Investigating Excited States and Absorption Spectra of the Poly-cyclopenta-dithiophene-benzothiadiazole Oligomers (Poly-CPDTBT)—A Theoretical Study
Abstract
:1. Introduction
2. Model Construction
3. Results
3.1. Equilibrium Geometry of Ground State
3.2. Excited-State Energies and Character
3.2.1. Benchmark Calculations and Short Oligomers
3.2.2. The Oligomer CPDTBTN (N = 3–6)
3.2.3. Simulated Absorption Spectra
3.2.4. Extrapolation of the Vertical Excited Energy of S1
4. Discussion
5. Conclusions
6. Computational Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bredas, J.L.; Cornil, J.; Beljonne, D.; dos Santos, D.; Shuai, Z.G. Excited-State Electronic Structure of Conjugated Oligomers and Polymers: A Quantum-Chemical Approach to Optical Phenomena. Acc. Chem. Res. 1999, 32, 267–276. [Google Scholar] [CrossRef]
- Halls, J.J.M.; Walsh, C.A.; Greenham, N.C.; Marseglia, E.A.; Friend, R.H.; Moratti, S.C.; Holmes, A.B. Efficient Photodiodes from Interpenetrating Polymer Networks. Nature 1995, 376, 498–500. [Google Scholar] [CrossRef]
- Park, S.H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J.S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A.J. Bulk Heterojunction Solar Cells with Internal Quantum Efficiency Approaching 100%. Nat. Photonics 2009, 3, 297-U5. [Google Scholar] [CrossRef]
- Peet, J.; Kim, J.Y.; Coates, N.E.; Ma, W.L.; Moses, D.; Heeger, A.J.; Bazan, G.C. Efficiency Enhancement in Low-Bandgap Polymer Solar Cells by Processing with Alkane Dithiols. Nat. Mater. 2007, 6, 497–500. [Google Scholar] [CrossRef]
- Thompson, B.C.; Frechet, J.M.J. Organic Photovoltaics–Polymer-Fullerene Composite Solar Cells. Angew. Chem.-Int. Edit. 2008, 47, 58–77. [Google Scholar] [CrossRef]
- Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Polymer Photovoltaic Cells—Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270, 1789–1791. [Google Scholar] [CrossRef]
- Clarke, T.M.; Durrant, J.R. Charge Photogeneration in Organic Solar Cells. Chem. Rev. 2010, 110, 6736–6767. [Google Scholar] [CrossRef]
- Dennler, G.; Scharber, M.C.; Brabec, C.J. Polymer-Fullerene Bulk-Heterojunction Solar Cells. Adv. Mater. 2009, 21, 1323–1338. [Google Scholar] [CrossRef]
- Zhu, Z.; Waller, D.; Gaudiana, R.; Morana, M.; Muhlbacher, D.; Scharber, M.; Brabec, C. Panchromatic Conjugated Polymers Containing Alternating Donor/Acceptor Units for Photovoltaic Applications. Macromolecules 2007, 40, 1981–1986. [Google Scholar] [CrossRef]
- Chen, J.W.; Cao, Y. Development of Novel Conjugated Donor Polymers for High-Efficiency Bulk-Heterojunction Photovoltaic Devices. Acc. Chem. Res. 2009, 42, 1709–1718. [Google Scholar] [CrossRef]
- Boudreault, P.L.T.; Najari, A.; Leclerc, M. Processable Low-Bandgap Polymers for Photovoltaic Applications. Chem. Mater. 2011, 23, 456–469. [Google Scholar] [CrossRef]
- Risko, C.; McGehee, M.D.; Brédas, J.-L. A Quantum-Chemical Perspective into Low Optical-Gap Polymers for Highly-Efficient Organic Solar Cells. Chem. Sci. 2011, 2, 1200–1218. [Google Scholar] [CrossRef]
- Albrecht, S.; Janietz, S.; Schindler, W.; Frisch, J.; Kurpiers, J.; Kniepert, J.; Inal, S.; Pingel, P.; Fostiropoulos, K.; Koch, N.; et al. Fluorinated Copolymer Pcpdtbt with Enhanced Open-Circuit Voltage and Reduced Recombination for Highly Efficient Polymer Solar Cells. J. Am. Chem. Soc. 2012, 134, 14932–14944. [Google Scholar] [CrossRef]
- Etzold, F.; Howard, I.A.; Forler, N.; Cho, D.M.; Meister, M.; Mangold, H.; Shu, J.; Hansen, M.R.; Mullen, K.; Laquai, F. The Effect of Solvent Additives on Morphology and Excited-State Dynamics in Pcpdtbt:Pcbm Photovoltaic Blends. J. Am. Chem. Soc. 2012, 134, 10569–10583. [Google Scholar] [CrossRef]
- Etzold, F.; Howard, I.A.; Mauer, R.; Meister, M.; Kim, T.D.; Lee, K.S.; Baek, N.S.; Laquai, F. Ultrafast Exciton Dissociation Followed by Nongeminate Charge Recombination in Pcdtbt:Pcbm Photovoltaic Blends. J. Am. Chem. Soc. 2011, 133, 9469–9479. [Google Scholar] [CrossRef]
- Hou, J.; Chen, T.L.; Zhang, S.; Yang, Y. Poly [4,4-Bis(2-Ethylhexyl) Cyclopenta [2,1-B;3,4-B′]Dithiophene-2,6-Diyl-Alt-2,1,3- Benzoselenadiazole-4,7-Diyl], a New Low Band Gap Polymer in Polymer Solar Cells. J. Phys. Chem. C 2009, 113, 1601–1605. [Google Scholar] [CrossRef]
- Kettle, J.; Waters, H.; Horie, M.; Chang, S.W. Effect of Hole Transporting Layers on the Performance of Pcpdtbt : Pcbm Organic Solar Cells. J. Phys. D Appl. Phys. 2012, 45, 125102. [Google Scholar] [CrossRef]
- Leng, C.; Qin, H.; Si, Y.; Zhao, Y. Theoretical Prediction of the Rate Constants for Exciton-Dissociation and Charge-Recombination to a Triplet State in Pcpdtbt with Different Fullerene Derivatives. J. Phys. Chem. C 2014, 118, 1843–1855. [Google Scholar] [CrossRef]
- Lin, R.; Wright, M.; Uddin, A. Effects of Solvent Additive on Inverted Structure Pcpdtbt:Pc71bm Bulk Heterojunction Organic Solar Cells. Phys. Status Solidi A 2013, 210, 1785–1790. [Google Scholar] [CrossRef]
- Tsutsumi, J.Y.; Matsuzaki, H.; Kanai, N.; Yamada, T.; Hasegawa, T. Charge Separation and Recombination of Charge-Transfer Excitons in Donor–Acceptor Polymer Solar Cells. J. Phys. Chem. C 2013, 117, 16769–16773. [Google Scholar] [CrossRef]
- Albrecht, S.; Schindler, W.; Kurpiers, J.; Kniepert, J.; Blakesley, J.C.; Dumsch, I.; Allard, S.; Fostiropoulos, K.; Scherf, U.; Neher, D. On the Field Dependence of Free Charge Carrier Generation and Recombination in Blends of Pcpdtbt/Pc70bm: Influence of Solvent Additives. J. Phys. Chem. Lett. 2012, 3, 640–645. [Google Scholar] [CrossRef]
- Morana, M.; Wegscheider, M.; Bonanni, A.; Kopidakis, N.; Shaheen, S.; Scharber, M.; Zhu, Z.; Waller, D.; Gaudiana, R.; Brabec, C. Bipolar Charge Transport in Pcpdtbt-Pcbm Bulk-Heterojunctions for Photovoltaic Applications. Adv. Funct. Mater. 2008, 18, 1757–1766. [Google Scholar] [CrossRef]
- Tunc, A.V.; De Sio, A.; Riedel, D.; Deschler, F.; Da Como, E.; Parisi, J.; von Hauff, E. Molecular Doping of Low-Bandgap-Polymer:Fullerene Solar Cells: Effects on Transport and Solar Cells. Org. Electron. 2012, 13, 290–296. [Google Scholar] [CrossRef]
- Tretiak, S.; Mukamel, S. Density Matrix Analysis and Simulation of Electronic Excitations in Conjugated and Aggregated Molecules. Chem. Rev. 2002, 102, 3171–3212. [Google Scholar] [CrossRef]
- Scheblykin, I.G.; Yartsev, A.; Pullerits, T.; Gulbinas, V.; Sundstrom, V. Excited State and Charge Photogeneration Dynamics in Conjugated Polymers. J. Phys. Chem. B 2007, 111, 6303–6321. [Google Scholar] [CrossRef]
- Qin, T.; Troisi, A. Relation between Structure and Electronic Properties of Amorphous Meh-Ppv Polymers. J. Am. Chem. Soc. 2013, 135, 11247–11256. [Google Scholar] [CrossRef]
- Troisi, A. How Quasi-Free Holes and Electrons Are Generated in Organic Photovoltaic Interfaces. Faraday Discuss. 2013, 163, 377–392. [Google Scholar] [CrossRef]
- Lukes, V.; Solc, R.; Barbatti, M.; Elstner, M.; Lischka, H.; Kauffmann, H.F. Torsional Potentials and Full-Dimensional Simulation of Electronic Absorption and Fluorescence Spectra of Para-Phenylene Oligomers Using the Semiempirical Self-Consistent Charge Density-Functional Tight Binding Approach. J. Chem. Phys. 2008, 129, 164905. [Google Scholar] [CrossRef]
- Panda, A.N.; Plasser, F.; Aquino, A.J.A.; Burghardt, I.; Lischka, H. Electronically Excited States in Poly(P-Phenylenevinylene): Vertical Excitations and Torsional Potentials from High-Level Ab Initio Calculations. J. Phys. Chem. A 2013, 117, 2181–2189. [Google Scholar] [CrossRef]
- Ke, Y.L.; Liu, Y.X.; Zhao, Y. Visualization of Hot Exciton Energy Relaxation from Coherent to Diffusive Regimes in Conjugated Polymers: A Theoretical Analysis. J. Phys. Chem. Lett. 2015, 6, 1741–1747. [Google Scholar] [CrossRef]
- Fazzi, D.; Grancini, G.; Maiuri, M.; Brida, D.; Cerullo, G.; Lanzani, G. Ultrafast Internal Conversion in a Low Band Gap Polymer for Photovoltaics: Experimental and Theoretical Study. Phys. Chem. Chem. Phys. 2012, 14, 6367–6374. [Google Scholar] [CrossRef]
- Pandey, L.; Doiron, C.; Sears, J.S.; Bredas, J.L. Lowest Excited States and Optical Absorption Spectra of Donor-Acceptor Copolymers for Organic Photovoltaics: A New Picture Emerging from Tuned Long-Range Corrected Density Functionals. Phys. Chem. Chem. Phys. 2012, 14, 14243–14248. [Google Scholar] [CrossRef]
- Bredas, J.L. Molecular Understanding of Organic Solar Cells: The Challenges. AIP Conf. Proc. 2013, 1519, 55–58. [Google Scholar]
- Sutton, C.; Sears, J.S.; Coropceanu, V.; Bredas, J.L. Understanding the Density Functional Dependence of Dft-Calculated Electronic Couplings in Organic Semiconductors. J. Phys. Chem. Lett. 2013, 4, 919–924. [Google Scholar] [CrossRef]
- Ma, H.; Troisi, A. Direct Optical Generation of Long-Range Charge-Transfer States in Organic Photovoltaics. Adv. Mater. 2014, 26, 6163–6167. [Google Scholar] [CrossRef]
- Wenzel, J.; Dreuw, A.; Burghardt, I. Charge and Energy Transfer in a Bithiophene Perylenediimide Based Donor-Acceptor-Donor System for Use in Organic Photovoltaics. Phys. Chem. Chem. Phys. 2013, 15, 11704–11716. [Google Scholar] [CrossRef]
- Tamura, H.; Martinazzo, R.; Ruckenbauer, M.; Burghardt, I. Quantum Dynamics of Ultrafast Charge Transfer at an Oligothiophene-Fullerene Heterojunction. J. Chem. Phys. 2012, 137, 22A540. [Google Scholar] [CrossRef]
- Dreuw, A.; Head-Gordon, M. Single-Reference Ab Initio Methods for the Calculation of Excited States of Large Molecules. Chem. Rev. 2005, 105, 4009–4037. [Google Scholar] [CrossRef]
- Starcke, J.H.; Wormit, M.; Schirmer, J.; Dreuw, A. How Much Double Excitation Character Do the Lowest Excited States of Linear Polyenes Have? Chem. Phys. 2006, 329, 39–49. [Google Scholar] [CrossRef]
- Plasser, F.; Lischka, H. Analysis of Excitonic and Charge Transfer Interactions from Quantum Chemical Calculations. J. Chem. Theory Comput. 2012, 8, 2777–2789. [Google Scholar] [CrossRef]
- Schubert, A.; Settels, V.; Liu, W.L.; Wurthner, F.; Meier, C.; Fink, R.F.; Schindlbeck, S.; Lochbrunner, S.; Engels, B.; Engel, V. Ultrafast Exciton Self-Trapping Upon Geometry Deformation in Perylene-Based Molecular Aggregates. J. Phys. Chem. Lett. 2013, 4, 792–796. [Google Scholar] [CrossRef]
- Settels, V.; Liu, W.L.; Pflaum, J.; Fink, R.F.; Engels, B. Comparison of the Electronic Structure of Different Perylene-Based Dye-Aggregates. J. Comput. Chem. 2012, 33, 1544–1553. [Google Scholar] [CrossRef]
- Liu, W.L.; Settels, V.; Harbach, P.H.P.; Dreuw, A.; Fink, R.F.; Engels, B. Assessment of Td-Dft- and Td-Hf-Based Approaches for the Prediction of Exciton Coupling Parameters, Potential Energy Curves, and Electronic Characters of Electronically Excited Aggregates. J. Comput. Chem. 2011, 32, 1971–1981. [Google Scholar] [CrossRef]
- Tretiak, S.; Saxena, A.; Martin, R.L.; Bishop, A.R. Conformational Dynamics of Photoexcited Conjugated Molecules. Phys. Rev. Lett. 2002, 89, 097402. [Google Scholar] [CrossRef]
- Wu, F.Q.; Liu, W.J.; Zhang, Y.; Li, Z.D. Linear-Scaling Time-Dependent Density Functional Theory Based on the Idea of “from Fragments to Molecule”. J. Chem. Theory Comput. 2011, 7, 3643–3660. [Google Scholar] [CrossRef]
- Plasser, F.; Wormit, M.; Dreuw, A. New Tools for the Systematic Analysis and Visualization of Electronic Excitations. I. Formalism. J. Chem. Phys. 2014, 141, 024106. [Google Scholar] [CrossRef]
- Voityuk, A.A. Fragment Transition Density Method to Calculate Electronic Coupling for Excitation Energy Transfer. J. Chem. Phys. 2014, 140, 244117. [Google Scholar] [CrossRef]
- Plasser, F.; Bäppler, S.A.; Wormit, M.; Dreuw, A. New Tools for the Systematic Analysis and Visualization of Electronic Excitations. II. Applications. J. Chem. Phys. 2014, 141, 024107. [Google Scholar] [CrossRef]
- Trofimov, A.B.; Schirmer, J. An Efficient Polarization Propagator Approach to Valence Electron-Excitation Spectra. J. Phys. B-At. Mol. Opt. Phys. 1995, 28, 2299–2324. [Google Scholar] [CrossRef]
- Schirmer, J. Beyond the Random-Phase Approximation—A New Approximation Scheme for the Polarization Propagator. Phys. Rev. A 1982, 26, 2395–2416. [Google Scholar] [CrossRef]
- Runge, E.; Gross, E.K.U. Density-Functional Theory for Time-Dependent Systems. Phys. Rev. Lett. 1984, 52, 997–1000. [Google Scholar] [CrossRef]
- Gross, E.K.U.; Kohn, W. Local Density-Functional Theory of Frequency-Dependent Linear Response. Phys. Rev. Lett. 1985, 55, 2850–2852. [Google Scholar] [CrossRef]
- Casida, M.E. Time-Dependent Density-Functional Theory for Molecules and Molecular Solids. Theochem-J. Mol. Struct. 2009, 914, 3–18. [Google Scholar] [CrossRef]
- Becke, A.D. Density-Functional Thermochemistry 3. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.T.; Yang, W.T.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Ernzerhof, M.; Scuseria, G.E. Assessment of the Perdew-Burke-Ernzerhof Exchange-Correlation Functional. J. Chem. Phys. 1999, 110, 5029–5036. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Becke, A.D. A New Mixing of Hartree-Fock and Local Density-Functional Theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic-Behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (Cam-B3lyp). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef]
- Chai, J.D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- Sterpone, F.; Rossky, P.J. Molecular Modeling and Simulation of Conjugated Polymer Oligomers: Ground and Excited State Chain Dynamics of Ppv in the Gas Phase. J. Phys. Chem. B 2008, 112, 4983–4993. [Google Scholar] [CrossRef]
- Yamagata, H.; Spano, F.C. Strong Photophysical Similarities between Conjugated Polymers and J-Aggregates. J. Phys. Chem. Lett. 2014, 5, 622–632. [Google Scholar] [CrossRef]
- Kuhn, H. Quantenmechanische Behandlung Von Farbstoffen Mit Verzweigtem Elektronengas. Helv. Chim. Acta 1949, 32, 2247–2272. [Google Scholar] [CrossRef]
- Kuhn, W. Uber Das Absorptionsspektrum Der Polyene. Helv. Chim. Acta 1948, 31, 1780–1799. [Google Scholar] [CrossRef]
- Mulliken, R.S. Intensities of Electronic Transitions in Molecular Spectra Vii Conjugated Polyenes and Carotenoids. J. Chem. Phys. 1939, 7, 364–373. [Google Scholar] [CrossRef]
- Kuhn, H. A Quantum-Mechanical Theory of Light Absorption of Organic Dyes and Similar Compounds. J. Chem. Phys. 1949, 17, 1198–1212. [Google Scholar] [CrossRef]
- May, V.; Kühn, O. Charge and Energy Transfer Dynamics in Molecular Systems; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011. [Google Scholar]
- Subotnik, J.E.; Cave, R.J.; Steele, R.P.; Shenvi, N. The Initial and Final States of Electron and Energy Transfer Processes: Diabatization as Motivated by System-Solvent Interactions. J. Chem. Phys. 2009, 130, 234102. [Google Scholar] [CrossRef]
- Subotnik, J.E.; Vura-Weis, J.; Sodt, A.J.; Ratner, M.A. Predicting Accurate Electronic Excitation Transfer Rates Via Marcus Theory with Boys or Edmiston−Ruedenberg Localized Diabatization. J. Phys. Chem. A 2010, 114, 8665–8675. [Google Scholar] [CrossRef]
- Subotnik, J.E.; Yeganeh, S.; Cave, R.J.; Ratner, M.A. Constructing Diabatic States from Adiabatic States: Extending Generalized Mulliken-Hush to Multiple Charge Centers with Boys Localization. J. Chem. Phys. 2008, 129, 244101. [Google Scholar] [CrossRef]
- Shao, Y.; Molnar, L.F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S.T.; Gilbert, A.T.B.; Slipchenko, L.V.; Levchenko, S.V.; O’Neill, D.P.; et al. Advances in Methods and Algorithms in a Modern Quantum Chemistry Program Package. Phys. Chem. Chem. Phys. 2006, 8, 3172–3191. [Google Scholar] [CrossRef]
- Hsu, C.P. The Electronic Couplings in Electron Transfer and Excitation Energy Transfer. Acc. Chem. Res. 2009, 42, 509–518. [Google Scholar] [CrossRef]
- Ma, H.B.; Liu, C.G.; Jiang, Y.S. “Triplet-Excited Region” in Polyene Oligomers Revisited: Pariser-Parr-Pople Model Studied with the Density Matrix Renormalization Group Method. J. Chem. Phys. 2004, 120, 9316–9320. [Google Scholar] [CrossRef]
- Ma, Y.J.; Ma, H.B. Calculating Excited States of Molecular Aggregates by the Renormalized Excitonic Method. J. Phys. Chem. A 2013, 117, 3655–3665. [Google Scholar] [CrossRef]
- Zhang, H.J.; Malrieu, J.P.; Ma, H.B.; Ma, J. Implementation of Renormalized Excitonic Method at Ab Initio Level. J. Comput. Chem. 2012, 33, 34–43. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Ahlrichs, R.; Bar, M.; Haser, M.; Horn, H.; Kolmel, C. Electronic-Structure Calculations on Workstation Computers—The Program System Turbomole. Chem. Phys. Lett. 1989, 162, 165–169. [Google Scholar] [CrossRef]
- Plasser, F.; Aquino, A.J.A.; Hase, W.L.; Lischka, H. Uv Absorption Spectrum of Alternating DNA Duplexes. Analysis of Excitonic and Charge Transfer Interactions. J. Phys. Chem. A 2012, 116, 11151–11160. [Google Scholar] [CrossRef]
- Liu, W.; Lunkenheimer, B.; Settels, V.; Engels, B.; Fink, R.F.; Köhn, A. A General Ansatz for Constructing Quasi-Diabatic States in Electronically Excited Aggregated Systems. J. Chem. Phys. 2015, 143, 084106. [Google Scholar] [CrossRef]
- Huang, J.; Du, L.K.; Hu, D.P.; Lan, Z.G. Theoretical Analysis of Excited States and Energy Transfer Mechanism in Conjugated Dendrimers. J. Comput. Chem. 2015, 36, 151–163. [Google Scholar] [CrossRef]
- Plasser, F.; Thomitzni, B.; Bappler, S.A.; Wenzel, J.; Rehn, D.R.; Wormit, M.; Dreuw, A. Statistical Analysis of Electronic Excitation Processes: Spatial Location, Compactness, Charge Transfer, and Electron-Hole Correlation. J. Comput. Chem. 2015, 36, 1609–1620. [Google Scholar] [CrossRef]
Method | Excited States | VE | OS | Contribution |
---|---|---|---|---|
ADC(2) | S1 | 3.33 | 0.63 | H → L (0.94) |
S2 | 4.44 | 0.36 | H → L+1 (0.83) | |
S3 | 4.62 | 0.05 | H-3 → L (0.37) H-2 → L (0.30) | |
S4 | 4.81 | 0.12 | H-4 → L (0.48) H-2 → L (0.17) | |
BHandHLYP | S1 | 3.04 | 0.54 | H → L (0.95) |
S2 | 4.11 | 0.30 | H → L+1 (0.91) | |
S3 | 4.60 | 0.01 | H-1 → L (0.82) | |
S4 | 4.73 | 0.04 | H-2 → L (0.41) H-3 → L (0.24) | |
PBE0 | S1 | 2.64 | 0.35 | H → L (0.98) |
S2 | 3.80 | 0.52 | H → L+1 (0.95) | |
S3 | 4.03 | 0.004 | H-1 → L (0.60) H-2 → L (0.29) | |
S4 | 4.08 | 0.003 | H-2 → L (0.54) H-1 → L (0.34) | |
B3LYP | S1 | 2.51 | 0.31 | H → L (0.98) |
S2 | 3.67 | 0.53 | H → L+1 (0.91) | |
S3 | 3.86 | 0.008 | H-2 → L (0.48) H-1 → L(0.42) | |
S4 | 3.92 | 0.01 | H-1 → L (0.49) H-2 → L(0.38) | |
CAM-B3LYP | S1 | 3.07 | 0.52 | H → L (0.92) |
S2 | 4.10 | 0.28 | H → L+1 (0.87) | |
S3 | 4.64 | 0.04 | H-1 → L (0.56) | |
S4 | 4.68 | 0.05 | H-1 → L (0.23) H-4 → L (0.27) | |
ωB97XD | S1 | 3.09 | 0.54 | H → L (0.90) |
S2 | 4.08 | 0.25 | H → L+1 (0.82) | |
S3 | 4.62 | 0.09 | H-4 → L (0.48) H-2 → L (0.18) | |
S4 | 4.76 | 0.03 | H-1 → L (0.65) |
Orbital | Monomer | Dimer |
---|---|---|
HOMO-1 | ||
HOMO | ||
LUMO | ||
LUMO+1 |
Dimer | Excited States | VE | OS | Contribution |
---|---|---|---|---|
ADC(2) | S1 | 2.61 | 0.92 | H → L (0.92) |
S2 | 3.22 | 0.16 | H → L+1 (0.64) H-1 → L (0.18) | |
S3 | 3.43 | 0.05 | H-1 → L (0.69) H-1 → L+1 (0.12) | |
S4 | 4.07 | 0.72 | H → L+2 (0.72) | |
BHandHLYP | S1 | 2.35 | 1.64 | H → L (0.92) |
S2 | 2.96 | 0.14 | H → L+1 (0.73) H-1 → L (0.12) | |
S3 | 3.34 | 0.013 | H-1 → L (0.79) | |
S4 | 3.80 | 0.61 | H → L+2 (0.78) H-1 → L+3 (0.10) | |
CAM-B3LYP | S1 | 2.40 | 1.57 | H → L (0.90) |
S2 | 3.02 | 0.15 | H → L+1 (0.63) H-1 → L (0.17) | |
S3 | 3.45 | 0.03 | H-1 → L (0.70) | |
S4 | 3.81 | 0.58 | H → L+2 (0.74) | |
ωB97XD | S1 | 2.49 | 1.60 | H → L (0.85) |
S2 | 3.13 | 0.17 | H → L+1 (0.50) H-1 → L (0.22) | |
S3 | 3.66 | 0.05 | H-1 → L (0.50) | |
S4 | 3.91 | 0.53 | H → L+2 (0.65) |
Oligomer | Excited State | BHandHLYP | CAM-B3LYP | ωB97XD | |||
---|---|---|---|---|---|---|---|
VE | OS | VE | OS | VE | OS | ||
trimer | S1 | 1.87 | 2.68 | 1.96 | 2.58 | 2.06 | 2.61 |
S2 | 2.27 | 0.26 | 2.33 | 0.02 | 2.41 | 0.025 | |
S3 | 2.65 | 0.20 | 2.73 | 0.22 | 2.85 | 0.24 | |
S4 | 2.79 | 0.016 | 3.00 | 0.015 | 3.29 | 0.07 | |
tetramer | S1 | 1.77 | 3.86 | 1.86 | 3.73 | 1.97 | 3.77 |
S2 | 2.10 | 0 | 2.16 | 0 | 2.25 | 0 | |
S3 | 2.32 | 0.17 | 2.38 | 0.17 | 2.48 | 0.17 | |
S4 | 2.64 | 0.10 | 2.73 | 0.21 | 2.85 | 0.23 | |
pentamer | S1 | 1.71 | 5.02 | 1.81 | 4.86 | 1.92 | 4.91 |
S2 | 1.97 | 0.004 | 2.05 | 0.004 | 2.14 | 0.004 | |
S3 | 2.20 | 0.30 | 2.26 | 0.28 | 2.36 | 0.28 | |
S4 | 2.35 | 0.04 | 2.41 | 0.04 | 2.50 | 0.04 |
Method | Excited States | VE | OS | Contribution |
---|---|---|---|---|
BHandHLYP | S1 | 1.67 | 6.17 | H → L (0.92) |
S2 | 1.88 | 0 | H → L+1 (0.73) H-1 → L (0.12) | |
S3 | 2.09 | 0.43 | H-1 → L (0.79) | |
S4 | 2.26 | 0 | H → L+2 (0.78) H-1 → L+3 (0.10) | |
CAM-B3LYP | S1 | 1.77 | 5.98 | H → L (0.54) H-1 → L+1 (0.19) |
S2 | 1.97 | 0 | H → L+1 (0.34) H-1 → L (0.29) | |
S3 | 2.16 | 0.41 | H → L+2 (0.30) | |
S4 | 2.32 | 0 | H-1 → L+3 (0.29) | |
ωB97XD | S1 | 1.89 | 6.04 | H → L (0.85) |
S2 | 2.07 | 0 | H → L+1 (0.52) H-1 → L (0.22) | |
S3 | 2.26 | 0.40 | H-1 → L (0.50) | |
S4 | 2.41 | 0 | H → L+2 (0.65) H-1 → L+3 (0.16) |
Equation | BHandHLYP | CAM-B3LYP | ωB97XD | ||||||
---|---|---|---|---|---|---|---|---|---|
A1 | B1 | E1 (eV) | A1 | B1 | E1 (eV) | A1 | B1 | E1 (eV) | |
Particle-in-a-box | 1.29 | 2.03 | 1.29 | 1.41 | 1.88 | 1.41 | 1.54 | 1.80 | 1.54 |
Kuhn | 2.91 | −0.76 | 1.43 | 2.94 | −0.73 | 1.53 | 3.01 | −0.69 | 1.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Huang, Y.; Wang, Y.; Durbeej, B.; Blancafort, L. Investigating Excited States and Absorption Spectra of the Poly-cyclopenta-dithiophene-benzothiadiazole Oligomers (Poly-CPDTBT)—A Theoretical Study. Molecules 2024, 29, 5348. https://doi.org/10.3390/molecules29225348
Wang J, Huang Y, Wang Y, Durbeej B, Blancafort L. Investigating Excited States and Absorption Spectra of the Poly-cyclopenta-dithiophene-benzothiadiazole Oligomers (Poly-CPDTBT)—A Theoretical Study. Molecules. 2024; 29(22):5348. https://doi.org/10.3390/molecules29225348
Chicago/Turabian StyleWang, Jun, Yuting Huang, Yajing Wang, Bo Durbeej, and Lluís Blancafort. 2024. "Investigating Excited States and Absorption Spectra of the Poly-cyclopenta-dithiophene-benzothiadiazole Oligomers (Poly-CPDTBT)—A Theoretical Study" Molecules 29, no. 22: 5348. https://doi.org/10.3390/molecules29225348
APA StyleWang, J., Huang, Y., Wang, Y., Durbeej, B., & Blancafort, L. (2024). Investigating Excited States and Absorption Spectra of the Poly-cyclopenta-dithiophene-benzothiadiazole Oligomers (Poly-CPDTBT)—A Theoretical Study. Molecules, 29(22), 5348. https://doi.org/10.3390/molecules29225348