Perborate Activated Peroxymonosulfate Process for Improving the Coagulation Efficiency of Microcystis aeruginosa by Polymeric Aluminum Chloride
Abstract
:1. Introduction
2. Results and Discussion
2.1. Comparison of Different Treatment Processes on Cyanobacteria Removal
2.2. Effects of PMS, SP, and PAC Dosage on Cyanobacteria Removal
2.3. Cellular Integrity Analysis
2.4. DBP Formation Potential in Chlorination Following PMS/SP/PAC Treatment
2.5. Microcystin-LR Release After PMS/SP/PAC Treatment
2.6. Mechanisms Investigation
3. Materials and Methods
3.1. Materials and Reagents
3.2. Experimental Procedure
3.3. Analytical Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, G.; Li, X.; Chen, X.; You, Y.; Dai, W.; Qu, F.; Tang, D.; Yan, Z. Z-scheme ag3po4@polyaniline core-shell nanocomposite with high visible light photocatalytic performance for Microcystis aeruginosa inactivation. Chem. Eng. J. 2022, 427, 132005. [Google Scholar] [CrossRef]
- Zhai, Q.; Song, L.; Huang, S.; Ji, X.; Yu, Y.; Ye, J.; Wei, H.; Xu, W.; Hou, M. Removal mechanism of Microcystis aeruginosa in Fe2+/sodium percarbonate and Fe2+/sodium persulfate advanced oxidation-flocculation system. Environ. Sci. Pollut. Res. Int. 2023, 30, 40911–40918. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, D.; Zhang, N.; Tang, K.; Bai, Y.; Tian, Y.; Li, Y.; Zhang, X. Effects of perfluorooctanoic acid on Microcystis aeruginosa: Stress and self-adaptation mechanisms. J. Hazard. Mater. 2023, 445, 130396. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, J.; Chen, M.; Koh, K.Y.; Du, Z.; Gin, K.Y.; He, Y.; Ong, C.N.; Chen, J.P. Microcystis aeruginosa removal by peroxides of hydrogen peroxide, peroxymonosulfate and peroxydisulfate without additional activators. Water Res. 2021, 201, 117263. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ding, S.; Li, L.; Liao, Q.; Chu, W.; Li, H. Ultrasound-enhanced coagulation for Microcystis aeruginosa removal and disinfection by-product control during subsequent chlorination. Water Res. 2021, 201, 117334. [Google Scholar] [CrossRef]
- Sun, S.; Tang, Q.; Xu, H.; Gao, Y.; Zhang, W.; Zhou, L.; Li, Y.; Wang, J.; Song, C. A comprehensive review on the photocatalytic inactivation of Microcystis aeruginosa: Performance, development, and mechanisms. Chemosphere 2023, 312, 137239. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.; Qin, Y.; Li, H. Removal of Microcystis aeruginosa and control of algal organic matter by fe(ii)/peroxymonosulfate pre-oxidation enhanced coagulation. Chem. Eng. J. 2021, 403, 126381. [Google Scholar] [CrossRef]
- Xie, P.; Ma, J.; Fang, J.; Guan, Y.; Yue, S.; Li, X.; Chen, L. Comparison of permanganate preoxidation and preozonation on algae containing water: Cell integrity, characteristics, and chlorinated disinfection byproduct formation. Environ. Sci. Technol. 2013, 47, 14051–14061. [Google Scholar] [CrossRef]
- Fan, J.; Zeng, J.; Li, X.; Guo, K.; Liu, W.; Fang, J. Multiple roles of uv/kmno(4) in cyanobacteria containing water treatment: Cell inactivation & removal, and microcystin degradation. J. Hazard. Mater. 2023, 457, 131772. [Google Scholar] [CrossRef]
- Ma, M.; Liu, R.; Liu, H.; Qu, J. Effect of moderate pre-oxidation on the removal of Microcystis aeruginosa by kmno4-fe(ii) process: Significance of the in-situ formed fe(iii). Water Res. 2012, 46, 73–81. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, J.; Zhao, Z.; Peng, W.; Cui, F.; Liang, Z. Microcystis aeruginosa-laden water treatment using peroxymonosulfate enhanced fe(ii) coagulation: Performance and the role of in situ formed Fe3O4. Chem. Eng. J. 2020, 382, 123012. [Google Scholar] [CrossRef]
- Zheng, X.; Niu, X.; Zhang, D.; Ye, X.; Ma, J.; Lv, M.; Lin, Z. Removal of Microcystis aeruginosa by natural pyrite-activated persulfate: Performance and the significance of iron species. Chem. Eng. J. 2022, 428, 132565. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Zhang, C.; Pan, Z.; Han, S. Synergistic removal of Microcystis aeruginosa by a novel H2O2 pre-oxidation enhanced pressurization method: Performance and mechanism. J. Clean Prod. 2022, 379, 134745. [Google Scholar] [CrossRef]
- Zeng, H.; Zhu, H.; Deng, J.; Shi, Z.; Zhang, H.; Li, X.; Deng, L. New insight into peroxymonosulfate activation by coal-ldh derived coooh: Oxygen vacancies rather than co species redox pairs induced process. Chem. Eng. J. 2022, 442, 136251. [Google Scholar] [CrossRef]
- Zeng, H.; Deng, L.; Yang, L.; Wu, H.; Zhang, H.; Zhou, C.; Liu, B.; Shi, Z. Novel prussian blue analogues@mxene nanocomposite as heterogeneous activator of peroxymonosulfate for the degradation of coumarin: The nonnegligible role of lewis-acid sites on mxene. Chem. Eng. J. 2021, 416, 128071. [Google Scholar] [CrossRef]
- Yang, Z.; Hou, J.; Wu, J.; Miao, L. Mesoporous carbon framework supported fe-cu-mn oxides as an efficient peroxymonosulfate catalyst for the control of harmful algal blooms: Synergism of fe-cu-mn and role of mesoporous carbon. Chem. Eng. J. 2023, 461, 141877. [Google Scholar] [CrossRef]
- Yang, X.; Yao, L.; Wang, Y.; Zhang, X.; Ren, P. Simultaneous removal of algae, microcystins and disinfection byproduct precursors by peroxymonosulfate (pms)-enhanced fe(iii) coagulation. Chem. Eng. J. 2022, 445, 136689. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Xie, P.; Shang, R.; Ma, J. Removal of Microcystis aeruginosa by uv-activated persulfate: Performance and characteristics. Chem. Eng. J. 2016, 300, 245–253. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, B.; Li, X.; Li, Y.; Zhong, Y.; Ding, J. Inactivation of Microcystis aeruginosa by peroxydisulfate activated with single-atomic iron catalysis: Efficiency and mechanisms. J. Environ. Chem. Eng. 2022, 10, 108310. [Google Scholar] [CrossRef]
- Zeng, H.; Ling, X.; Deng, J.; Deng, L.; Zhang, H.; Shi, T.; Zhou, S.; Shi, Z. Activation of peroxymonosulfate via peroxyborate: Electrophilic substitution induced strong electrophile generation process. Chem. Eng. J. 2023, 451, 138925. [Google Scholar] [CrossRef]
- Chen, J.J.; Yeh, H.H. The mechanisms of potassium permanganate on algae removal. Water Res. 2005, 39, 4420–4428. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Chen, J.; Liu, B.; Huang, Y.; Tang, Y.; Wei, Q. Removal of Microcystis aeruginosa and microcystin-lr by uv/fenton system: Characteristics and degradation pathways. Sep. Purif. Technol. 2023, 306, 122596. [Google Scholar] [CrossRef]
- GB 5749-2022; Standards for Drinking Water Quality. Standardization Administration of China: Beijing, China, 2022.
- Liu, X.; Gao, S.; Li, X.; Wang, H.; Ji, X.; Zhang, Z. Determination of microcystins in environmental water samples with ionic liquid magnetic graphene. Ecotox. Environ. Saf. 2019, 176, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Zhang, C.; Struewing, I.; Li, X.; Allen, J.; Lu, J. Cyanotoxin-Encoding Genes as Powerful Predictors of Cyanotoxin Production During Harmful Cyanobacterial Blooms in an Inland Freshwater Lake: Evaluating a Novel Early-Warning System; Elsevier Pub. Co.: Amsterdam, The Netherlands, 2022; Volume 830, p. 154568. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Wang, C.; Zhao, J.; Wei, Q.; Ma, X.; Yang, G. Study on the removal and degradation mechanism of microcystin-lr by the uv/fenton system. Sci. Total Environ. 2023, 892, 164665. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Zhan, J.; Luo, J.; Lin, J.; Qu, F.; Du, B.; You, Y.; Yan, Z. Fabrication of heterostructured ag/agcl@g-c3n4@uio-66(nh2) nanocomposite for efficient photocatalytic inactivation of Microcystis aeruginosa under visible light. J. Hazard. Mater. 2021, 404, 124062. [Google Scholar] [CrossRef]
- Qi, J.; Lan, H.; Liu, R.; Liu, H.; Qu, J. Efficient Microcystis aeruginosa removal by moderate photocatalysis-enhanced coagulation with magnetic zn-doped Fe3O4 particles. Water Res. 2020, 171, 115448. [Google Scholar] [CrossRef]
- Qi, J.; Lan, H.; Liu, H.; Liu, R.; Miao, S.; Qu, J. Simultaneous surface-adsorbed organic matter desorption and cell integrity maintenance by moderate prechlorination to enhance Microcystis aeruginosa removal in kmno4efe(ii) process. Water Reseach 2016, 105, 551–558. [Google Scholar] [CrossRef]
- Wang, H.; Qu, G.; Gan, Y.; Zhang, Z.; Li, R.; Wang, T. Elimination of Microcystis aeruginosa in water via dielectric barrier discharge plasma: Efficacy, mechanism and toxin release. J. Hazard. Mater. 2022, 422, 126956. [Google Scholar] [CrossRef]
- GB/T 20466-2006; Determination of Microcystins in Water. Standardization Administration of China: Beijing, China, 2022.
K+ Release Ratio | |
---|---|
Control group | 1.4% |
10 mg/L PAC | 14.1% |
3 mM PMS | 10.5% |
1 mM SP | 1.6% |
3 mM PMS + 10 mg/L PAC | 61.2% |
3 mM PMS + 1 mM SP + 10 mg/L PAC | 96.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Li, L.; Qiu, S.; Chen, S.; Yang, L.; Deng, L.; Shi, Z. Perborate Activated Peroxymonosulfate Process for Improving the Coagulation Efficiency of Microcystis aeruginosa by Polymeric Aluminum Chloride. Molecules 2024, 29, 5352. https://doi.org/10.3390/molecules29225352
Chen F, Li L, Qiu S, Chen S, Yang L, Deng L, Shi Z. Perborate Activated Peroxymonosulfate Process for Improving the Coagulation Efficiency of Microcystis aeruginosa by Polymeric Aluminum Chloride. Molecules. 2024; 29(22):5352. https://doi.org/10.3390/molecules29225352
Chicago/Turabian StyleChen, Fan, Lu Li, Shunfan Qiu, Shiyang Chen, Lingfang Yang, Lin Deng, and Zhou Shi. 2024. "Perborate Activated Peroxymonosulfate Process for Improving the Coagulation Efficiency of Microcystis aeruginosa by Polymeric Aluminum Chloride" Molecules 29, no. 22: 5352. https://doi.org/10.3390/molecules29225352
APA StyleChen, F., Li, L., Qiu, S., Chen, S., Yang, L., Deng, L., & Shi, Z. (2024). Perborate Activated Peroxymonosulfate Process for Improving the Coagulation Efficiency of Microcystis aeruginosa by Polymeric Aluminum Chloride. Molecules, 29(22), 5352. https://doi.org/10.3390/molecules29225352