Flavonoids and Other Phenolic Compounds for Physiological Roles, Plant Species Delimitation, and Medical Benefits: A Promising View
Abstract
:1. Introduction
2. Biosynthesis of Flavonoids and Other Phenolic Compounds (Figure 1)
3. Major Physiological Functions of Flavonoids and Other Phenolic Compounds
3.1. Protective Agent Against UV Damage
3.2. Pathogen Defense Agent
3.3. Detoxifying Agent
3.4. Pollen Fertility and Successful Pollination
4. Flavonoids and Other Phenolic Compounds vs. Plant Species Delimitation
5. Medical Benefits of Flavonoids and Other Phenolic Compounds
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant Phenolics: Recent Advances on Their Biosynthesis, Genetics, and Ecophysiology. Plant Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Favari, C.; Rinaldi de Alvarenga, J.F.; Sánchez-Martínez, L.; Tosi, N.; Mignogna, C.; Cremonini, E.; Manach, C.; Bresciani, L.; Del Rio, D.; Mena, P. Factors Driving the Inter-Individual Variability in the Metabolism and Bioavailability of (Poly)Phenolic Metabolites: A Systematic Review of Human Studies. Redox Biol. 2024, 71, 103095. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed]
- Shomali, A.; Das, S.; Arif, N.; Sarraf, M.; Zahra, N.; Yadav, V.; Aliniaeifard, S.; Chauhan, D.K.; Hasanuzzaman, M. Diverse Physiological Roles of Flavonoids in Plant Environmental Stress Responses and Tolerance. Plants 2022, 11, 3158. [Google Scholar] [CrossRef]
- Boudet, A.-M. Evolution and Current Status of Research in Phenolic Compounds. Phytochemistry 2007, 68, 2722–2735. [Google Scholar] [CrossRef]
- Noel, J.P.; Austin, M.B.; Bomati, E.K. Structure–Function Relationships in Plant Phenylpropanoid Biosynthesis. Curr. Opin. Plant Biol. 2005, 8, 249–253. [Google Scholar] [CrossRef]
- Clifford, M.N. Miscellaneous Phenols in Foods and Beverages—Nature, Occurrence and Dietary Burden. J. Sci. Food Agric. 2000, 80, 1126–1137. [Google Scholar] [CrossRef]
- Lowry, B.; Lee, D.; Hébant, C. The origin of land plants: A new look at an old problem. Taxon 1980, 29, 183–197. [Google Scholar] [CrossRef]
- Draijer, R.; De Graaf, Y.; Slettenaar, M.; De Groot, E.; Wright, C. Consumption of a Polyphenol-Rich Grape-Wine Extract Lowers Ambulatory Blood Pressure in Mildly Hypertensive Subjects. Nutrients 2015, 7, 3138–3153. [Google Scholar] [CrossRef]
- Bondonno, N.P.; Bondonno, C.P.; Ward, N.C.; Woodman, R.J.; Hodgson, J.M.; Croft, K.D. Enzymatically Modified Isoquercitrin Improves Endothelial Function in Volunteers at Risk of Cardiovascular Disease. Br. J. Nutr. 2020, 123, 182–189. [Google Scholar] [CrossRef]
- Al Mutairi, J.F.; Al-Otibi, F.; Alhajri, H.M.; Alharbi, R.I.; Alarifi, S.; Alterary, S.S. Antimicrobial Activity of Green Silver Nanoparticles Synthesized by Different Extracts from the Leaves of Saudi Palm Tree (Phoenix dactylifera L.). Molecules 2022, 27, 3113. [Google Scholar] [CrossRef] [PubMed]
- Darvishi-Khezri, H.; Salehifar, E.; Kosaryan, M.; Karami, H.; Alipour, A.; Shaki, F.; Aliasgharian, A. The Impact of Silymarin on Antioxidant and Oxidative Status in Patients with β-Thalassemia Major: A Crossover, Randomized Controlled Trial. Complement. Ther. Med. 2017, 35, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Tungmunnithum, D.; Garros, L.; Drouet, S.; Cruz-Martins, N.; Hano, C. Extraction Kinetics and Reaction Rates of Sacred Lotus Stamen Tea Infusion-Derived Flavonoids in Relation with Its Antioxidant Capacity. Plants 2022, 11, 2234. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Renouard, S.; Drouet, S.; Blondeau, J.-P.; Hano, C. A Critical Cross-Species Comparison of Pollen from Nelumbo nucifera Gaertn. vs. Nymphaea lotus L. for Authentication of Thai Medicinal Herbal Tea. Plants 2020, 9, 921. [Google Scholar] [CrossRef]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [Google Scholar] [CrossRef]
- Asma, B.; Vicky, L.; Stephanie, D.; Yves, D.; Amy, H.; Sylvie, D. Standardised High Dose versus Low Dose Cranberry Proanthocyanidin Extracts for the Prevention of Recurrent Urinary Tract Infection in Healthy Women [PACCANN]: A Double Blind Randomised Controlled Trial Protocol. BMC Urol. 2018, 18, 29. [Google Scholar] [CrossRef]
- Dostal, A.M.; Samavat, H.; Bedell, S.; Torkelson, C.; Wang, R.; Swenson, K.; Le, C.; Wu, A.H.; Ursin, G.; Yuan, J.-M.; et al. The Safety of Green Tea Extract Supplementation in Postmenopausal Women at Risk for Breast Cancer: Results of the Minnesota Green Tea Trial. Food Chem. Toxicol. 2015, 83, 26–35. [Google Scholar] [CrossRef]
- Lu, P.H.; Hsu, C.H. Does Supplementation with Green Tea Extract Improve Acne in Post-Adolescent Women? A Randomized, Double-Blind, and Placebo-Controlled Clinical Trial. Complement. Ther. Med. 2016, 25, 159–163. [Google Scholar] [CrossRef]
- Woodward, K.A.; Hopkins, N.D.; Draijer, R.; de Graaf, Y.; Low, D.A.; Thijssen, D.H.J. Acute Black Tea Consumption Improves Cutaneous Vascular Function in Healthy Middle-Aged Humans. Clin. Nutr. 2018, 37, 242–249. [Google Scholar] [CrossRef]
- Ghanbari, P.; Alboebadi, R.; Bazyar, H.; Raiesi, D.; ZareJavid, A.; Azadbakht, M.K.; Karimi, M.; Razmi, H. Grape Seed Extract Supplementation in Non-Alcoholic Fatty Liver Disease. Int. J. Vitam. Nutr. Res. 2024, 94, 365–376. [Google Scholar] [CrossRef]
- Chen, H.-L.; Nong, S.-Y.; Liu, Y.; Liu, Y. A New Species of Phyllagathis (Sonerileae, Melastomataceae) from Guangxi, China. Phytotaxa 2021, 509, 225–232. [Google Scholar] [CrossRef]
- Fischer, E.; Wursten, B.; Darbyshire, I. A New and Possibly Carnivorous Species of Crepidorhopalon (Linderniaceae) from Mozambique. Phytotaxa 2023, 603, 191–198. [Google Scholar] [CrossRef]
- Jangam, A.P.; Kambale, S.S.; Yadav, S.R.; More, R.V.; Pawar, N.V. Ceropegia shivrayiana (Apocynaceae: Ceropegieae), a New Species from Western Ghats, India. Phytotaxa 2024, 662, 102–108. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Boonkerd, T.; Zungsontiporn, S.; Tanaka, N. Morphological Variations among Populations of Monochoria vaginalis s.l. (Pontederiaceae) in Thailand. Phytotaxa 2016, 268, 57. [Google Scholar] [CrossRef]
- Serrano, M.; Ortiz, S. Species Delimitation in a Polyploid Group of Iberian Jasione (Campanulaceae) Unveils Coherence between Cryptic Speciation and Biogeographical Regionalization. Plants 2023, 12, 4176. [Google Scholar] [CrossRef]
- Espichán, F.; Rojas, R.; Quispe, F.; Cabanac, G.; Marti, G. Metabolomic Characterization of 5 Native Peruvian Chili Peppers (Capsicum spp.) as a Tool for Species Discrimination. Food Chem. 2022, 386, 132704. [Google Scholar] [CrossRef]
- Grohar, M.C.; Medic, A.; Ivancic, T.; Veberic, R.; Jogan, J. Color Variation and Secondary Metabolites’ Footprint in a Taxonomic Complex of Phyteuma sp. (Campanulaceae). Plants 2022, 11, 2894. [Google Scholar] [CrossRef]
- Cohen, M.F.; Sakihama, Y.; Yamasaki, H. Roles of Plant Flavonoids in Interactions with Microbes: From Protection against Pathogens to the Mediation of Mutualism. Recent Res. Dev. Plant Physiol. 2001, 2, 157–173. [Google Scholar]
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef]
- Asad, S.; Anwar, N.; Shah, M.; Anwar, Z.; Arif, M.; Rauf, M.; Ali, K.; Shah, M.; Murad, W.; Albadrani, G.M.; et al. Biological Synthesis of Silver Nanoparticles by Amaryllis vittata (L.) Herit: From Antimicrobial to Biomedical Applications. Materials 2022, 15, 5478. [Google Scholar] [CrossRef]
- Nutho, B.; Tungmunnithum, D. Anti-Aging Potential of the Two Major Flavonoids Occurring in Asian Water Lily Using In Vitro and In Silico Molecular Modeling Assessments. Antioxidants 2024, 13, 601. [Google Scholar] [CrossRef] [PubMed]
- Tungmunnithum, D.; Drouet, S.; Hano, C. Validation of a High-Performance Liquid Chromatography with Photodiode Array Detection Method for the Separation and Quantification of Antioxidant and Skin Anti-Aging Flavonoids from Nelumbo Nucifera Gaertn. Stamen Extract. Molecules 2022, 27, 1102. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-B.; Chiang, H.-S.; Fang, J.-Y.; Chen, S.-K.; Huang, C.-C.; Hung, C.-F. (+)-Catechin Prevents Ultraviolet B-Induced Human Keratinocyte Death via Inhibition of JNK Phosphorylation. Life Sci. 2006, 79, 801–807. [Google Scholar] [CrossRef]
- Laoué, J.; Fernandez, C.; Ormeño, E. Plant Flavonoids in Mediterranean Species: A Focus on Flavonols as Protective Metabolites Under Climate Stress. Plants 2022, 11, 172. [Google Scholar] [CrossRef] [PubMed]
- Joshi, K.; Seneviratne, G.I.; Senanayake, S.P. Leaf Flavonoid Aglycone Patterns in the Species of Dipterocarpaceae in Sri Lanka. Biochem. Syst. Ecol. 2004, 32, 329–336. [Google Scholar] [CrossRef]
- Winkel-Shirley, B. Flavonoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology. Plant Physiol. 2001, 126, 485–493. [Google Scholar] [CrossRef]
- Postiglione, A.E.; Delange, A.M.; Ali, M.F.; Wang, E.Y.; Houben, M.; Hahn, S.L.; Khoury, M.G.; Roark, C.M.; Davis, M.; Reid, R.W.; et al. Flavonols Improve Tomato Pollen Thermotolerance During Germination and Tube Elongation by Maintaining Reactive Oxygen Species Homeostasis. Plant Cell 2024, 36, 4511–4534. [Google Scholar] [CrossRef]
- Schijlen, E.G.W.M.; de Vos, C.H.R.; Martens, S.; Jonker, H.H.; Rosin, F.M.; Molthoff, J.W.; Tikunov, Y.M.; Angenent, G.C.; van Tunen, A.J.; Bovy, A.G. RNA Interference Silencing of Chalcone Synthase, the First Step in the Flavonoid Biosynthesis Pathway, Leads to Parthenocarpic Tomato Fruits. Plant Physiol. 2007, 144, 1520–1530. [Google Scholar] [CrossRef]
- Mahajan, M.; Ahuja, P.S.; Yadav, S.K. Post-Transcriptional Silencing of Flavonol Synthase MRNA in Tobacco Leads to Fruits with Arrested Seed Set. PLoS ONE 2011, 6, e28315. [Google Scholar] [CrossRef]
- Zerback, R.; Dressler, K.; Hess, D. Flavonoid Compounds from Pollen and Stigma of Petunia Hybrida: Inducers of the Vir Region of the Agrobacterium tumefaciens Ti Plasmid. Plant Sci. 1989, 62, 83–91. [Google Scholar] [CrossRef]
- Agati, G.; Stefano, G.; Biricolti, S.; Tattini, M. Mesophyll Distribution of ‘Antioxidant’ Flavonoid Glycosides in Ligustrum vulgare Leaves Under Contrasting Sunlight Irradiance. Ann. Bot. 2009, 104, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Shimoji, H.; Yamasaki, H. Inhibitory Effects of Flavonoids on Alternative Respiration of Plant Mitochondria. Biol. Plant 2005, 49, 117–119. [Google Scholar] [CrossRef]
- Jansen, M.A.K.; van den Noort, R.E.; Tan, M.Y.A.; Prinsen, E.; Lagrimini, L.M.; Thorneley, R.N.F. Phenol-Oxidizing Peroxidases Contribute to the Protection of Plants from Ultraviolet Radiation Stress. Plant Physiol. 2001, 126, 1012–1023. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, H.; Sakihama, Y.; Ikehara, N. Flavonoid-Peroxidase Reaction as a Detoxification Mechanism of Plant Cells against H2O2. Plant Physiol. 1997, 115, 1405–1412. [Google Scholar] [CrossRef]
- Keilig, K.M.J.L. Effect of Flavonoids on Heavy Metal Tolerance in Arabidopsis thabiana Seedlings. Bot. Stud. 2009, 50, 311–318. [Google Scholar]
- Sapiña-Solano, A.; Boscaiu, M.; Collado, F.; Vicente, O.; Ruiz-González, M.X. Effects of High Salinity and Water Stress on Wetland Grasses from the Spanish Mediterranean Coast. Plants 2024, 13, 1939. [Google Scholar] [CrossRef]
- Beckman, C.H. Phenolic-Storing Cells: Keys to Programmed Cell Death and Periderm Formation in Wilt Disease Resistance and in General Defence Responses in Plants? Physiol. Mol. Plant Pathol. 2000, 57, 101–110. [Google Scholar] [CrossRef]
- Panda, S.K.; Gupta, D.; Patel, M.; Van Der Vyver, C.; Koyama, H. Functionality of Reactive Oxygen Species (ROS) in Plants: Toxicity and Control in Poaceae Crops Exposed to Abiotic Stress. Plants 2024, 13, 2071. [Google Scholar] [CrossRef]
- Andersen, C.P. Source–Sink Balance and Carbon Allocation below Ground in Plants Exposed to Ozone. New Phytol. 2003, 157, 213–228. [Google Scholar] [CrossRef]
- Falcone Ferreyra, M.L.; Rius, S.; Emiliani, J.; Pourcel, L.; Feller, A.; Morohashi, K.; Casati, P.; Grotewold, E. Cloning and Characterization of a UV-B-Inducible Maize Flavonol Synthase. Plant J. 2010, 62, 77–91. [Google Scholar] [CrossRef]
- Davies, K.M.; Albert, N.W.; Schwinn, K.E. From Landing Lights to Mimicry: The Molecular Regulation of Flower Colouration and Mechanisms for Pigmentation Patterning. Funct. Plant Biol. 2012, 39, 619. [Google Scholar] [CrossRef] [PubMed]
- Veitch, N.C.; Grayer, R.J. Flavonoids and Their Glycosides, Including Anthocyanins. Nat. Prod. Rep. 2011, 28, 1626–1695. [Google Scholar] [CrossRef] [PubMed]
- Veitch, N.C.; Grayer, R.J. Flavonoids and Their Glycosides, Including Anthocyanins. Nat. Prod. Rep. 2008, 25, 555–611. [Google Scholar] [CrossRef]
- Andersen, Ø.M.; Markham, K.R. (Eds.) Flavonoids; CRC Press: Boca Raton, FL, USA, 2005; ISBN 978-0-42-912158-6. [Google Scholar]
- Preuss, A.; Stracke, R.; Weisshaar, B.; Hillebrecht, A.; Matern, U.; Martens, S. Arabidopsis Thaliana Expresses a Second Functional Flavonol Synthase. FEBS Lett. 2009, 583, 1981–1986. [Google Scholar] [CrossRef]
- Owens, D.K.; Alerding, A.B.; Crosby, K.C.; Bandara, A.B.; Westwood, J.H.; Winkel, B.S.J. Functional Analysis of a Predicted Flavonol Synthase Gene Family in Arabidopsis. Plant Physiol. 2008, 147, 1046–1061. [Google Scholar] [CrossRef]
- Feller, A.; Machemer, K.; Braun, E.L.; Grotewold, E. Evolutionary and Comparative Analysis of MYB and BHLH Plant Transcription Factors. Plant J. 2011, 66, 94–116. [Google Scholar] [CrossRef]
- Grotewold, E. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 2006, 57, 761–780. [Google Scholar] [CrossRef]
- Feller, A.; Hernandez, J.M.; Grotewold, E. An ACT-like Domain Participates in the Dimerization of Several Plant Basic-Helix-Loop-Helix Transcription Factors. J. Biol. Chem. 2006, 281, 28964–28974. [Google Scholar] [CrossRef]
- Mehrtens, F.; Kranz, H.; Bednarek, P.; Weisshaar, B. The Arabidopsis Transcription Factor MYB12 Is a Flavonol-Specific Regulator of Phenylpropanoid Biosynthesis. Plant Physiol. 2005, 138, 1083–1096. [Google Scholar] [CrossRef]
- Graham, L.E.; Cook, M.E.; Busse, J.S. The Origin of Plants: Body Plan Changes Contributing to a Major Evolutionary Radiation. Proc. Natl. Acad. Sci. USA 2000, 97, 4535–4540. [Google Scholar] [CrossRef]
- Caldwell, M.M.; Robberecht, R.; Flint, S.D. Internal Filters: Prospects for UV-acclimation in Higher Plants. Physiol. Plant 1983, 58, 445–450. [Google Scholar] [CrossRef]
- Lindroth, R.L.; Hofman, R.W.; Campbell, B.D.; McNabb, W.C.; Hunt, D.Y. Population Differences in Trifolium repens L. Response to Ultraviolet-B Radiation: Foliar Chemistry and Consequences for Two Lepidopteran Herbivores. Oecologia 2000, 122, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Nawkar, G.; Maibam, P.; Park, J.; Sahi, V.; Lee, S.; Kang, C. UV-Induced Cell Death in Plants. Int. J. Mol. Sci. 2013, 14, 1608–1628. [Google Scholar] [CrossRef] [PubMed]
- Tevini, M.; Teramura, A.H. UV-B effects on terrestrial plants. Photochem. Photobiol. 1989, 50, 479–487. [Google Scholar] [CrossRef]
- Murai, Y.; Setoguchi, H.; Kitajima, J.; Iwashina, T. Altitudinal Variation of Flavonoid Content in the Leaves of Fallopia Japonica and the Needles of Larix Kaempferi on Mt. Fuji. Nat. Prod. Commun. 2015, 10, 407–411. [Google Scholar] [CrossRef]
- Murai, Y.; Setoguchi, H.; Ono, E.; Iwashina, T. Flavonoids and Their Qualitative Variation in Calystegia soldanella and Related Species (Convolvulaceae). Nat. Prod. Commun. 2015, 10, 429–432. [Google Scholar] [CrossRef]
- Iwashina, T.; Omori, Y.; Kitajima, J.; Akiyama, S.; Suzuki, T.; Ohba, H. Flavonoids in Translucent Bracts of the Himalayan Rheum nobile (Polygonaceae) as Ultraviolet Shields. J. Plant Res. 2004, 117, 101–107. [Google Scholar] [CrossRef]
- Lattanzio, V.; Cardinali, A.; Ruta, C.; Fortunato, I.; Lattanzio, V.; Linsalata, V.; Cicco, N. Relationship of Secondary Metabolism to Growth in Oregano (Origanum vulgare L.) Shoot Cultures under Nutritional Stress. Environ. Exp. Bot. 2009, 65, 54–62. [Google Scholar] [CrossRef]
- Landolt, W.; Günthardt-Goerg, M.S.; Pfenninger, I.; Einig, W.; Hampp, R.; Maurer, S.; Matyssek, R. Effect of Fertilization on Ozone-induced Changes in the Metabolism of Birch (Betula pendula ) Leaves. New Phytol. 1997, 137, 389–397. [Google Scholar] [CrossRef]
- Wu, J.; Lv, S.; Zhao, L.; Gao, T.; Yu, C.; Hu, J.; Ma, F. Advances in the Study of the Function and Mechanism of the Action of Flavonoids in Plants Under Environmental Stresses. Planta 2023, 257, 108. [Google Scholar] [CrossRef]
- Mierziak, J.; Kostyn, K.; Kulma, A. Flavonoids as Important Molecules of Plant Interactions with the Environment. Molecules 2014, 19, 16240–16265. [Google Scholar] [CrossRef] [PubMed]
- Dai, G.H.; Nicole, M.; Andary, C.; Martinez, C.; Bresson, E.; Boher, B.; Daniel, J.F.; Geiger, J.P. Flavonoids Accumulate in Cell Walls, Middle Lamellae and Callose-Rich Papillae During an Incompatible Interaction Between Xanthomonas Campestris pv. Malvacearum and Cotton. Physiol. Mol. Plant Pathol. 1996, 49, 285–306. [Google Scholar] [CrossRef]
- Blount, J.W.; Dixon, R.A.; Paiva, N.L. Stress Responses in Alfalfa (Medicago sativa L.) XVI. Antifungal Activity of Medicarpin and Its Biosynthetic Precursors; Implications for the Genetic Manipulation of Stress Metabolites. Physiol. Mol. Plant Pathol. 1992, 41, 333–349. [Google Scholar] [CrossRef]
- Jirabanjongjit, A.; Stewart, A.B.; Chitchak, N.; Rattamanee, C.; Traiperm, P. Variation in Floral Morphology, Histochemistry, and Floral Visitors of Three Sympatric Morning Glory Species. PeerJ 2024, 12, e17866. [Google Scholar] [CrossRef]
- Treutter, D. Significance of Flavonoids in Plant Resistance and Enhancement of Their Biosynthesis. Plant Biol. 2005, 7, 581–591. [Google Scholar] [CrossRef]
- Samanta, A.; Das, G.; Das, S.K. Roles of Flavonoids in Plants. Int. J. Pharm. Sci. Technol. 2011, 6, 12–35. [Google Scholar]
- Behr, M.; Neutelings, G.; El Jaziri, M.; Baucher, M. You Want It Sweeter: How Glycosylation Affects Plant Response to Oxidative Stress. Front. Plant Sci. 2020, 11, 571399. [Google Scholar] [CrossRef]
- Gan, R.; Wang, M.; Lui, W.; Wu, K.; Dai, S.; Sui, Z.; Corke, H. Diversity in Antioxidant Capacity, Phenolic Contents, and Flavonoid Contents of 42 Edible Beans from China. Cereal Chem. 2017, 94, 291–297. [Google Scholar] [CrossRef]
- Pérez, F. Ascorbic Acid and Flavonoid-Peroxidase Reaction as a Detoxifying System of H2O2 in Grapevine Leaves. Phytochemistry 2002, 60, 573–580. [Google Scholar] [CrossRef]
- Koes, R.E.; Quattrocchio, F.; Mol, J.N.M. The Flavonoid Biosynthetic Pathway in Plants: Function and Evolution. BioEssays 1994, 16, 123–132. [Google Scholar] [CrossRef]
- Taylor, L.P.; Miller, K.D. The Use of a Photoactivatable Kaempferol Analogue to Probe the Role of Flavonol 3-O-Galactosyltransferase in Pollen Germination. In Flavonoids in Cell Function; Springer: Boston, MA, USA, 2002; pp. 41–50. [Google Scholar]
- Wang, L.; Lam, L.P.Y.; Lui, A.C.W.; Zhu, F.-Y.; Chen, M.-X.; Liu, H.; Zhang, J.; Lo, C. Flavonoids Are Indispensable for Complete Male Fertility in Rice. J. Exp. Bot. 2020, 71, 4715–4728. [Google Scholar] [CrossRef] [PubMed]
- Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, Biological Functions, and Biotechnological Applications. Front. Plant Sci. 2012, 3, 222. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Nagel, C.; Taylor, L.P. Biochemical Complementation of Chalcone Synthase Mutants Defines a Role for Flavonols in Functional Pollen. Proc. Natl. Acad. Sci. USA 1992, 89, 7213–7217. [Google Scholar] [CrossRef] [PubMed]
- Van der Meer, I.M.; Stam, M.E.; van Tunen, A.J.; Mol, J.N.; Stuitje, A.R. Antisense Inhibition of Flavonoid Biosynthesis in Petunia Anthers Results in Male Sterility. Plant Cell 1992, 4, 253–262. [Google Scholar] [CrossRef]
- Pollak, P.E.; Vogt, T.; Mo, Y.; Taylor, L.P. Chalcone Synthase and Flavonol Accumulation in Stigmas and Anthers of Petunia hybrida. Plant Physiol. 1993, 102, 925–932. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Drouet, S.; Garros, L.; Lorenzo, J.M.; Hano, C. Flavonoid Profiles and Antioxidant Potential of Monochoria Angustifolia (G. X. Wang) Boonkerd & Tungmunnithum, a New Species from the Genus Monochoria C. Presl. Antioxidants 2022, 11, 952. [Google Scholar] [CrossRef]
- Roeschenbleck, J.; Albers, F.; Müller, K.; Weinl, S.; Kudla, J. Phylogenetics, Character Evolution and a Subgeneric Revision of the Genus Pelargonium (Geraniaceae). Phytotaxa 2014, 159, 31. [Google Scholar] [CrossRef]
- Clark, M.N.; Bohm, B.A. Flavonoid Variation in Cannabis L. Bot. J. Linn. Soc. 1979, 79, 249–257. [Google Scholar] [CrossRef]
- Dayanandan, S.; Ashton, P.S.; Williams, S.M.; Primack, R.B. Phylogeny of the Tropical Tree Family Dipterocarpaceae Based on Nucleotide Sequences of the Chloroplast RBCL Gene. Am. J. Bot. 1999, 86, 1182–1190. [Google Scholar] [CrossRef]
- Joshi, K. Chemotaxonomic Study of Viteria Species (Dipterocarpaceae) Using Flavonoid Analysis. Bionotes 2009, 11, 43–44. [Google Scholar]
- Joshi, K. Chemosystematics and Indigenous Uses of Shorea in South Asia. Int. J. Pharma Bio Sci. 2011, 2, B1–B13. [Google Scholar]
- Clark, W.D.; Mabry, T.J. Systematic Implications of Flavonoids in Hazardia. Biochem. Syst. Ecol. 1978, 6, 19–20. [Google Scholar] [CrossRef]
- Almaraz-Abarca, N.; Delgado-Alvarado, E.A.; Ávila-Reyes, J.A.; Uribe-Soto, J.N.; González-Valdez, L.S. The Phenols of the Genus Agave (Agavaceae). J. Biomater. Nanobiotechnol. 2013, 4, 9–16. [Google Scholar] [CrossRef]
- Chang, C.; Jeon, J.I.; Kim, H.; Lee, S.T. Flavonoids Chemistry of the Adonis Amurensis Complex in Eastern Asia. For. Sci. Technol. 2008, 4, 5–13. [Google Scholar] [CrossRef]
- Karpova, E.; Davlatov, S.K.; Chernonosov, A. Phenolic Compounds in Taxonomy of Myricaria longifolia and Myricaria bracteata (Tamaricaceae). BIO Web Conf. 2021, 38, 00051. [Google Scholar] [CrossRef]
- Chayamarit, K.; Balslav, H.; Esser, H.J. Flora of Thailand; Chayamarit, K., Balslav, H., Eds.; 14/4; The Forest Herbarium, Royal Forest Department: Bangkok, Thailand, 2020; ISBN 978-6-16-316592-3. [Google Scholar]
- Tungmunnithum, D.; Boonkerd, T.; Zungsontiporn, S.; Tanaka, N. Phenetic Study of the Genus Monochoria in Thailand. Songklanakarin J. Sci. Technol. 2017, 39, 49–57. [Google Scholar]
- Tungmunnithum, D.; Drouet, S.; Garros, L.; Hano, C. Differential Flavonoid and Other Phenolic Accumulations and Antioxidant Activities of Nymphaea lotus L. Populations Throughout Thailand. Molecules 2022, 27, 3590. [Google Scholar] [CrossRef]
- Watanabe, K.; Hiramine, H.; Toyama, T.; Hamada, N. Effects of French Pine Bark Extract Chewing Gum on Oral Malodor and Salivary Bacteria. J. Nutr. Sci. Vitaminol. 2018, 64, 185–191. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, Y.; Chen, R.; Shen, J.; Zhang, S.; Gu, Y.; Shi, J.; Meng, G. Dihydromyricetin Attenuates Diabetic Cardiomyopathy by Inhibiting Oxidative Stress, Inflammation and Necroptosis via Sirtuin 3 Activation. Antioxidants 2023, 12, 200. [Google Scholar] [CrossRef]
- Vázquez-Ruiz, Z.; Toledo, E.; Vitelli-Storelli, F.; Goni, L.; de la O, V.; Bes-Rastrollo, M.; Martínez-González, M.Á. Effect of Dietary Phenolic Compounds on Incidence of Cardiovascular Disease in the SUN Project; 10 Years of Follow-Up. Antioxidants 2022, 11, 783. [Google Scholar] [CrossRef]
- Phan, T.K.P.; Wang, S.-L.; Nguyen, Q.V.; Phan, T.Q.; Nguyen, T.T.; Tran, T.T.T.; Nguyen, A.D.; Nguyen, V.B.; Doan, M.D. Assessment of the Chemical Profile and Potential Medical Effects of a Flavonoid-Rich Extract of Eclipta Prostrata L. Collected in the Central Highlands of Vietnam. Pharmaceuticals 2023, 16, 1476. [Google Scholar] [CrossRef] [PubMed]
- Sripanidkulchai, B.; Mekjaruskul, C.; Areemit, R.; Cheawchanwattana, A.; Sithithaworn, J. Glucose Tolerance Test and Pharmacokinetic Study of Kaempferia Parviflora Extract in Healthy Subjects. Nutrients 2019, 11, 1176. [Google Scholar] [CrossRef] [PubMed]
- Tungmunnithum, D.; Drouet, S.; Lorenzo, J.M.; Hano, C. Green Extraction of Antioxidant Flavonoids from Pigeon Pea (Cajanus cajan (L.) Millsp.) Seeds and Its Antioxidant Potentials Using Ultrasound-Assisted Methodology. Molecules 2021, 26, 7557. [Google Scholar] [CrossRef] [PubMed]
- Ferrier, M.; Billet, K.; Drouet, S.; Tungmunnithum, D.; Malinowska, M.A.; Marchal, C.; Dedet, S.; Giglioli-Guivarc’h, N.; Hano, C.; Lanoue, A. Identifying Major Drivers of Antioxidant Activities in Complex Polyphenol Mixtures from Grape Canes. Molecules 2022, 27, 4029. [Google Scholar] [CrossRef]
- Cádiz-Gurrea, M.d.l.L.; Lozano-Sánchez, J.; Fernández-Ochoa, Á.; Segura-Carretero, A. Enhancing the Yield of Bioactive Compounds from Sclerocarya Birrea Bark by Green Extraction Approaches. Molecules 2019, 24, 966. [Google Scholar] [CrossRef]
- Davinelli, S.; Corbi, G.; Zarrelli, A.; Arisi, M.; Calzavara-Pinton, P.; Grassi, D.; De Vivo, I.; Scapagnini, G. Short-Term Supplementation with Flavanol-Rich Cocoa Improves Lipid Profile, Antioxidant Status and Positively Influences the AA/EPA Ratio in Healthy Subjects. J. Nutr. Biochem. 2018, 61, 33–39. [Google Scholar] [CrossRef]
- Siedlecki, J.; Mohr, N.; Luft, N.; Schworm, B.; Keidel, L.; Priglinger, S.G. Effects of Flavanol-Rich Dark Chocolate on Visual Function and Retinal Perfusion Measured With Optical Coherence Tomography Angiography. JAMA Ophthalmol. 2019, 137, 1373. [Google Scholar] [CrossRef]
- Cádiz-Gurrea, M.d.l.L.; Fernández-Ochoa, Á.; Leyva-Jiménez, F.J.; Guerrero-Muñoz, N.; Villegas-Aguilar, M.d.C.; Pimentel-Moral, S.; Ramos-Escudero, F.; Segura-Carretero, A. LC-MS and Spectrophotometric Approaches for Evaluation of Bioactive Compounds from Peru Cocoa By-Products for Commercial Applications. Molecules 2020, 25, 3177. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Drouet, S.; Hano, C. Flavonoids from Sacred Lotus Stamen Extract Slows Chronological Aging in Yeast Model by Reducing Oxidative Stress and Maintaining Cellular Metabolism. Cells 2022, 11, 599. [Google Scholar] [CrossRef]
- Maurizi, A.; De Luca, F.; Zanghi, A.; Manzi, E.; Leonardo, C.; Guidotti, M.; Antonaccio, F.P.; Olivieri, V.; De Dominicis, C. The Role of Nutraceutical Medications in Men with Non Bacterial Chronic Prostatitis and Chronic Pelvic Pain Syndrome: A Prospective Non Blinded Study Utilizing Flower Pollen Extracts versus Bioflavonoids. Arch. Ital. Di Urol. E Androl. 2019, 90, 260–264. [Google Scholar] [CrossRef]
- Liu, Z.-M.; Ho, S.C.; Chen, Y.-M.; Tomlinson, B.; Ho, S.; To, K.; Woo, J. Effect of Whole Soy and Purified Daidzein on Ambulatory Blood Pressure and Endothelial Function—A 6-Month Double-Blind, Randomized Controlled Trial Among Chinese Postmenopausal Women with Prehypertension. Eur. J. Clin. Nutr. 2015, 69, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Luque, M.Z.; Aguiar, A.F.; da Silva-Araújo, A.K.; Zaninelli, T.H.; Heintz, O.K.; Saraiva-Santos, T.; Bertozzi, M.M.; Souza, N.A.; Júnior, E.O.; Verri, W.A., Jr.; et al. Evaluation of a Preemptive Intervention Regimen with Hesperidin Methyl Chalcone in Delayed-Onset Muscle Soreness in Young Adults: A Randomized, Double-Blinded, and Placebo-Controlled Trial Study. Eur. J. Appl. Physiol. 2023, 123, 1949–1964. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, R.; Ranjbar, G.; Madden, A.M. Inhibition of the Glycaemic Response by Onion: A Comparison between Lactose-Tolerant and Lactose-Intolerant Adults. Eur. J. Clin. Nutr. 2016, 70, 1089–1091. [Google Scholar] [CrossRef]
- Bondonno, C.P.; Bondonno, N.P.; Shinde, S.; Shafaei, A.; Boyce, M.C.; Swinny, E.; Jacob, S.R.; Lacey, K.; Woodman, R.J.; Croft, K.D.; et al. Phenolic Composition of 91 Australian Apple Varieties: Towards Understanding Their Health Attributes. Food Funct. 2020, 11, 7115–7125. [Google Scholar] [CrossRef]
- Gleason, C.E.; Fischer, B.L.; Dowling, N.M.; Setchell, K.D.R.; Atwood, C.S.; Carlsson, C.M.; Asthana, S. Cognitive Effects of Soy Isoflavones in Patients with Alzheimer’s Disease. J. Alzheimer’s Dis. 2015, 47, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.H.; Jo, A.; Casale, T.; Jeong, S.J.; Hong, S.-J.; Cho, J.K.; Holbrook, J.T.; Kumar, R.; Smith, L.J. Soy Isoflavones Reduce Asthma Exacerbation in Asthmatic Patients with High PAI-1–Producing Genotypes. J. Allergy Clin. Immunol. 2019, 144, 109–117.e4. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H. Soybean Isoflavones Ameliorate Ischemic Cardiomyopathy by Activating Nrf2-Mediated Antioxidant Responses. Food Funct. 2017, 8, 2935–2944. [Google Scholar] [CrossRef]
- Haidari, F.; Heybar, H.; Jalali, M.T.; Ahmadi Engali, K.; Helli, B.; Shirbeigi, E. Hesperidin Supplementation Modulates Inflammatory Responses Following Myocardial Infarction. J. Am. Coll. Nutr. 2015, 34, 205–211. [Google Scholar] [CrossRef]
- Chiu, H.; Liao, Y.; Shen, Y.; Han, Y.; Golovinskaia, O.; Venkatakrishnan, K.; Hung, C.; Wang, C. Improvement on Blood Pressure and Skin Using Roselle Drink: A Clinical Trial. J. Food Biochem. 2022, 46, e14287. [Google Scholar] [CrossRef]
- Krishnakumar, I.M.; Jaja-Chimedza, A.; Joseph, A.; Balakrishnan, A.; Maliakel, B.; Swick, A. Enhanced Bioavailability and Pharmacokinetics of a Novel Hybrid-Hydrogel Formulation of Fisetin Orally Administered in Healthy Individuals: A Randomised Double-Blinded Comparative Crossover Study. J. Nutr. Sci. 2022, 11, e74. [Google Scholar] [CrossRef]
- Widjajakusuma, E.C.; Jonosewojo, A.; Hendriati, L.; Wijaya, S.; Ferawati; Surjadhana, A.; Sastrowardoyo, W.; Monita, N.; Muna, N.M.; Fajarwati, R.P.; et al. Phytochemical Screening and Preliminary Clinical Trials of the Aqueous Extract Mixture of Andrographis paniculata (Burm. f.) Wall. Ex Nees and Syzygium polyanthum (Wight.) Walp Leaves in Metformin Treated Patients with Type 2 Diabetes. Phytomedicine 2019, 55, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Liu, Y.; Yue, Y.; Qin, Y.; Li, Z. Dietary Tartary Buckwheat Intake Attenuates Insulin Resistance and Improves Lipid Profiles in Patients with Type 2 Diabetes: A Randomized Controlled Trial. Nutr. Res. 2016, 36, 1392–1401. [Google Scholar] [CrossRef] [PubMed]
- Tungmunnithum, D.; Drouet, S.; Lorenzo, J.M.; Hano, C. Characterization of Bioactive Phenolics and Antioxidant Capacity of Edible Bean Extracts of 50 Fabaceae Populations Grown in Thailand. Foods 2021, 10, 3118. [Google Scholar] [CrossRef] [PubMed]
- Tungmunnithum, D.; Drouet, S.; Lorenzo, J.M.; Hano, C. Effect of Traditional Cooking and In Vitro Gastrointestinal Digestion of the Ten Most Consumed Beans from the Fabaceae Family in Thailand on Their Phytochemicals, Antioxidant and Anti-Diabetic Potentials. Plants 2021, 11, 67. [Google Scholar] [CrossRef]
Plants | Native or Cultivated Regions | Major Flavonoids/Other Phenolic Compounds | Physiological Functions | Reference |
---|---|---|---|---|
Reynoutria japonica Houtt. | Japan | Flavonol 3-O-glycosides | UV-absorbing agent | [66] |
Larix kaempferi (Lamb.) Carrière | Japan | Flavonol 3-O-glycosides | UV-absorbing agent | [66] |
Calystegia soldanella (L.) R. Br. | Japan | Kaempferol 3-O-rutinoside, 3-O-glucoside and 3-O-rhamnoside, quercetin 3-O-rutinoside, 3-O-glucoside, 3-O-rhamnoside and 3-O-apiosyl-(1 → 2)-[rhamnosyl-(1 → 6)-glucoside] | UV-absorbing agent | [67] |
Rheum nobile Hook. f. & Thomson | Japan | Quercetin 3-O-glucoside, quercetin 3-O-rutinoside, quercetin 3-O-galactoside, quercetin 3-O-arabinoside and quercetin 3-O-[6″-(3-hydroxy-3-methylglutaroyl)-glucoside] | UV-absorbing agent | [68] |
Glycine max (L.) Merr. | USA | 4′,7-dihydroxyisoflavone, 4′,5,7-trihydroxyisoflavone | Pathogen defense agent | [28] |
Origanum Vulgare L. | India | Caffeic acid, rosmarinic acid | Pathogen defense agent | [69] |
Apocynum venetum L. | China | Anthocyanin | Pathogen defense agent | [71] |
Edible beans (legumes) | China | Catechin, ferulic acid, protocatechuic acid, gallic acid, p-coumaric acid | Detoxifying agent | [79] |
Heptapleurum arboricola Hayata | Japan | Quercetin, kaempferol, quercetin glycoside, kaempferol glycoside | Detoxifying agent | [44] |
Ligustrum vulgare L. | Japan | Quercetin, luteolin | Detoxifying agent | [41] |
Vitis vinifera L. | Chile | Quercetin, kaempferol | Detoxifying agent | [80] |
Vigna radiata (L.) R. Wilczek | Japan | Myricetin, quercetin, kaempferol | Detoxifying agent | [42] |
Zea mays L. | USA | Kaempferol | Fertility of pollen grains, pollination success | [85] |
Petunia hybrida E. Vilm. | USA | Flavonol aglycones | Fertility of pollen grains | [87] |
Nicotiana tabacum L. | India | Quercetin | Fertility of pollen grains | [39] |
Solanum lycopersicum L. | The Netherlands | Flavonoids | Pollination success | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuljarusnont, S.; Iwakami, S.; Iwashina, T.; Tungmunnithum, D. Flavonoids and Other Phenolic Compounds for Physiological Roles, Plant Species Delimitation, and Medical Benefits: A Promising View. Molecules 2024, 29, 5351. https://doi.org/10.3390/molecules29225351
Kuljarusnont S, Iwakami S, Iwashina T, Tungmunnithum D. Flavonoids and Other Phenolic Compounds for Physiological Roles, Plant Species Delimitation, and Medical Benefits: A Promising View. Molecules. 2024; 29(22):5351. https://doi.org/10.3390/molecules29225351
Chicago/Turabian StyleKuljarusnont, Sompop, Satoshi Iwakami, Tsukasa Iwashina, and Duangjai Tungmunnithum. 2024. "Flavonoids and Other Phenolic Compounds for Physiological Roles, Plant Species Delimitation, and Medical Benefits: A Promising View" Molecules 29, no. 22: 5351. https://doi.org/10.3390/molecules29225351
APA StyleKuljarusnont, S., Iwakami, S., Iwashina, T., & Tungmunnithum, D. (2024). Flavonoids and Other Phenolic Compounds for Physiological Roles, Plant Species Delimitation, and Medical Benefits: A Promising View. Molecules, 29(22), 5351. https://doi.org/10.3390/molecules29225351