Influence of Rapid Heat Treatment on the Photocatalytic Activity and Stability of Barium Titanates Against a Broad Range of Pollutants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Photocatalysts
2.1.1. Crystal Phase Composition (XRD)
2.1.2. Morphology (SEM)
2.1.3. Optical Properties
DRS
PL
2.1.4. Surface Properties
2.2. Photocatalytic Activity
2.2.1. Photocatalytic Oxidation
2.2.2. Photocatalytic Conversion of CO2
2.3. Cost Efficiency Comparison of Conventional Calcination and the RHSE Method
3. Materials and Methods
3.1. Materials
3.2. Synthesis of the Photocatalysts
3.3. Characterization Methods and Instrumentation
3.4. Determination of Photocatalytic Activities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhava, A.; Shenoy, U.S.; Bhat, D.K. Silver doped barium titanate nanoparticles for enhanced visible light photocatalytic degradation of dyes. Environ. Pollut. 2024, 344, 123430. [Google Scholar] [CrossRef] [PubMed]
- Panthi, G.; Park, M. Approaches for enhancing the photocatalytic activities of barium titanate: A review. J. Energy Chem. 2022, 73, 160–188. [Google Scholar] [CrossRef]
- Ray, S.K.; Cho, J.; Hur, J. A critical review on strategies for improving efficiency of BaTiO3-based photocatalysts for wastewater treatment. J. Environ. Manag. 2021, 290, 112679. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Briscoe, J.; Dunn, S. Effect of Ferroelectricity on Solar-Light-Driven Photocatalytic Activity of BaTiO3 Influence on the Carrier Separation and Stern Layer Formation. Chem. Mater. 2013, 25, 4215–4223. [Google Scholar] [CrossRef]
- Amaechi, I.C.; Katoch, R.; Kolhatkar, G.; Sun, S.; Ruediger, A. Particle size effect on the photocatalytic kinetics of barium titanate powders. Catal. Sci. Technol. 2020, 10, 6274–6284. [Google Scholar] [CrossRef]
- Li, W.; Xu, Z.; Chu, R.; Fu, P.; Hao, J. Structure and electrical properties of BaTiO3 prepared by sol–gel process. J. Alloys Compd. 2009, 482, 137–140. [Google Scholar] [CrossRef]
- Wang, P.; Fan, C.; Wang, Y.; Ding, G.; Yuan, P. A dual chelating sol–gel synthesis of BaTiO3 nanoparticles with effective photocatalytic activity for removing humic acid from water. Mater. Res. Bull. 2013, 48, 869–877. [Google Scholar] [CrossRef]
- Cui, B.; Yu, P.; Wang, X. Preparation and characterization of BaTiO3 powders and ceramics by sol–gel process using decanedioic acid. J. Alloys Compd. 2008, 459, 589–593. [Google Scholar] [CrossRef]
- Wang, S.F.; Gu, F.; Lü, M.K.; Song, C.F.; Liu, S.W.; Xu, D.; Yuan, D.R. Preparation and characterization of sol–gel derived ZnTiO3 nanocrystals. Mater. Res. Bull. 2003, 38, 1283–1288. [Google Scholar] [CrossRef]
- Lee, B.; Zhang, P. Preparation, structure evolution and dielectric properties of BaTiO3 thin films and powders by an aqueous sol–gel process. Thin Solid films 2001, 388, 107–113. [Google Scholar] [CrossRef]
- Mi, L.; Zhang, Q.; Wang, H.; Wu, Z.; Guo, Y.; Li, Y.; Xiong, X.; Liu, K.; Fu, W.; Ma, Y.; et al. Synthesis of BaTiO3 nanoparticles by sol-gel assisted solid phase method and its formation mechanism and photocatalytic activity. Ceram. Int. 2020, 46, 10619–10633. [Google Scholar] [CrossRef]
- Deshpande, S.B.; Godbole, P.D.; Khollam, Y.B.; Potdar, H.S. Characterization of barium titanate: BaTiO3 (BT) ceramics prepared from sol-gel derived BT powders. J. Electroceramics 2005, 15, 103–108. [Google Scholar] [CrossRef]
- Karthik, K.V.; Reddy, C.V.; Reddy, K.R.; Ravishankar, R.; Sanjeev, G.; Kulkarni, R.V.; Shetti, P.N.; Raghu, A.V. Barium titanate nanostructures for photocatalytic hydrogen generation and photodegradation of chemical pollutants. J. Mater. Sci. Mater. Electron. 2019, 30, 20646–20653. [Google Scholar] [CrossRef]
- Abedi, M.; Szamosvölgyi, Á.; Sápi, A.; Kukovecz, Á.; Kónya, Z.; Gyulavári, T.; Pap, Z. Influence of Rapid Heat Treatment on the Photocatalytic Activity and Stability of Strontium Titanates against a Broad Range of Pollutants. Catalysts 2023, 13, 219. [Google Scholar] [CrossRef]
- Lin, Q.; Zhu, Y.; Hu, Z.; Yin, Y.; Lin, H.J.; Chen, C.T.; Zhang, X.; Shao, Z.; Wang, H. Boosting the oxygen evolution catalytic performance of perovskites via optimizing calcination temperature. J. Mater. Chem. A 2020, 8, 6480–6486. [Google Scholar] [CrossRef]
- Pap, Z.; Karácsonyi, É.; Cegléd, Z.; Dombi, A.; Danciu, V.; Popescu, I.C.; Baia, L.; Oszkó, A.; Mogyorósi, K. Dynamic changes on the surface during the calcination of rapid heat treated TiO2 photocatalysts. Appl. Catal. B Environ. 2012, 111, 595–604. [Google Scholar] [CrossRef]
- Abedi, M.; Tóth, Z.R.; Todea, M.; Ágoston, Á.; Kukovecz, Á.; Kónya, Z.; Pap, Z.; Gyulavári, T. Influence of rapid heat treatment on the photocatalytic activity and stability of calcium titanates against a broad range of pollutants. Heliyon 2024, 10, e34938. [Google Scholar] [CrossRef]
- Yang, B.; Wu, C.; Wang, J.; Bian, J.; Wang, L.; Liu, M.; Du, Y.; Yang, Y. When C3N4 meets BaTiO3: Ferroelectric polarization plays a critical role in building a better photocatalyst. Ceram. Int. 2020, 46, 4248–4255. [Google Scholar] [CrossRef]
- Lazarević, Z.Ž.; Vijatović, M.; Dohčević-Mitrović, Z.; Romčević, N.Ž.; Romčević, M.J.; Paunović, N.; Stojanović, B.D. The characterization of the barium titanate ceramic powders prepared by the Pechini type reaction route and mechanically assisted synthesis. J. Eur. Ceram. Soc. 2010, 30, 623–628. [Google Scholar] [CrossRef]
- Utara, S.; Hunpratub, S. Ultrasonic assisted synthesis of BaTiO3 nanoparticles at 25 °C and atmospheric pressure. Ultrason. Sonochem. 2018, 41, 441–448. [Google Scholar] [CrossRef]
- Wei, X.; Liu, Y.; Zhao, D.; Ge, S.S. 3D printing of piezoelectric barium titanate with high density from milled powders. J. Eur. Ceram. Soc. 2020, 40, 5423–5430. [Google Scholar] [CrossRef]
- Maison, W.; Kleeberg, R.; Heimann, R.B.; Phanichphant, S. Phase content, tetragonality, and crystallite size of nanoscaled barium titanate synthesized by the catecholate process: Effect of calcination temperature. J. Eur. Ceram. Soc. 2003, 23, 127–132. [Google Scholar] [CrossRef]
- Chávez, E.; Fuentes, S.; Zarate, R.A.; Padilla-Campos, L. Structural analysis of nanocrystalline BaTiO3. J. Mol. Struct. 2010, 984, 131–136. [Google Scholar] [CrossRef]
- Sahmi, A.; Laib, R.; Omeiri, S.; Bensadok, K.; Trari, M. Photoelectrochemical properties of Ba2TiO4 prepared by nitrate route. Application to electro-photocatalysis of phenobarbital mineralization by solar light. J. Photochem. Photobiol. A Chem. 2019, 372, 29–34. [Google Scholar] [CrossRef]
- Patterson, D.M. Law and Truth; Oxford University Press: New York, NY, USA, 1996. [Google Scholar]
- Fang, B.; Qiu, J.; Xia, G.; Wang, M.; Dai, D.; Tang, Y.; Li, Y.; Yao, J. Carboxylated cellulose-derived carbon mediated flower-like bismuth oxyhalides for efficient Cr(VI) reduction under visible light. J. Colloid Interface Sci. 2025, 678, 125–133. [Google Scholar] [CrossRef]
- Stojanovic, B.D. Mechanochemical synthesis of ceramic powders with perovskite structure. J. Mater. Process. Technol. 2003, 143, 78–81. [Google Scholar] [CrossRef]
- Solís, R.R.; Bedia, J.; Rodríguez, J.J.; Belver, C. A review on alkaline earth metal titanates for applications in photocatalytic water purification. J. Chem. Eng. 2021, 409, 128110. [Google Scholar] [CrossRef]
- Chen, P.; Li, X.; Ren, Z.; Wu, J.; Li, Y.; Liu, W.; Li, P.; Fu, Y.; Ma, J. Enhancing photocatalysis of Ag nanoparticles decorated BaTiO3 nanofibers through plasmon-induced resonance energy transfer turned by piezoelectric field. Catalysts 2022, 12, 987. [Google Scholar] [CrossRef]
- Elmahgary, M.G.; Mahran, A.M.; Ganoub, M.; Abdellatif, S.O. Optical investigation and computational modelling of BaTiO3 for optoelectronic devices applications. Sci. Rep. 2023, 13, 4761. [Google Scholar] [CrossRef]
- Gyulavári, T.; Dusnoki, D.; Márta, V.; Yadav, M.; Abedi, M.; Sápi, A.; Kukovecz, Á.; Kónya, Z.; Pap, Z. Dependence of photocatalytic activity on the morphology of strontium titanates. Catalysts 2022, 12, 523. [Google Scholar] [CrossRef]
- Atkinson, I.; Parvulescu, V.; Cusu, J.P.; Anghel, E.M.; Voicescu, M.; Culita, D.; Somacescu, S.; Munteanu, C.; Šćepanović, M.; Popovic, Z.V.; et al. Influence of preparation method and nitrogen (N) doping on properties and photocatalytic activity of mesoporous SrTiO3. J. Photochem. Photobiol. A Chem. 2019, 368, 41–51. [Google Scholar] [CrossRef]
- Ágoston, Á.; Balassa, L.; Yadav, M.; Ballai, G.; Kovács, Z.; Gyulavári, T.; Solymos, K.; Kukovecz, Á.; Kónya, Z.; Pap, Z. Surface-anchored N-based functional groups driven photoactivity of SrTiO3. Heliyon 2024, 10, e37421. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, X.; Wen, L. The structural and photoluminescence studies related to the surface of the TiO2 sol prepared by wet chemical method. Mater. Sci. Eng. B 2006, 134, 27–31. [Google Scholar] [CrossRef]
- Kumar, V.; Choudhary, S.; Malik, V.; Nagarajan, R.; Kandasami, A.; Subramanian, A. Enhancement in Photocatalytic Activity of SrTiO3 by Tailoring Particle Size and Defects. Phys. Status Solidi A 2019, 216, 1900294. [Google Scholar] [CrossRef]
- Ianculescu, A.; Gartner, M.; Despax, B.; Bley, V.; Lebey, T.; Gavrilă, R.; Modreanu, M. Optical characterization and microstructure of BaTiO3 thin films obtained by RF-magnetron sputtering. Appl. Surf. Sci. 2006, 253, 344–348. [Google Scholar] [CrossRef]
- Ghamsari, M.S.; Bahramian, A.J.M.L. High transparent sol–gel derived nanostructured TiO2 thin film. Mater. Lett. 2008, 62, 361–364. [Google Scholar] [CrossRef]
- Ashiri, R. Detailed FT-IR spectroscopy characterization and thermal analysis of synthesis of barium titanate nanoscale particles through a newly developed process. Vib. Spectrosc. 2013, 66, 24–29. [Google Scholar] [CrossRef]
- Kothandan, D.; Jeevan Kumar, R.; Chandra Babu Naidu, K. Barium titanate microspheres by low temperature hydrothermal method: Studies on structural, morphological, and optical properties. J. Asian Ceram. Soc. 2018, 6, 1–6. [Google Scholar] [CrossRef]
- Tihtih, M.; Ibrahim, J.E.F.M.; Basyooni, M.A.; Belaid, W.; Gömze, L.A.; Kocserha, I. Structural, optical, and electronic properties of barium titanate: Experiment characterisation and first-principles study. Mater. Technol. 2022, 37, 2995–3005. [Google Scholar] [CrossRef]
- Rached, A.; Wederni, M.A.; Khirouni, K.; Alaya, S.; Martín-Palma, R.J.; Dhahri, J. Structural, optical and electrical properties of barium titanate. Mater. Chem. Phys. 2021, 267, 124600. [Google Scholar] [CrossRef]
- Díaz-Güemes, M.; Carreño, T.G.; Serna, C. The infrared powder spectra of lithium niobate and strontium and barium titanate. Spectrochim. Acta-A Mol. Biomol. Spectrosc. 1989, 45, 589–593. [Google Scholar] [CrossRef]
- Guerrero-Pérez, M.O.; Patience, G.S. Experimental methods in chemical engineering: Fourier transform infrared spectroscopy—FTIR. Can. J. Chem. Eng. 2020, 98, 25–33. [Google Scholar] [CrossRef]
- Bakhtbidar, M.; Amaechi, I.; Dörfler, A.; Merlen, A.; Ruediger, A. Direct Observation of Carbonate Chemisorption on Barium Titanate Surfaces by Tip-Enhanced Raman Spectroscopy. Adv. Mater. Interfaces 2024, 11, 2300993. [Google Scholar] [CrossRef]
- Tangwiwat, S.; Milne, S.J. Barium titanate sols prepared by a diol-based sol–gel route. J. Non-Cryst. Solids 2005, 351, 976–980. [Google Scholar] [CrossRef]
- Guru, S.; Bajpai, A.; Amritphale, S. Influence of nature of surfactant and precursor salt anion on the microwave assisted synthesis of barium carbonate nanoparticles. Mater. Chem. Phys. 2010, 241, 122377. [Google Scholar] [CrossRef]
- Fodor, S.; Kovács, G.; Hernádi, K.; Danciu, V.; Baia, L.; Pap, Z. Shape tailored Pd nanoparticles’ effect on the photocatalytic activity of commercial TiO2. Catal. Today 2017, 284, 137–145. [Google Scholar] [CrossRef]
- Kovács, G.; Fodor, S.; Vulpoi, A.; Schrantz, K.; Dombi, A.; Hernádi, K.; Danciu, V.; Pap, Z.; Baia, L. Polyhedral Pt vs. spherical Pt nanoparticles on commercial titanias: Is shape tailoring a guarantee of achieving high activity? J. Catal. 2015, 325, 156–167. [Google Scholar] [CrossRef]
- Pap, Z.; Danciu, V.; Cegléd, Z.; Kukovecz, Á.; Oszkó, A.; Dombi, A.; Mogyorósi, K. The influence of rapid heat treatment in still air on the photocatalytic activity of titania photocatalysts for phenol and monuron degradation. Appl. Catal. B Environ. 2011, 101, 461–470. [Google Scholar] [CrossRef]
- Gyulavári, T.; Kovács, K.; Kovács, Z.; Bárdos, E.; Kovács, G.; Baán, K.; Magyari, K.; Veréb, G.; Pap, Z.; Hernadi, K. Preparation and characterization of noble metal modified titanium dioxide hollow spheres—New insights concerning the light trapping efficiency. Appl. Surf. Sci. 2020, 534, 147327. [Google Scholar] [CrossRef]
- Czili, H.; Horváth, A. Applicability of coumarin for detecting and measuring hydroxyl radicals generated by photoexcitation of TiO2 nanoparticles. Appl. Catal. B Environ. 2008, 81, 295–302. [Google Scholar] [CrossRef]
- Balassa, L.; Ágoston, Á.; Kása, Z.; Hornok, V.; Janovák, L. Surface sulfate modified TiO2 visible light active photocatalyst for complex wastewater purification: Preparation, characterization and photocatalytic activity. J. Mol. Struct. 2022, 1260, 132860. [Google Scholar] [CrossRef]
- Van de Craats, A.; Dirksen, G.; Blasse, G. The luminescence of Ba2TiO4, a compound with titanate tetrahedra. J. Solid State Chem. 1995, 118, 337–340. [Google Scholar] [CrossRef]
- Jiang, X.; Huang, J.; Bi, Z.; Ni, W.; Gurzadyan, G.; Zhu, Y.; Zhang, Z. Plasmonic active “hot spots”-confined photocatalytic CO2 reduction with high selectivity for CH4 production. Adv. Mater. 2022, 34, 2109330. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, J.I.; Eda, T.; Hanaya, M. Comparative study of conduction-band and valence-band edges of TiO2, SrTiO3, and BaTiO3 by ionization potential measurements. Chem. Phys. Lett. 2017, 685, 23–26. [Google Scholar] [CrossRef]
- Xu, Y.; Schoonen, M.A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543–556. [Google Scholar] [CrossRef]
- Wood, P.M. The potential diagram for oxygen at pH 7. Biochem. J. 1988, 253, 287. [Google Scholar] [CrossRef]
- Fenton, L.K.; Bandfield, J.L.; Ward, A.W. Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets. J. Geophys. Res. Planets 2003, 108, 5129. [Google Scholar] [CrossRef]
- Doroodmand, M.; Goshtasbi Rad, E.; Rostamzadeh, A. Experimental investigation of mixed convection heat transfer in vertical tubes by nanofluid: Effects of Reynolds number and fluid temperature. Int. J. Eng. 2014, 27, 1251–1258. [Google Scholar] [CrossRef]
- AbdulKareem, S.K.; Ajeel, S.A. Effect of annealing temperatures on the structural and crystalline properties of CaTiO3 powder synthesized via conventional solid-state method. Mater. Today Proc. 2021, 42, 2674–2679. [Google Scholar] [CrossRef]
Sample Name | Crystallite Size (nm) | Specific Surface Area (m²·g−1) | Band Gap1st,der (eV) | Band GapKM (eV) | CO Yield (nmol·g−1·min−1) |
---|---|---|---|---|---|
BTO_RHSE_700 | 16.8 | 14.9 | 3.20 | 3.03 | 179 |
BTO_RHSE_800 | 23.7 | 12.5 | 3.19 | 3.08 | 139 |
BTO_RHSE_900 | 28.5 | 4.2 | 3.19 | 3.06 | 110 |
BTO_RHSE_1000 | 33.4 | 2.9 | 3.18 | 3.00 | 94 |
BTO_Ref_C | 31.8 | 10.6 | 3.28 | 3.16 | 19 |
BTO_Ref_T | 29.3 | 2.7 | 3.24 | 3.13 | 38 |
P25 TiO2 | 25.4 | 49.6 | 3.11 | 3.17 | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abedi, M.; Basheer, H.S.; Lakatos, L.; Kukovecz, Á.; Kónya, Z.; Gyulavári, T.; Pap, Z. Influence of Rapid Heat Treatment on the Photocatalytic Activity and Stability of Barium Titanates Against a Broad Range of Pollutants. Molecules 2024, 29, 5350. https://doi.org/10.3390/molecules29225350
Abedi M, Basheer HS, Lakatos L, Kukovecz Á, Kónya Z, Gyulavári T, Pap Z. Influence of Rapid Heat Treatment on the Photocatalytic Activity and Stability of Barium Titanates Against a Broad Range of Pollutants. Molecules. 2024; 29(22):5350. https://doi.org/10.3390/molecules29225350
Chicago/Turabian StyleAbedi, Mahsa, Haythem S. Basheer, Laura Lakatos, Ákos Kukovecz, Zoltán Kónya, Tamás Gyulavári, and Zsolt Pap. 2024. "Influence of Rapid Heat Treatment on the Photocatalytic Activity and Stability of Barium Titanates Against a Broad Range of Pollutants" Molecules 29, no. 22: 5350. https://doi.org/10.3390/molecules29225350
APA StyleAbedi, M., Basheer, H. S., Lakatos, L., Kukovecz, Á., Kónya, Z., Gyulavári, T., & Pap, Z. (2024). Influence of Rapid Heat Treatment on the Photocatalytic Activity and Stability of Barium Titanates Against a Broad Range of Pollutants. Molecules, 29(22), 5350. https://doi.org/10.3390/molecules29225350