B.G. High-Temperature Magnetic Blocking and Magneto-Structural Correlations in a Series of Dysprosium(Iii) Metallocenium Single-Molecule Magnets. Chem. Sci. 2018, 9, 8492–8503. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, C.A.P.; Ortu, F.; Reta, D.; Chilton, N.F.; Mills, D.P. Molecular Magnetic Hysteresis at 60 Kelvin in Dysprosocenium. Nature 2017, 548, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.-S.; Day, B.M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamäki, A.; Layfield, R.A. A Dysprosium Metallocene Single-Molecule Magnet Functioning at the Axial Limit. Angew. Chem. Int. Ed. Engl. 2017, 56, 11445–11449. [Google Scholar] [CrossRef]
- Sanvito, S.; Rocha, A.R. Molecular-Spintronics: The Art of Driving Spin through Molecules. arXiv 2006, arXiv:cond-mat/0605239. [Google Scholar]
- Gaita-Ariño, A.; Luis, F.; Hill, S.; Coronado, E. Molecular Spins for Quantum Computation. Nat. Chem. 2019, 11, 301–309. [Google Scholar] [CrossRef]
- Bogani, L.; Wernsdorfer, W. Molecular Spintronics Using Single-Molecule Magnets. Nat. Mater. 2008, 7, 179–186. [Google Scholar] [CrossRef]
- Rinehart, J.D.; Long, J.R. Exploiting Single-Ion Anisotropy in the Design of f-Element Single-Molecule Magnets. Chem. Sci. 2011, 2, 2078–2085. [Google Scholar] [CrossRef]
- Ungur, L.; Chibotaru, L.F. Strategies toward High-Temperature Lanthanide-Based Single-Molecule Magnets. Inorg. Chem. 2016, 55, 10043–10056. [Google Scholar] [CrossRef]
- Liddle, S.T.; Slageren, J. van Improving F-Element Single Molecule Magnets. Chem. Soc. Rev. 2015, 44, 6655–6669. [Google Scholar] [CrossRef]
- Ding, Y.-S.; Han, T.; Zhai, Y.-Q.; Reta, D.; Chilton, N.F.; Winpenny, R.E.P.; Zheng, Y.-Z. A Study of Magnetic Relaxation in Dysprosium(III) Single-Molecule Magnets. Chem.—A Eur. J. 2020, 26, 5893–5902. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Rajeshkumar, T.; Rajaraman, G.; Murugavel, R. An Air-Stable Dy(III) Single-Ion Magnet with High Anisotropy Barrier and Blocking Temperature. Chem. Sci. 2016, 7, 5181–5191. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, Y.-C.; Liu, J.-L.; Vieru, V.; Ungur, L.; Jia, J.-H.; Chibotaru, L.F.; Lan, Y.; Wernsdorfer, W.; Gao, S.; et al. A Stable Pentagonal Bipyramidal Dy(III) Single-Ion Magnet with a Record Magnetization Reversal Barrier over 1000 K. J. Am. Chem. Soc. 2016, 138, 5441–5450. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sun, R.; Chen, Y.; Wang, B.-W.; Wang, Z.-M.; Gao, S. Assembling High-Temperature Single-Molecule Magnets with Low-Coordinate Bis(Amido) Dysprosium Unit [DyN2]+ via Cl–K–Cl Linkage. CCS Chem. 2020, 2, 362–368. [Google Scholar] [CrossRef]
- Chilton, N.F.; Goodwin, C.A.P.; Mills, D.P.; Winpenny, R.E.P. The First Near-Linear Bis(Amide) f-Block Complex: A Blueprint for a High Temperature Single Molecule Magnet. Chem. Commun. 2014, 51, 101–103. [Google Scholar] [CrossRef]
- Woodruff, D.N.; Winpenny, R.E.P.; Layfield, R.A. Lanthanide Single-Molecule Magnets. Chem. Rev. 2013, 113, 5110–5148. [Google Scholar] [CrossRef]
- Konieczny, P.; Pełka, R.; Masuda, Y.; Sakata, S.; Kayahara, S.; Irie, N.; Kajiwara, T.; Baran, S. Anisotropy of Spin–Lattice Relaxations in Mononuclear Tb3+ Single-Molecule Magnets. J. Phys. Chem. C 2020, 124, 7930–7937. [Google Scholar] [CrossRef]
- Parmar, V.S.; Gransbury, G.K.; Whitehead, G.F.S.; Mills, D.P.; Winpenny, R.E.P. Slow Magnetic Relaxation in Distorted Tetrahedral Dy(III) Aryloxide Complexes. Chem. Commun. 2021, 57, 9208–9211. [Google Scholar] [CrossRef]
- Ding, Y.-S.; Chilton, N.F.; Winpenny, R.E.P.; Zheng, Y.-Z. On Approaching the Limit of Molecular Magnetic Anisotropy: A Near-Perfect Pentagonal Bipyramidal Dysprosium(III) Single-Molecule Magnet. Angew. Chem. Int. Ed. 2016, 55, 16071–16074. [Google Scholar] [CrossRef]
- Ding, Y.-S.; Yu, K.-X.; Reta, D.; Ortu, F.; Winpenny, R.E.P.; Zheng, Y.-Z.; Chilton, N.F. Field- and Temperature-Dependent Quantum Tunnelling of the Magnetisation in a Large Barrier Single-Molecule Magnet. Nat. Commun. 2018, 9, 3134. [Google Scholar] [CrossRef]
- Yu, K.-X.; Kragskow, J.G.C.; Ding, Y.-S.; Zhai, Y.-Q.; Reta, D.; Chilton, N.F.; Zheng, Y.-Z. Enhancing Magnetic Hysteresis in Single-Molecule Magnets by Ligand Functionalization. Chem 2020, 6, 1777–1793. [Google Scholar] [CrossRef]
- Long, J.; Tolpygin, A.O.; Cherkasov, A.V.; Nelyubina, Y.V.; Guari, Y.; Larionova, J.; Trifonov, A.A. Tuning the Coordination Sphere of Octahedral Dy(III) Complexes with Silanolate/Stannanolate Ligands: Synthesis, Structures and Slow Relaxation of the Magnetization. CrystEngComm 2021, 23, 8351–8359. [Google Scholar] [CrossRef]
- Long, J.; Guari, Y.; Ferreira, R.A.S.; Carlos, L.D.; Larionova, J. Recent Advances in Luminescent Lanthanide Based Single-Molecule Magnets. Coord. Chem. Rev. 2018, 363, 57–70. [Google Scholar] [CrossRef]
- Jia, J.-H.; Li, Q.-W.; Chen, Y.-C.; Liu, J.-L.; Tong, M.-L. Luminescent Single-Molecule Magnets Based on Lanthanides: Design Strategies, Recent Advances and Magneto-Luminescent Studies. Coord. Chem. Rev. 2019, 378, 365–381. [Google Scholar] [CrossRef]
- Pointillart, F.; Cador, O.; Le Guennic, B.; Ouahab, L. Uncommon Lanthanide Ions in Purely 4f Single Molecule Magnets. Coord. Chem. Rev. 2017, 346, 150–175. [Google Scholar] [CrossRef]
- Marin, R.; Brunet, G.; Murugesu, M. Shining New Light on Multifunctional Lanthanide Single-Molecule Magnets. Angew. Chem. Int. Ed. 2021, 60, 1728–1746. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Tolpygin, A.O.; Mamontova, E.; Lyssenko, K.A.; Liu, D.; Albaqami, M.D.; Chibotaru, L.F.; Guari, Y.; Larionova, J.; Trifonov, A.A. An Unusual Mechanism of Building up of a High Magnetization Blocking Barrier in an Octahedral Alkoxide Dy3+-Based Single-Molecule Magnet. Inorg. Chem. Front. 2021, 8, 1166–1174. [Google Scholar] [CrossRef]
- Boyle, T.J.; Bunge, S.D.; Clem, P.G.; Richardson, J.; Dawley, J.T.; Ottley, L.A.M.; Rodriguez, M.A.; Tuttle, B.A.; Avilucea, G.R.; Tissot, R.G. Synthesis and Characterization of a Family of Structurally Characterized Dysprosium Alkoxides for Improved Fatigue-Resistance Characteristics of PDyZT Thin Films. Inorg. Chem. 2005, 44, 1588–1600. [Google Scholar] [CrossRef]
- Long, J.; Selikhov, A.N.; Mamontova, E.; Lyssenko, K.A.; Guari, Y.; Larionova, J.; Trifonov, A.A. Synthesis, Structure, Magnetic and Luminescence Properties of Two Dysprosium Single-Molecule Magnets Based on Phenoxide Dye Ligands. CrystEngComm 2020, 22, 1909–1913. [Google Scholar] [CrossRef]
- Long, J.; Tolpygin, A.O.; Lyubov, D.M.; Rad’kova, N.Y.; Cherkasov, A.V.; Nelyubina, Y.V.; Guari, Y.; Larionova, J.; Trifonov, A.A. High Magnetization Reversal Barriers in Luminescent Dysprosium Octahedral and Pentagonal Bipyramidal Single-Molecule Magnets Based on Fluorinated Alkoxide Ligands. Dalton Trans. 2021, 50, 8487–8496. [Google Scholar] [CrossRef]
- Jin, P.-B.; Luo, Q.-C.; Liu, Y.-Y.; Zheng, Y.-Z. Enhancing Blocking Temperature Using Inverse Hydrogen Bonds for Non-Radical Bridged Dimeric Dy(III) Single-Molecule Magnets. Sci. China Chem. 2024, 67, 3328–3338. [Google Scholar] [CrossRef]
- Long, J.; Habib, F.; Lin, P.-H.; Korobkov, I.; Enright, G.; Ungur, L.; Wernsdorfer, W.; Chibotaru, L.F.; Murugesu, M. Single-Molecule Magnet Behavior for an Antiferromagnetically Superexchange-Coupled Dinuclear Dysprosium(III) Complex. J. Am. Chem. Soc. 2011, 133, 5319–5328. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-L.; Chen, Y.-C.; Tong, M.-L. Symmetry Strategies for High Performance Lanthanide-Based Single-Molecule Magnets. Chem. Soc. Rev. 2018, 47, 2431–2453. [Google Scholar] [CrossRef]
- Bajaj, N.; Mavragani, N.; Kitos, A.A.; Chartrand, D.; Maris, T.; Mansikkamäki, A.; Murugesu, M. Hard Single-Molecule Magnet Behavior and Strong Magnetic Coupling in Pyrazinyl Radical-Bridged Lanthanide Metallocenes. Chem 2024, 8, 2484–2499. [Google Scholar] [CrossRef]
- Wang, J.; Li, Q.-W.; Wu, S.-G.; Chen, Y.-C.; Wan, R.-C.; Huang, G.-Z.; Liu, Y.; Liu, J.-L.; Reta, D.; Giansiracusa, M.J.; et al. Opening Magnetic Hysteresis by Axial Ferromagnetic Coupling: From Mono-Decker to Double-Decker Metallacrown. Angew. Chem. Int. Ed. 2021, 60, 5299–5306. [Google Scholar] [CrossRef]
- Kolesnikov, I.E.; Kalinichev, A.A.; Kurochkin, M.A.; Golyeva, E.V.; Terentyeva, A.S.; Kolesnikov, E.Y.; Lähderanta, E. Structural, Luminescence and Thermometric Properties of Nanocrystalline YVO4:Dy3+ Temperature and Concentration Series. Sci. Rep. 2019, 9, 2043. [Google Scholar] [CrossRef]
- Harder, S.; Ruspic, C.; Bhriain, N.N.; Berkermann, F.; Schürmann, M. Benzyl Complexes of Lanthanide(II) and Lanthanide(III) Metals: Trends and Comparisons. Z. Für Naturforschung B 2008, 63, 267–274. [Google Scholar] [CrossRef]
- Taylor, M.D.; Carter, C.P. Preparation of Anhydrous Lanthanide Halides, Especially Iodides. J. Inorg. Nucl. Chem. 1962, 24, 387–391. [Google Scholar] [CrossRef]
- Amorose, D.M.; Lee, R.A.; Petersen, J.L. 1-Sila-3-Metallacyclobutanes, Precursors for the Generation of Highly Electrophilic Group 4 Metallocene Alkyl Cations. Spectroscopic and Structural Evidence of a Weakly Bound THF Ligand in [(C5Me5)2Zr(CH2SiMe3)(THF)][BPh4]. Organometallics 1991, 10, 2191–2198. [Google Scholar] [CrossRef]
- Lyle, S.J.; Rahman, M.d.M. Complexometric Titration of Yttrium and the Lanthanons—I: A Comparison of Direct Methods. Talanta 1963, 10, 1177–1182. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.a.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Compound | Dy−O− Distances (Å) | Dy−O/N Distances (Å) | −O−Dy−O− Angle (°) | Oax−Dy−Xax Angle (°) |
---|---|---|---|---|
1 | 2.054(4), 2.062(5) | 2.341(5)–2.449(6) | 102.7(2) | 164.4(2) |
2 | 1.980(17)–2.102(5) | 2.362(5), 2.407(5) | 97.8(8)–163.0(10) a | 169.55(17) |
3 | 2.124(8) | 2.601(11) | 102.4(3) | 161.6(4) |
4 | 2.0335(12) | 2.3473(15) | - | 171.46(7), 164.59(8) b |
Samples | AT (s−1.Oe−4) | B1 (s−1) | B2 (Oe−2) | CT (s−1) | AH (s−1.K−1) | τ0 (s−1) | E (cm−1) | C (s−1.K−9) |
---|---|---|---|---|---|---|---|---|
B (s−1.Oe2) | ||||||||
1 | (2.1 ± 0.2) ×10−11 | (1.5 ± 1.0) ×103 | (3.7 ± 2.5) ×10−4 | 4.2 ± 2.0 | 22 ± 1 | (1.3 ± 0.3) ×10−5 | 11.1 ± 0.4 | (1.03 ± 0.07) ×10−2 |
2 | (1.8 ± 0.4) ×10−11 | 82 ± 57 | (2.1 ± 1.8) ×10−4 | 4.2 ± 0.9 | 2.0 ± 0.1 | (2.2 ± 0.5) ×10−6 | 16.5 ± 0.3 | (1.27 ± 0.07) ×10−2 |
3 | (7.1 ± 0.8) ×10−8 | (5.8 ± 5.4) × 105 | 81 ± 45 | 485 ± 4 | (2.1 ± 0.8) ×10−5 | 9.4 ± 0.7 | (3.7 ± 0.2) ×10−2 |
(s−1) | (K) | (s−1) | (K) | (s−1) | (K) |
(2.0 ± 1.2) 10−8 | 421 ± 25 | (1.0 ± 0.1) 10−4 | 98 ± 3 | (2.6 ± 0.2) 10−3 | 37.5 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Félix, G.; Tolpygin, A.O.; Larquey, A.; Gogolev, I.A.; Nelyubina, Y.V.; Guari, Y.; Larionova, J.; Trifonov, A.A. Multifunctional Dy3+ Complexes with Triphenylmethanolates: Structural Diversity, Luminescence, and Magnetic Relaxation. Molecules 2024, 29, 5343. https://doi.org/10.3390/molecules29225343
Félix G, Tolpygin AO, Larquey A, Gogolev IA, Nelyubina YV, Guari Y, Larionova J, Trifonov AA. Multifunctional Dy3+ Complexes with Triphenylmethanolates: Structural Diversity, Luminescence, and Magnetic Relaxation. Molecules. 2024; 29(22):5343. https://doi.org/10.3390/molecules29225343
Chicago/Turabian StyleFélix, Gautier, Aleksei O. Tolpygin, Aurore Larquey, Ilia A. Gogolev, Yulia V. Nelyubina, Yannick Guari, Joulia Larionova, and Alexander A. Trifonov. 2024. "Multifunctional Dy3+ Complexes with Triphenylmethanolates: Structural Diversity, Luminescence, and Magnetic Relaxation" Molecules 29, no. 22: 5343. https://doi.org/10.3390/molecules29225343
APA StyleFélix, G., Tolpygin, A. O., Larquey, A., Gogolev, I. A., Nelyubina, Y. V., Guari, Y., Larionova, J., & Trifonov, A. A. (2024). Multifunctional Dy3+ Complexes with Triphenylmethanolates: Structural Diversity, Luminescence, and Magnetic Relaxation. Molecules, 29(22), 5343. https://doi.org/10.3390/molecules29225343