AMTAC-19, a Spiro-Acridine Compound, Induces In Vitro Antitumor Effect via the ROS-ERK/JNK Signaling Pathway
Abstract
:1. Introduction
2. Results
2.1. AMTAC-19 Exhibits Favorable Interaction with Extracellular Signal-Regulated Kinase 1 (ERK1), c-Jun N-Terminal Kinase 1 (JNK1), and p38 Mitogen-Activated Protein Kinase α (p38α MAPK) in Molecular Prediction
2.2. AMTAC-19 Treatment Activates the ERK1/2 and JNK1 Proteins
2.3. The Activation of ERK and JNK Is Involved in the Cytotoxicity Induced by AMTAC-19
2.4. AMTAC-19 Induces Oxidative Stress in HCT-116 Cells
2.5. AMTAC-19 Induces ROS-Dependent Cytotoxicity in HCT-116 Cells
3. Discussion
4. Materials and Methods
4.1. Drugs and Reagents
4.2. Chemistry
4.3. HCT-116 Colorectal Carcinoma Cell Line
4.4. Docking Prediction
4.5. Assessment of MAPK Activity After AMTAC-19 Treatment Using Flow Cytometry
4.6. Evaluation of AMTAC-19 Cytotoxicity in the Presence or Absence of MAPKs Inhibitors
4.7. Quantification of Reactive Oxygen Species (ROS) by the DCFH-DA Assay
4.8. Assessment of Oxidative Stress Involvement in AMTAC-19 Cytotoxicity
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xi, Y.; Xu, P. Global Colorectal Cancer Burden in 2020 and Projections to 2040. Transl. Oncol. 2021, 14, 101174. [Google Scholar] [CrossRef] [PubMed]
- Barroso Pelegrini, B.; Becker, T.C.A.; Rosseto de Oliveira, R.; Augusto de Melo, W. Tendência Da Mortalidade Por Câncer Colorretal Em Adultos No Brasil. SaBios-Rev. Saúde Biol. 2023, 18, 1–11. [Google Scholar] [CrossRef]
- Gouveia, R.G.; Ribeiro, A.G.; Segundo, M.Â.S.P.; de Oliveira, J.F.; de Lima, M.D.C.A.; de Lima Souza, T.R.C.; de Almeida, S.M.V.; de Moura, R.O. Synthesis, DNA and Protein Interactions and Human Topoisomerase Inhibition of Novel Spiroacridine Derivatives. Bioorg. Med. Chem. 2018, 26, 5911–5921. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Huo, L.; Jaiswal, Y.; Huang, J.; Zhong, Z.; Zhong, J.; Williams, L.; Xia, X.; Liang, Y.; Yan, Z. Design, Synthesis, Antimicrobial, and Anticancer Activities of Acridine Thiosemicarbazides Derivatives. Molecules 2019, 24, 2065. [Google Scholar] [CrossRef]
- Ren, Y.; Ruan, Y.; Cheng, B.; Li, L.; Liu, J.; Fang, Y.; Chen, J. Design, Synthesis and Biological Evaluation of Novel Acridine and Quinoline Derivatives as Tubulin Polymerization Inhibitors with Anticancer Activities. Bioorg. Med. Chem. 2021, 46, 116376. [Google Scholar] [CrossRef]
- Rupar, J.; Dobričić, V.; Grahovac, J.; Radulović, S.; Skok, Ž.; Ilaš, J.; Aleksić, M.; Brborić, J.; Čudina, O. Synthesis and Evaluation of Anticancer Activity of New 9-Acridinyl Amino Acid Derivatives. RSC Med. Chem. 2020, 11, 378–386. [Google Scholar] [CrossRef]
- Varakumar, P.; Rajagopal, K.; Aparna, B.; Raman, K.; Byran, G.; Gonçalves Lima, C.M.; Rashid, S.; Nafady, M.H.; Emran, T.B.; Wybraniec, S. Acridine as an Anti-Tumour Agent: A Critical Review. Molecules 2022, 28, 193. [Google Scholar] [CrossRef]
- Yadav, T.T.; Murahari, M.; Peters, G.J.; YC, M. A Comprehensive Review on Acridone Based Derivatives as Future Anti-Cancer Agents and Their Structure Activity Relationships. Eur. J. Med. Chem. 2022, 239, 114527. [Google Scholar] [CrossRef]
- Changchien, J.-J.; Chen, Y.-J.; Huang, C.-H.; Cheng, T.-L.; Lin, S.-R.; Chang, L.-S. Quinacrine Induces Apoptosis in Human Leukemia K562 Cells via P38 MAPK-Elicited BCL2 down-Regulation and Suppression of ERK/c-Jun-Mediated BCL2L1 Expression. Toxicol. Appl. Pharm. 2015, 284, 33–41. [Google Scholar] [CrossRef]
- Duarte, S.S.; Silva, D.K.F.; Lisboa, T.M.H.; Gouveia, R.G.; de Andrade, C.C.N.; de Sousa, V.M.; Ferreira, R.C.; de Moura, R.O.; Gomes, J.N.S.; da Silva, P.M.; et al. Apoptotic and Antioxidant Effects in HCT-116 Colorectal Carcinoma Cells by a Spiro-Acridine Compound, AMTAC-06. Pharmacol. Rep. 2022, 74, 545–554. [Google Scholar] [CrossRef]
- Fu, W.; Li, X.; Lu, X.; Zhang, L.; Li, R.; Zhang, N.; Liu, S.; Yang, X.; Wang, Y.; Zhao, Y.; et al. A Novel Acridine Derivative, LS-1-10 Inhibits Autophagic Degradation and Triggers Apoptosis in Colon Cancer Cells. Cell Death Dis. 2017, 8, e3086. [Google Scholar] [CrossRef] [PubMed]
- Girek, M.; Kłosiński, K.; Grobelski, B.; Pizzimenti, S.; Cucci, M.A.; Daga, M.; Barrera, G.; Pasieka, Z.; Czarnecka, K.; Szymański, P. Novel Tetrahydroacridine Derivatives with Iodobenzoic Moieties Induce G0/G1 Cell Cycle Arrest and Apoptosis in A549 Non-Small Lung Cancer and HT-29 Colorectal Cancer Cells. Mol. Cell. Biochem. 2019, 460, 123–150. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-H.; Lee, Y.-C.; Chen, Y.-J.; Wang, L.-J.; Shi, Y.-J.; Chang, L.-S. Quinacrine Induces the Apoptosis of Human Leukemia U937 Cells through FOXP3/MiR-183/β-TrCP/SP1 Axis-Mediated BAX Upregulation. Toxicol. Appl. Pharm. 2017, 334, 35–46. [Google Scholar] [CrossRef]
- Lisboa, T.; Silva, D.; Duarte, S.; Ferreira, R.; Andrade, C.; Lopes, A.L.; Ribeiro, J.; Farias, D.; Moura, R.; Reis, M.; et al. Toxicity and Antitumor Activity of a Thiophene–Acridine Hybrid. Molecules 2019, 25, 64. [Google Scholar] [CrossRef]
- Piorecka, K.; Kurjata, J.; Stanczyk, W.A. Acriflavine, an Acridine Derivative for Biomedical Application: Current State of the Art. J. Med. Chem. 2022, 65, 11415–11432. [Google Scholar] [CrossRef]
- Prasher, P.; Sharma, M. Medicinal Chemistry of Acridine and Its Analogues. MedChemComm 2018, 9, 1589–1618. [Google Scholar] [CrossRef]
- Salem, O.M.; Vilková, M.; Janočková, J.; Jendželovský, R.; Fedoročko, P.; Imrich, J.; Kožurková, M. Synthesis, Spectral Characterization, DNA Binding Ability and Anti-Cancer Screening of New Acridine-Based Derivatives. Med. Chem. Res. 2017, 26, 2309–2321. [Google Scholar] [CrossRef]
- Nandi, S.; Bhunia, S.; Debnath, I.; Hazra, S.; Ghosh, S.; Hazra, S. Different Biological Activities and Structure Activity Studies of Acridine and Acridone Derivatives: An Updated Review. World J. Pharm. Res. 2024, 13, 357–399. [Google Scholar]
- De Almeida, S.M.V.; Lafayette, E.A.; Silva, W.L.; de Lima Serafim, V.; Menezes, T.M.; Neves, J.L.; Ruiz, A.L.T.G.; de Carvalho, J.E.; de Moura, R.O.; Beltrão, E.I.C.; et al. New Spiro-Acridines: DNA Interaction, Antiproliferative Activity and Inhibition of Human DNA Topoisomerases. Int. J. Biol. Macromol. 2016, 92, 467–475. [Google Scholar] [CrossRef]
- Dai, Q.; Chen, J.; Gao, C.; Sun, Q.; Yuan, Z.; Jiang, Y. Design, Synthesis and Biological Evaluation of Novel Phthalazinone Acridine Derivatives as Dual PARP and Topo Inhibitors for Potential Anticancer Agents. Chin. Chem. Lett. 2020, 31, 404–408. [Google Scholar] [CrossRef]
- de Almeida, S.M.V.; Ribeiro, A.G.; de Lima Silva, G.C.; Ferreira Alves, J.E.; Beltrão, E.I.C.; de Oliveira, J.F.; de Carvalho, L.B.; Alves de Lima, M.d.C. DNA Binding and Topoisomerase Inhibition: How Can These Mechanisms Be Explored to Design More Specific Anticancer Agents? Biomed. Pharmacother. 2017, 96, 1538–1556. [Google Scholar] [CrossRef]
- Gobinath, P.; Packialakshmi, P.; Daoud, A.; Alarifi, S.; Idhayadhulla, A.; Radhakrishnan, S. Grindstone Chemistry: Design, One-Pot Synthesis, and Promising Anticancer Activity of Spiro[Acridine-9,2′-Indoline]-1,3,8-Trione Derivatives against the MCF-7 Cancer Cell Line. Molecules 2020, 25, 5862. [Google Scholar] [CrossRef] [PubMed]
- Menezes, T.M.; de Almeida, S.M.V.; de Moura, R.O.; Seabra, G.; de Lima, M.D.C.A.; Neves, J.L. Spiro-Acridine Inhibiting Tyrosinase Enzyme: Kinetic, Protein-Ligand Interaction and Molecular Docking Studies. Int. J. Biol. Macromol. 2019, 122, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Salem, O.M.; Vilková, M.; Janoŀková, J.; Jendželovský, R.; FedoroĿko, P.; Žilecká, E.; Kašpárková, J.; Brabec, V.; Imrich, J.; Kožurková, M. New Spiro Tria(Thia)Zolidine acridines as Topoisomerase Inhibitors, DNA Binders and Cytostatic Compounds. Int. J. Biol. Macromol. 2016, 86, 690–700. [Google Scholar] [CrossRef]
- Behbahani, F.S.; Tabeshpour, J.; Mirzaei, S.; Golmakaniyoon, S.; Tayarani-Najaran, Z.; Ghasemi, A.; Ghodsi, R. Synthesis and Biological Evaluation of Novel Benzo[c]Acridine-diones as Potential Anticancer Agents and Tubulin Polymerization Inhibitors. Arch. Pharm. 2019, 352, e1800307. [Google Scholar] [CrossRef]
- Nayak, D.; Tripathi, N.; Kathuria, D.; Siddharth, S.; Nayak, A.; Bharatam, P.V.; Kundu, C. Quinacrine and Curcumin Synergistically Increased the Breast Cancer Stem Cells Death by Inhibiting ABCG2 and Modulating DNA Damage Repair Pathway. Int. J. Biochem. Cell. Biol. 2020, 119, 105682. [Google Scholar] [CrossRef]
- Zhou, Q.; You, C.; Zheng, C.; Gu, Y.; Gu, H.; Zhang, R.; Wu, H.; Sun, B. 3-Nitroacridine Derivatives Arrest Cell Cycle at G0/G1 Phase and Induce Apoptosis in Human Breast Cancer Cells May Act as DNA-Target Anticancer Agents. Life Sci. 2018, 206, 1–9. [Google Scholar] [CrossRef]
- Różycka, D.; Kowalczyk, A.; Denel-Bobrowska, M.; Kuźmycz, O.; Gapińska, M.; Stączek, P.; Olejniczak, A.B. Acridine/Acridone–Carborane Conjugates as Strong DNA-Binding Agents with Anticancer Potential. ChemMedChem 2023, 18, e202200666. [Google Scholar] [CrossRef]
- Takac, P.; Kello, M.; Vilkova, M.; Vaskova, J.; Michalkova, R.; Mojzisova, G.; Mojzis, J. Antiproliferative Effect of Acridine Chalcone Is Mediated by Induction of Oxidative Stress. Biomolecules 2020, 10, 345. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Z.; Chen, X.; Qiu, H.; Gu, Y.; Wang, N.; Wang, T.; Wang, Z.; Ma, H.; Zhao, Y.; et al. 8a, a New Acridine Antiproliferative and Pro-Apoptotic Agent Targeting HDAC1/DNMT1. Int. J. Mol. Sci. 2021, 22, 5516. [Google Scholar] [CrossRef]
- Gao, W.-Y.; Boonyarat, C.; Takomthong, P.; Plekratoke, K.; Hayakawa, Y.; Yenjai, C.; Kaewamatawong, R.; Chaiwiwatrakul, S.; Waiwut, P. Acridone Derivatives from Atalantia Monophyla Inhibited Cancer Cell Proliferation through ERK Pathway. Molecules 2022, 27, 3865. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-C.; Chiou, J.-T.; Wang, L.-J.; Chen, Y.-J.; Chang, L.-S. Amsacrine Downregulates BCL2L1 Expression and Triggers Apoptosis in Human Chronic Myeloid Leukemia Cells through the SIDT2/NOX4/ERK/HuR Pathway. Toxicol. Appl. Pharm. 2023, 474, 116625. [Google Scholar] [CrossRef] [PubMed]
- Samanta, A.; Sarkar, A. Altered Expression of ERK, Cytochrome-c, and HSP70 Triggers Apoptosis in Quinacrine-Exposed Human Invasive Ductal Carcinoma Cells. Biomed. Pharmacother. 2021, 139, 111707. [Google Scholar] [CrossRef] [PubMed]
- Solomon, V.R.; Almnayan, D.; Lee, H. Design, Synthesis and Characterization of Novel Quinacrine Analogs That Preferentially Kill Cancer over Non-Cancer Cells through the down-Regulation of Bcl-2 and up-Regulation of Bax and Bad. Eur. J. Med. Chem. 2017, 137, 156–166. [Google Scholar] [CrossRef]
- Gazdova, M.; Michalkova, R.; Kello, M.; Vilkova, M.; Kudlickova, Z.; Baloghova, J.; Mirossay, L.; Mojzis, J. Chalcone-Acridine Hybrid Suppresses Melanoma Cell Progression via G2/M Cell Cycle Arrest, DNA Damage, Apoptosis, and Modulation of MAP Kinases Activity. Int. J. Mol. Sci. 2022, 23, 12266. [Google Scholar] [CrossRef]
- Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive Oxygen Species and Cancer Paradox: To Promote or to Suppress? Free Radic. Biol. Med. 2017, 104, 144–164. [Google Scholar] [CrossRef]
- Reczek, C.R.; Chandel, N.S. The Two Faces of Reactive Oxygen Species in Cancer. Annu. Rev. Cancer Biol. 2017, 1, 79–98. [Google Scholar] [CrossRef]
- Di Martile, M.; Garzoli, S.; Ragno, R.; Del Bufalo, D. Essential Oils and Their Main Chemical Components: The Past 20 Years of Preclinical Studies in Melanoma. Cancers 2020, 12, 2650. [Google Scholar] [CrossRef]
- Oliveira, M.d.S.; Barbosa, M.I.F.; de Souza, T.B.; Moreira, D.R.M.; Martins, F.T.; Villarreal, W.; Machado, R.P.; Doriguetto, A.C.; Soares, M.B.P.; Bezerra, D.P. A Novel Platinum Complex Containing a Piplartine Derivative Exhibits Enhanced Cytotoxicity, Causes Oxidative Stress and Triggers Apoptotic Cell Death by ERK/P38 Pathway in Human Acute Promyelocytic Leukemia HL-60 Cells. Redox Biol. 2019, 20, 182–194. [Google Scholar] [CrossRef]
- Lee, S.; Rauch, J.; Kolch, W. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. Int. J. Mol. Sci. 2020, 21, 1102. [Google Scholar] [CrossRef]
- Wei, J.; Liu, R.; Hu, X.; Liang, T.; Zhou, Z.; Huang, Z. MAPK Signaling Pathway-Targeted Marine Compounds in Cancer Therapy. J. Cancer Res. Clin. Oncol. 2021, 147, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Dabiri, Y.; Schmid, A.; Theobald, J.; Blagojevic, B.; Streciwilk, W.; Ott, I.; Wölfl, S.; Cheng, X. A Ruthenium(II) n-Heterocyclic Carbene (NHC) Complex with Naphthalimide Ligand Triggers Apoptosis in Colorectal Cancer Cells via Activating the ROS-P38 MAPK Pathway. Int. J. Mol. Sci. 2018, 19, 3964. [Google Scholar] [CrossRef] [PubMed]
- Tarhouni-Jabberi, S.; Zakraoui, O.; Ioannou, E.; Riahi-Chebbi, I.; Haoues, M.; Roussis, V.; Kharrat, R.; Essafi-Benkhadir, K. Mertensene, a Halogenated Monoterpene, Induces G2/M Cell Cycle Arrest and Caspase Dependent Apoptosis of Human Colon Adenocarcinoma HT29 Cell Line through the Modulation of ERK-1/-2, AKT and NF-ΚB Signaling. Mar. Drugs 2017, 15, 221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhou, Q.; Huang, D.; He, L.; Zhang, H.; Hu, B.; Peng, H.; Ren, D. ROS/JNK/c-Jun Axis Is Involved in Oridonin-Induced Caspase-Dependent Apoptosis in Human Colorectal Cancer Cells. Biochem. Biophys. Res. Commun. 2019, 513, 594–601. [Google Scholar] [CrossRef]
- Vilková, M.; Ungvarská Maľučká, L.; Imrich, J. Prediction by 13 C NMR of Regioselectivity in 1,3-dipolar Cycloadditions of Acridin-9-yl Dipolarophiles. Magn. Reson. Chem. 2016, 54, 8–16. [Google Scholar] [CrossRef]
- Duarte, S.S.; Silva, D.K.F.; Lisboa, T.M.H.; Gouveia, R.G.; Ferreira, R.C.; de Moura, R.O.; da Silva, J.M.; Lima, E.D.A.; Rodrigues-Mascarenhas, S.; da Silva, P.M.; et al. Anticancer Effect of a Spiro-Acridine Compound Involves Immunomodulatory and Anti-Angiogenic Actions. Anticancer Res. 2020, 40, 5049–5057. [Google Scholar] [CrossRef]
- Silva, D.K.F.; Duarte, S.S.; Lisboa, T.M.H.; Ferreira, R.C.; Lopes, A.L.d.O.; Carvalho, D.C.M.; Rodrigues-Mascarenhas, S.; da Silva, P.M.; Segundo, M.A.S.P.; Moura, R.O.d.; et al. Antitumor Effect of a Novel Spiro-Acridine Compound Is Associated with Up-Regulation of Th1-Type Responses and Antiangiogenic Action. Molecules 2019, 25, 29. [Google Scholar] [CrossRef]
- de Sousa, V.M.; Duarte, S.S.; Silva, D.K.F.; Ferreira, R.C.; de Moura, R.O.; Segundo, M.A.S.P.; Farias, D.; Vieira, L.; Gonçalves, J.C.R.; Sobral, M.V. Cytotoxicity of a New Spiro-Acridine Derivative: Modulation of Cellular Antioxidant State and Induction of Cell Cycle Arrest and Apoptosis in HCT-116 Colorectal Carcinoma. Naunyn. Schmiedebergs Arch. Pharm. 2024, 397, 1901–1913. [Google Scholar] [CrossRef]
- Liu, M.; Xin, Z.; Clampit, J.E.; Wang, S.; Gum, R.J.; Haasch, D.L.; Trevillyan, J.M.; Abad-Zapatero, C.; Fry, E.H.; Sham, H.L.; et al. Synthesis and SAR of 1,9-Dihydro-9-Hydroxypyrazolo[3,4-b]Quinolin-4-Ones as Novel, Selective c-Jun N-Terminal Kinase Inhibitors. Bioorg. Med. Chem Lett. 2006, 16, 2590–2594. [Google Scholar] [CrossRef]
- Khan, R.A. Natural Products Chemistry: The Emerging Trends and Prospective Goals. Saudi Pharm. J. 2018, 26, 739–753. [Google Scholar] [CrossRef]
- Vasan, N.; Baselga, J.; Hyman, D.M. A View on Drug Resistance in Cancer. Nature 2019, 575, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Borowa-Mazgaj, B.; Mróz, A.; Augustin, E.; Paluszkiewicz, E.; Mazerska, Z. The Overexpression of CPR and P450 3A4 in Pancreatic Cancer Cells Changes the Metabolic Profile and Increases the Cytotoxicity and Pro-Apoptotic Activity of Acridine Antitumor Agent, C-1748. Biochem. Pharm. 2017, 142, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Dou, Z.; Xiong, Z.; Wang, N.; He, S.; Yan, X.; Jin, H. Design, Synthesis and Biological Research of Novel N-Phenylbenzamide-4-Methylamine Acridine Derivatives as Potential Topoisomerase I/II and Apoptosis-Inducing Agents. Bioorg. Med. Chem. Lett. 2019, 29, 126714. [Google Scholar] [CrossRef] [PubMed]
- Ben Hamouda, S.; Essafi-Benkhadir, K. Interplay between Signaling Pathways and Tumor Microenvironment Components: A Paradoxical Role in Colorectal Cancer. Int. J. Mol. Sci. 2023, 24, 5600. [Google Scholar] [CrossRef]
- Yue, J.; López, J.M. Understanding MAPK Signaling Pathways in Apoptosis. Int. J. Mol. Sci. 2020, 21, 2346. [Google Scholar] [CrossRef]
- Ferreira, R.C.; Duarte, S.S.; de Sousa, V.M.; de Souza, R.R.M.; Marques, K.K.G.; de Abrantes, R.A.; do Nascimento, Y.M.; de Sousa, N.F.; Scotti, M.T.; Scotti, L.; et al. The Essential Oil from Conyza bonariensis (L.) Cronquist (Asteraceae) Exerts an In Vitro Antimelanoma Effect by Inducing Apoptosis and Modulating the MAPKs, NF-ΚB, and PKB/AKT Signaling Pathways. Pharmaceuticals 2023, 16, 1553. [Google Scholar] [CrossRef]
- Xu, R.; Hu, J. The Role of JNK in Prostate Cancer Progression and Therapeutic Strategies. Biomed. Pharmacother. 2020, 121, 109679. [Google Scholar] [CrossRef]
- Cagnol, S.; Chambard, J.C. ERK and Cell Death: Mechanisms of ERK-Induced Cell Death-Apoptosis, Autophagy and Senescence. FEBS J. 2010, 277, 2–21. [Google Scholar] [CrossRef]
- Ren, Y.; Lv, C.; Zhang, J.; Zhang, B.; Yue, B.; Luo, X.; Yu, Z.; Wang, H.; Ren, J.; Wang, Z.; et al. Alantolactone Exhibits Antiproliferative and Apoptosis-Promoting Properties in Colon Cancer Model via Activation of the MAPK-JNK/c-Jun Signaling Pathway. Mol. Cell Biochem. 2021, 476, 4387–4403. [Google Scholar] [CrossRef]
- Sugiura, R.; Satoh, R.; Takasaki, T. ERK: A Double-Edged Sword in Cancer. ERK-Dependent Apoptosis as a Potential Therapeutic Strategy for Cancer. Cells 2021, 10, 2509. [Google Scholar] [CrossRef]
- Varga, D.; Hajdinák, P.; Makk-Merczel, K.; Szarka, A. The Possible Connection of Two Dual Function Processes: The Relationship of Ferroptosis and the JNK Pathway. Int. J. Mol. Sci. 2022, 23, 11004. [Google Scholar] [CrossRef] [PubMed]
- D’Sousa Costa, C.O.; Araujo Neto, J.H.; Baliza, I.R.S.; Dias, R.B.; Valverde, L.D.F.; Vidal, M.T.A.; Sales, C.B.S.; Rocha, C.A.G.; Moreira, D.R.M.; Soares, M.B.P.; et al. Novel Piplartine-Containing Ruthenium Complexes: Synthesis, Cell Growth Inhibition, Apoptosis Induction and ROS Production on HCT116 Cells. Oncotarget 2017, 8, 104367–104392. [Google Scholar] [CrossRef] [PubMed]
- Mohebali, N.; Pandurangan, A.K.; Mustafa, M.R.; Anandasadagopan, S.K.; Alagumuthu, T. Vernodalin Induces Apoptosis through the Activation of ROS/JNK Pathway in Human Colon Cancer Cells. J. Biochem. Mol. Toxicol. 2020, 34, e22587. [Google Scholar] [CrossRef]
- Wang, F.; Wu, P.; Qin, S.; Deng, Y.; Han, P.; Li, X.; Fan, C.; Xu, Y. Curcin C Inhibit Osteosarcoma Cell Line U2OS Proliferation by ROS Induced Apoptosis, Autophagy and Cell Cycle Arrest through Activating JNK Signal Pathway. Int. J. Biol. Macromol 2022, 195, 433–439. [Google Scholar] [CrossRef]
- Boshta, N.M.; Temirak, A.; El-Shahid, Z.A.; Shafiq, Z.; Soliman, A.A.F. Design, Synthesis, Molecular Docking and Biological Evaluation of 1,3,5-Trisubstituted-1H-Pyrazole Derivatives as Anticancer Agents with Cell Cycle Arrest, ERK and RIPK3- Kinase Activities. Bioorg. Chem. 2024, 143, 107058. [Google Scholar] [CrossRef]
- Kurniawan, Y.S.; Priyangga, K.T.A.; Jumina; Pranowo, H.D.; Sholikhah, E.N.; Zulkarnain, A.K.; Fatimi, H.A.; Julianus, J. An Update on the Anticancer Activity of Xanthone Derivatives: A Review. Pharmaceuticals 2021, 14, 1144. [Google Scholar] [CrossRef]
- Sugara, T.H.; Jumina; Solikhah, E.N.; Pranowo, H.D. QSAR and molecular docking approaches for development of haloxanthones as the anticancer agent against MCF-7 and HepG2. Rasayan J. Chem. 2021, 14, 1927–1937. [Google Scholar] [CrossRef]
- Malki, A.; Elbayaa, R.Y.; Ashour, H.M.A.; Loffredo, C.A.; Youssef, A.M. Novel Thiosemicarbazides Induced Apoptosis in Human MCF-7 Breast Cancer Cells via JNK Signaling. J. Enzym. Inhib. Med. Chem. 2015, 30, 786–795. [Google Scholar] [CrossRef]
- Patel, S.B.; Cameron, P.M.; Frantz-Wattley, B.; O’Neill, E.; Becker, J.W.; Scapin, G. Lattice Stabilization and Enhanced Diffraction in Human P38α Crystals by Protein Engineering. Biochim. Biophys. Acta BBA Proteins Proteom. 2004, 1696, 67–73. [Google Scholar] [CrossRef]
- Pous, J.; Baginski, B.; Martin-Malpartida, P.; González, L.; Scarpa, M.; Aragon, E.; Ruiz, L.; Mees, R.A.; Iglesias-Fernández, J.; Orozco, M.; et al. Structural Basis of a Redox-Dependent Conformational Switch That Regulates the Stress Kinase P38α. Nat. Commun. 2023, 14, 7920. [Google Scholar] [CrossRef]
- Jabbarzadeh Kaboli, P.; Leong, M.P.-Y.; Ismail, P.; Ling, K.-H. Antitumor Effects of Berberine against EGFR, ERK1/2, P38 and AKT in MDA-MB231 and MCF-7 Breast Cancer Cells Using Molecular Modelling and in Vitro Study. Pharmacol. Rep. 2019, 71, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Chu, B.; Liu, F.; Li, B.; Gao, C.; Li, L.; Sun, Q.; Shen, Z.; Jiang, Y. New Benzimidazole Acridine Derivative Induces Human Colon Cancer Cell Apoptosis in Vitro via the ROS-JNK Signaling Pathway. Acta Pharm. Sin. 2015, 36, 1074–1084. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Ren, D.; Wang, J.; Liu, X.; Zhang, H.; Wu, M.; Yang, G. Bruceine D Induces Lung Cancer Cell Apoptosis and Autophagy via the ROS/MAPK Signaling Pathway In Vitro and In Vivo. Cell. Death Dis. 2020, 11, 126. [Google Scholar] [CrossRef] [PubMed]
- Kanda, Y.; Mizuno, A.; Takasaki, T.; Satoh, R.; Hagihara, K.; Masuko, T.; Endo, Y.; Tanabe, G.; Sugiura, R. Down-regulation of Dual-specificity Phosphatase 6, a Negative Regulator of Oncogenic ERK Signaling, by ACA-28 Induces Apoptosis in NIH/3T3 Cells Overexpressing HER2/ErbB2. Genes Cells 2021, 26, 109–116. [Google Scholar] [CrossRef]
- Sahasrabudhe, S.A.; Terluk, M.R.; Kartha, R.V. N-Acetylcysteine Pharmacology and Applications in Rare Diseases—Repurposing an Old Antioxidant. Antioxidants 2023, 12, 1316. [Google Scholar] [CrossRef]
- Lebraud, H.; Wright, D.J.; East, C.E.; Holding, F.P.; O’Reilly, M.; Heightman, T.D. In-Gel Activity-Based Protein Profiling of a Clickable Covalent ERK1/2 Inhibitor. Mol. Biosyst. 2016, 12, 2867–2874. [Google Scholar] [CrossRef]
- Suplatov, D.; Kopylov, K.; Sharapova, Y.; Švedas, V. Human P38α Mitogen-Activated Protein Kinase in the Asp168-Phe169-Gly170-in (DFG-in) State Can Bind Allosteric Inhibitor Doramapimod. J. Biomol. Struct. Dyn. 2019, 37, 2049–2060. [Google Scholar] [CrossRef]
- De Azevedo, W., Jr. MolDock Applied to Structure-Based Virtual Screening. Curr. Drug Targets 2010, 11, 327–334. [Google Scholar] [CrossRef]
- Thomsen, R.; Christensen, M.H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006, 49, 3315–3321. [Google Scholar] [CrossRef]
- Ferreira, R.C.; do Nascimento, Y.M.; de Araújo Loureiro, P.B.; Martins, R.X.; de Souza Maia, M.E.; Farias, D.F.; Tavares, J.F.; Gonçalves, J.C.R.; da Silva, M.S.; Sobral, M.V. Chemical Composition, In Vitro Antitumor Effect, and Toxicity in Zebrafish of the Essential Oil from Conyza bonariensis (L.) Cronquist (Asteraceae). Biomolecules 2023, 13, 1439. [Google Scholar] [CrossRef]
Protein | Ligand | MolDock Score * | (p) ** MolDock Score | Critical Residues | Distance of Hydrogen Bonding Interactions (Å) |
---|---|---|---|---|---|
ERK1 | AMTAC-19 | −84.735 | 0.793 | Leu156, Ala52, Ile31 and Thr110 (hydrophobic interactions); Asp111 (hydrogen bond) | Val 39 (2.86 Å). |
Doxorubicin | −83.988 | 0.786 | Leu 107 (2.38 Å); Met 108 (2.15 Å); Ile31 (2.50 Å); Glu 109 (2.32 Å); Lys 114 (2.80 Å). | ||
Pyridine carbamate inhibitor | −106.816 | 1 | Lys 114 (2.29 Å); Met 108 (1.96 Å, 1.29 Å); Asp 106 (2.41 Å). | ||
JNK1 | AMTAC-19 | −74.978 | 0.781 | Ile32, Val158, Ala53, Met108, Val40 and Lys55 (hydrophobic interactions); Met108 (steric interactions). | - |
Doxorubicin | −96.058 | 1 | Ile 32 (2.26 Å); Met 111 (1.89 Å, 2.95 Å); Leu 110 (2.54Å). | ||
Pyrazoloquinolone inhibitor | −68.224 | 0.710 | Met 111 (2.20 Å, 2.99 Å). | ||
p38α MAPK | AMTAC-19 | −107.433 | 0.824 | Ile116 (hydrophobic interactions) | Ile 116 (3.36 Å); Gly 110 (2.16 Å); Ala 111 (2.62 Å); |
Doxorubicin | −108.908 | 0.835 | His 126 (2.74 Å); Glu 160 (2.37 Å), Val 158 (3.75 Å); Asn 159 (2.73 Å); Cys 162 (2.23 Å); Gln 120 (2.24 Å) | ||
BIRB-796 a | −130.409 | 1 | Met 109 (2.29 Å); Val 158 (2.33 Å, 2.70 Å, 2.80 Å). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, V.M.d.; Duarte, S.S.; Ferreira, R.C.; Sousa, N.F.d.; Scotti, M.T.; Scotti, L.; Silva, M.S.d.; Tavares, J.F.; Moura, R.O.d.; Gonçalves, J.C.R.; et al. AMTAC-19, a Spiro-Acridine Compound, Induces In Vitro Antitumor Effect via the ROS-ERK/JNK Signaling Pathway. Molecules 2024, 29, 5344. https://doi.org/10.3390/molecules29225344
Sousa VMd, Duarte SS, Ferreira RC, Sousa NFd, Scotti MT, Scotti L, Silva MSd, Tavares JF, Moura ROd, Gonçalves JCR, et al. AMTAC-19, a Spiro-Acridine Compound, Induces In Vitro Antitumor Effect via the ROS-ERK/JNK Signaling Pathway. Molecules. 2024; 29(22):5344. https://doi.org/10.3390/molecules29225344
Chicago/Turabian StyleSousa, Valgrícia Matias de, Sâmia Sousa Duarte, Rafael Carlos Ferreira, Natália Ferreira de Sousa, Marcus Tullius Scotti, Luciana Scotti, Marcelo Sobral da Silva, Josean Fechine Tavares, Ricardo Olímpio de Moura, Juan Carlos Ramos Gonçalves, and et al. 2024. "AMTAC-19, a Spiro-Acridine Compound, Induces In Vitro Antitumor Effect via the ROS-ERK/JNK Signaling Pathway" Molecules 29, no. 22: 5344. https://doi.org/10.3390/molecules29225344
APA StyleSousa, V. M. d., Duarte, S. S., Ferreira, R. C., Sousa, N. F. d., Scotti, M. T., Scotti, L., Silva, M. S. d., Tavares, J. F., Moura, R. O. d., Gonçalves, J. C. R., & Sobral, M. V. (2024). AMTAC-19, a Spiro-Acridine Compound, Induces In Vitro Antitumor Effect via the ROS-ERK/JNK Signaling Pathway. Molecules, 29(22), 5344. https://doi.org/10.3390/molecules29225344