Unexpected XPS Binding Energy Observations Further Highlighted by DFT Calculations of Ruthenocene-Containing [IrIII(ppy)2(RCOCHCORc)] Complexes: Cytotoxicity and Crystal Structure of [Ir(ppy)2(FcCOCHCORc)]
Abstract
:1. Introduction
2. Results and Discussion
2.1. Single-Crystal X-Ray Structure of 5
2.2. X-Ray Photoelectron Spectroscopy
R(χR) | R′(χR′) | ΣχR [1] a | IrIII/IV E°′ (V) | BE Ir (eV) | Iratio b | (Ir−N)av | DFT Orb. En. (eV) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ir 4f7/2 | Ir 4f7/2,dec | N 1s | (Å) | Ir 4f (t2u + a2u)ave | N 1s | ||||||
1 | CH3(2.34) | CH3 | 4.68 | 0.319 | 61.4 | 59.2 | 399.4 | 2.010 [48,49,50] | −60.88 | −382.80 | |
2 | Rc(1.99) | CH3 | 4.33 | 0.283 | 61.7 | 59.2 | 399.6 | 0.28 | 2.047 [1] | −60.94 | |
3 | Fc(1.87) | CH3 | 4.21 | 0.497 | 61.7 | 59.2 | 399.8 | 0.32 | −60.95 | −382.84 | |
4 | Rc(1.99) | Rc | 3.98 | 0.252 | 61.8 | 59.3 | 399.9 | 0.19 | 2.033 [60] | −60.96 | −382.85 |
5 | Fc(1.87) | Rc | 3.86 | 0.445 | 61.7 | 60.1 | 400.0 | 0.37 | 2.035 c | −60.97 | −382.85 |
6 | Fc(1.87) | Fc | 3.74 | 0.681 | 61.9 | 60.2 | 400.0 | 0.22 | −60.98 | −382.86 | |
7 | [(ppy)2IrCl]2 | 61.3 |
2.3. Biomedical Properties
3. Experimental Section
3.1. Compounds
3.2. Crystal Structure Determination of [Ir(ppy)2(FcCOCHCORc)], 5
3.3. X-Ray Photoelectron Spectroscopy
3.4. DFT Calculations
3.5. Cytotoxicity Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buitendach, B.E.; Conradie, J.; Malan, F.P.; Niemantsverdriet, J.W.; Swarts, J.C. Synthesis, Spectroscopy and Electrochemistry in relation to DFT computed energies of Ferrocene- and Ruthenocene-Containing β-Diketonato Iridium(III) Heteroleptic Complexes. Structure of [(2-pyridylphenyl)2Ir(RcCOCHCOCH3]. Molecules 2019, 24, 3923. [Google Scholar] [CrossRef] [PubMed]
- Wells, P.R. Gordy scale group electronegativities, χR, are empirical numbers that express the combined tendency of a group of atoms, like R = CF3 or ferrocenyl (Fc), to attract electrons (including those in a covalent bond) as a function of the number of valence electrons, n, and the covalent radius, r (Å), of groups as discussed in the following. In Progress in Physical Organic Chemistry; John Wiley & Sons, Inc.: New York, NY, USA, 1968; Volume 6, pp. 111–145. [Google Scholar]
- Polosan, S.; Ciobotaru, I.C.; Enculescu, I.; Ciobotaru, C.C. Structural characteristics of iridium dual-emitter organometallic compound. J. Mater. Res. 2014, 29, 2898–2904. [Google Scholar] [CrossRef]
- Peicheng, L.; Grayson, I.; Lee, J.-J.; Zhao, Y.; Lu, Z.-H. Energy disorder and energy level alignment between host and dopant in organic semiconductors. Commun. Phys. 2019, 2, 1–7. [Google Scholar]
- Buitendach, B.E.; Erasmus, E.; Landman, M.; Niemantsverdriet, J.W.; Swarts, J.C. Consequences of Electron-Density Manipulations on the X-ray Photoelectron Spectroscopic Properties of Ferrocenyl-β-Diketonato Complexes of Manganese(III). Structure of [Mn(FcCOCHCOCH3)3]. Inorg. Chem. 2016, 55, 1992–2000. [Google Scholar] [CrossRef] [PubMed]
- Erasmus, E. X-ray photoelectron spectroscopy: Charge transfer in Fe 2p peaks and inner-sphere reorganization of ferrocenyl-containing chalcones. J. Electron Spectrosc. Relat. Phenom. 2018, 223, 84–88. [Google Scholar] [CrossRef]
- Erasmus, E. Electronic effects of group fragments on the XPS of Fe 2p and 3p photoelectron lines of ferrocenyl-containing chalcones. S. Afr. J. Chem. 2017, 70, 94–99. [Google Scholar] [CrossRef]
- Botha, E.; Landman, M.; Van Rooyen, P.H.; Erasmus, E. Electronic properties of ferrocenyl-terpyridine coordination complexes: An electrochemical and X-ray photoelectron spectroscopic approach. Inorg. Chim. Acta 2018, 482, 514–521. [Google Scholar] [CrossRef]
- Riveros, G.; Meneses, S.; Escobar, S.; Garín, C.; Chornik, B. Electron transfer rates of alkyl-ferrocenyl molecules forming incomplete monolayer on silicon electrodes. J. Chil. Chem. Soc. 2010, 55, 61–66. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Kobe, B.A.; Biesinger, M.C.; McIntyre, N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574. [Google Scholar] [CrossRef]
- Kumpan, N.; Poonsawat, T.; Chaicharoenwimolkul, L.; Pornsuwan, S.; Somsook, E. Ferrocenated nanocatalysts derived from the decomposition of ferrocenium in basic solution and their aerobic activities for the rapid decolorization of methylene blue and the facile oxidation of phenylboronic acid. RSC Adv. 2017, 7, 5759–5763. [Google Scholar] [CrossRef]
- Trzebiatowska-Gusowska, M.; Gagor, A.; Coetsee, E.; Erasmus, E.; Swart, H.C.; Swarts, J.C. Nano islet formation of formyl- and carboxyferrocene, -ruthenocene, -osmocene and cobaltocenium on amine-functionalized silicon wafers highlighted by crystallographic, AFM and XPS studies. J. Organomet. Chem. 2013, 745–746, 393–403. [Google Scholar] [CrossRef]
- Gassman, P.G.; Winter, C.H. Preparation Electrochemical Oxidation and XPS Studies of Unsymmetrical Ruthenocenes Bearing the Pentamethylcyclopentadienyl Ligand. J. Am. Chem. Soc. 1988, 110, 6130–6135. [Google Scholar] [CrossRef] [PubMed]
- Lemay, G.; Kaliaguine, S.; Adnot, A.; Nahar, S.; Cozak, D. Synthesis of some ring-substituted ruthenocenes and their use in the preparation of Ru/ZSM-5 catalysts. Can. J. Chem. 1986, 64, 1943–1948. [Google Scholar] [CrossRef]
- Kumar, S.; Purcell, W.; Conradie, J.; Bragg, R.R.; Langner, E.H.G. Synthesis, characterization, computational and antimicrobial activities of a novel iridium thiourea complex. New J. Chem. 2017, 41, 10919–10928. [Google Scholar] [CrossRef]
- You, Y.; Nam, W. Photofunctional triplet excited states of cyclometalated Ir(III) complexes: Beyond electroluminescence. Chem. Soc. Rev. 2012, 41, 7061–7084. [Google Scholar] [CrossRef]
- Brooks, A.C.; Basore, K.; Bernhard, S. Photon-Driven Reduction of Zn2+ to Zn Metal. Inorg. Chem. 2013, 52, 5794–5800. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Tavasli, M.; Perepichka, I.F.; Batsanov, A.S.; Bryce, M.R.; Chiang, C.J.; Rothe, C.; Monkman, A.P. Cationic Bis-cyclometallated Iridium(III) Phenanthroline Complexes with Pendant Fluorenyl Substituents: Synthesis, Redox, Photophysical Properties and Light-Emitting Cells. Chem. Eur. J. 2008, 14, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Chou, P.T. Transition-metal phosphors with cyclometalating ligands: Fundamentals and applications. Chem. Soc. Rev. 2010, 39, 638–655. [Google Scholar] [CrossRef]
- Wu, C.; Chen, H.F.; Wong, K.T.; Thompson, M.E. Study of Ion-Paired Iridium Complexes (Soft Salts) and Their Application in Organic Light Emitting Diodes. J. Am. Chem. Soc. 2010, 132, 3133–3139. [Google Scholar] [CrossRef]
- Dragonetti, C.; Valore, A.; Colombo, A.; Righetto, S.; Trifiletti, V. Simple novel cyclometallated iridium complexes for potential application in dye-sensitized solar cells. Inorg. Chim. Acta 2012, 388, 163–167. [Google Scholar] [CrossRef]
- Mayo, E.I.; Kilsa, K.; Tirrell, T.; Djurovich, P.I.; Tamayo, A.; Thompson, M.E.; Lewis, N.S.; Gray, H.B. Cyclometalated iridium(III)-sensitized titanium dioxide solar cells. Photochem. Photobiol. Sci. 2006, 5, 871–873. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Cho, S.; Nam, W. Cyclometalated Iridium(III) Complexes for Phosphorescence Sensing of Biological Metal Ions. Inorg. Chem. 2014, 53, 1804–1815. [Google Scholar] [CrossRef] [PubMed]
- Lowry, M.S.; Bernhard, S. Synthetically Tailored Excited States: Phosphorescent, Cyclometalated Iridium(III) Complexes and Their Applications. Chem. Eur. J. 2006, 12, 7970–7977. [Google Scholar] [CrossRef] [PubMed]
- Haynes, A.; Maitlis, P.M.; Morris, G.E.; Sunley, G.J.; Adams, H.; Badger, P.W.; Bowers, C.M.; Cook, D.B.; Elliott, P.I.P.; Ghaffar, T.; et al. Promotion of Iridium-Catalyzed Methanol Carbonylation: Mechanistic Studies of the Cativa Process. J. Am. Chem. Soc. 2004, 126, 2847–2861. [Google Scholar] [CrossRef]
- Jones, J.H. The Cativa™ Process for the Manufacture of Acetic Acid. Platinum Met. Rev. 2000, 44, 94–105. [Google Scholar] [CrossRef]
- Sunley, G.J.; Watson, D.J. High productivity methanol carbonylation catalysis using iridium—The Cativa™ process for the manufacture of acetic acid. Catal. Today 2000, 58, 293–307. [Google Scholar] [CrossRef]
- Curtin, P.N.; Tinker, L.L.; Burgess, C.M.; Cline, E.D.; Bernhard, S. Structure–Activity Correlations Among Iridium(III) Photosensitizers in a Robust Water-Reducing System. Inorg. Chem. 2009, 48, 10498–10506. [Google Scholar] [CrossRef]
- McDaniel, N.D.; Coughlin, F.J.; Tinker, L.L.; Bernhard, S. Cyclometalated Iridium(III) Aquo Complexes: Efficient and Tunable Catalysts for the Homogeneous Oxidation of Water. J. Am. Chem. Soc. 2008, 130, 210–217. [Google Scholar] [CrossRef]
- Hull, J.F.; Balcells, D.; Blakemore, J.D.; Incarvito, C.D.; Eisenstein, O.; Brudvig, G.W.; Crabtree, R.H. Highly Active and robust Cp* iridium complexes for catalytic water oxidation. J. Am. Chem. Soc. 2009, 131, 8730–8731. [Google Scholar] [CrossRef]
- Sapountzi, F.M.; Gracia, J.M.; Westrate, C.J.; Fredriksson, H.O.A.; Niemantsverdriet, J.W. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Prog. Energy Combust. Sci. 2017, 58, 1–35. [Google Scholar] [CrossRef]
- Lee, Y.; Suntivich, J.; May, K.J.; Perry, E.E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Perea, L.A.; Palma-Goyes, R.E.; Vazquez-Arenas, J.; Romero-Ibarra, I.; Ostos, C.; Torres-Palma, R.A. Efficient cephalexin degradation using active chlorine produced on ruthenium and iridium oxide anodes: Role of bath composition, analysis of degradation pathways and degradation extent. Sci. Total Environ. 2019, 648, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Van der Westhuizen, B.; Swarts, P.J.; Strydom, I.; Liles, D.C.; Fernandez, I.; Swarts, J.C.; Bezuidenhoudt, D.I. Electrochemical illumination of thienyl and ferrocenyl chromium(0)Fischer carbene complexes. Dalton Trans. 2013, 42, 5367–5378. [Google Scholar] [CrossRef] [PubMed]
- Van der Westhuizen, B.; Swarts, P.J.; Van Jaarsveld, L.M.; Liles, D.C.; Siegert, U.; Swarts, J.C.; Fernandez, I.; Bezuidenhoudt, D.I. Substituent effect on the electrochemical, spectroscopic and structural properties of Fischer mono- and biscarbene complexes of chromium(0). Inorg. Chem. 2013, 52, 6674–6684. [Google Scholar] [CrossRef]
- Astruc, D. Why is Ferrocene so Exceptional? Eur. J. Inorg. Chem. 2017, 2017, 6–29. [Google Scholar] [CrossRef]
- Erasmus, E.; Swarts, J.C. Intramolecular communication and electrochemical observation of the 17-electron ruthenocenium cation in fluorinated ruthenocene-containing β-diketones; polymorphism of C10H21 and C10F21 derivatives. New. J. Chem. 2013, 52, 2862–2873. [Google Scholar] [CrossRef]
- Fourie, E.; Erasmus, E.; Swarts, J.C.; Jakob, A.; Lang, H.; Joone, G.K.; Van Rensburg, C.E.J. Cytotoxicity of ferrocenyl-ethynyl phosphine metal complexes of gold and platinum. Anticancer Res. 2011, 31, 825–829. [Google Scholar]
- Conradie, J.; Swarts, J.C. The relationship between the electrochemical and chemical oxidation of ferrocene-containing carbonyl-phophane-β-diketonato-rhodium(I) complexes—Cytotoxicity of [Rh(FcCOCHCOPh)(CO)(PPh3)]. Eur. J. Inorg. Chem. 2011, 2011, 2439–2449. [Google Scholar] [CrossRef]
- Gross, A.; Hüsken, N.; Schur, J.; Raszeja, L.; Ott, I.; Metzler-Nolte, N. A Ruthenocene–PNA Bioconjugate—Synthesis, Characterization, Cytotoxicity, and AAS-Detected Cellular Uptake. Bioconj. Chem. 2012, 23, 1764–1774. [Google Scholar] [CrossRef]
- Blackie, M.A.L.; Chibale, K. Metallocene Antimalarials: The Continuing Quest. Met.-Based Drugs 2008, 2008, 495123. [Google Scholar] [CrossRef]
- Ushkov, V.A.; Kulev, D.H.; Lalayan, V.M.; Antipova, B.M.; Bulgakov, B.I.; Naganovsky, J.K. Ferrocene Derivatives as Inhibitors of Smoke for Plasticized PVC. Plastics 1988, 7, 50–51. [Google Scholar]
- Carty, P.; Grant, J.; Metcalfe, E. Flame-Retardancy and Smoke-Suppression Studies on Ferrocene Derivatives in PVC. Appl. Organomet. Chem. 1996, 10, 101–111. [Google Scholar] [CrossRef]
- Atkinson, R.C.J.; Gibson, V.C.; Long, N.J. The syntheses and catalytic applications of unsymmetrical ferroceneligands. Chem. Soc. Rev. 2004, 33, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Mino, T.; Segawa, H.; Yamashita, M. Palladium-catalyzed asymmetric allylic alkylation using chiral hydrazone ligands with ferrocene skeleton. J. Organomet. Chem. 2004, 689, 2833–2836. [Google Scholar] [CrossRef]
- Garabatos-Perera, J.R.; Butenschön, H. New chiral ferrocenyloxazolines: The first planar chiral triferrocenylmethane derivative and its use in asymmetric catalysis. J. Organomet. Chem. 2009, 694, 2047–2052. [Google Scholar] [CrossRef]
- Talawar, M.B.; Sivabalan, R.; Mukundan, T.; Muthurajan, H.; Sikder, A.K.; Gandhe, B.R.; Rao, A.S. Environmentally compatible next generation green energetic materials (GEMs). J. Hazard. Mater. 2009, 161, 589–607. [Google Scholar] [CrossRef]
- Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Kwong, R.; Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M.E. Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes. Inorg. Chem. 2001, 40, 1704–1711. [Google Scholar] [CrossRef]
- Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Kwong, R.; Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M.E. CCDC 162347: Experimental Crystal Structure Determination; Cambridge Crystallographic Data Centre: Cambridge, UK, 2001; Available online: https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=162347&DatabaseToSearch=Published (accessed on 8 November 2024).
- Li, T.-Y.; Jing, Y.-M.; Liu, X.; Zhao, Y.; Shi, L.; Tang, Z.; Zheng, Y.-X.; Zuo, J.-L. Circularly polarised phosphorescent photoluminescence and electroluminescence of iridium Complexes. Sci. Rep. 2015, 5, 14912. [Google Scholar] [CrossRef]
- Chepelin, O.; Ujma, J.; Wu, X.; Slawin, A.M.Z.; Pitak, M.B.; Coles, S.J.; Michel, J.; Jones, A.C.; Barran, P.E.; Lusby, P.J. Luminescent, Enantiopure, Phenylatopyridine Iridium-Based Coordination Capsules. J. Am. Chem. Soc. 2012, 134, 19334–19337. [Google Scholar] [CrossRef]
- Von Chrzanowski, L.S.; Lutz, M.; Spek, A.L. γ-Tris(2,4-pentanedionato-κ2O,O′)aluminium(III) at 110 K. Acta Crystallogr. Sect. E Struct. Rep. Online 2006, 62, m3318–m3320. [Google Scholar] [CrossRef]
- Erasmus, E.; Muller, A.J.; Siegert, U.; Swarts, J.C. Synthesis by ligand exchange and electrochemistry of ruthenocenyl-containing β-diketonato complexes of titanocene. Structure of [TiCp2(RcCOCHCOCH3)][ClO4]. J. Organomet. Chem. 2016, 821, 62–70. [Google Scholar] [CrossRef]
- Thüne, P.C.; Niemantsverdriet, J.W. Surface science models of industrial catalysts. Surf. Sci. 2009, 603, 1756–1762. [Google Scholar] [CrossRef]
- Hwang, C.C.; An, K.S.; Park, R.J.; Kim, J.S.; Lee, J.B.; Park, C.Y.; Lee, S.B.; Kimura, A.; Kakizaki, A. Cesium core level binding energy shifts at the O2/Cs/Si(113) surface. J. Electron Spectrosc. Relat. Phenom. 1998, 88–91, 733–739. [Google Scholar] [CrossRef]
- Siegbahn, K.; Nordling, C.; Fahlman, A.; Nordberg, H.; Hamrin, K.; Hedman, J.; Johansson, G.; Bergmark, T.; Karlsson, S.E.; Lindgren, J.; et al. Electron Spectroscopy for Chemical Analysis: Atomic, Molecular and Solid State Structure Studies by Means of Electron Spectroscopy; Almquist and Wiksells: Stockholm, Sweden, 1967. [Google Scholar]
- Conradie, J.; Ghosh, A. The Dog That Didn’t Bark: A New Interpretation of Hypsoporphyrin Spectra and the Question of Hypsocorroles. J. Phys. Chem. A 2021, 125, 9962–9968. [Google Scholar]
- Barr, T.L.; Hoppe, E.; Dugall, T.; Shah, P.; Seal, S. XPS and bonding: When and why can relaxation effects be ignored. J. Electron Spectrosc. Relat. Phenom. 1999, 98–99, 95–103. [Google Scholar] [CrossRef]
- Buitendach, B.E.; Erasmus, E.; Conradie, J.; Niemantsverdriet, J.W.; Lang, H.; Swarts, J.C. Synthesis, Electrochemistry, XPS Spectroscopy and DFT calculations of α-Carbon-Bonded Gold(I) Ferrocenyl- and Ruthenocenyl-Containing β-Diketonato Complexes. Organometallics 2024, 43, 1334–1348. [Google Scholar] [CrossRef]
- Swarts, J.C. (Department of Chemistry, University of the Free State, Bloemfontein, South Africa); Malan F.P. (Department of Chemistry, University of Pretoria, Pretoria, South Africa). Crystal Structure of [Ir(ppy)2(RcCOCHCORc)], 2024. Unpublished data.
- Fong, Y.Y.; Visser, B.R.; Gascooke, J.R.; Cowie, B.C.C.; Thomsen, L.; Metha, G.F.; Buntine, M.A.; Harris, H.H. Photoreduction Kinetics of Sodium Tetrachloroaurate under Synchrotron Soft X-ray Exposure. Langmuir 2011, 27, 8099–8104. [Google Scholar] [CrossRef]
- Süzer, S. XPS Investigation of X-Ray-Induced Reduction of Metal Ions. Appl. Spectrosc. 2000, 54, 1716–1718. [Google Scholar] [CrossRef]
- Strop, S. Radiation damage during surface analysis. Spectrochim. Acta 1985, 40B, 745–756. [Google Scholar] [CrossRef]
- Lacmann, R. Point Defects in Solids. In General and Ionic Crystals; Crawford, J.H., Slifkin, L.M., Eds.; Plenum Press: New York, NY, USA, 1972; Volume 1. [Google Scholar]
- Buitendach, B.E.; Erasmus, E.; Niemantsverdriet, J.W.; Swarts, J.C. Properties of Manganese(III) Ferrocenyl-β-Diketonato Complexes Revealed by Charge Transfer and Multiplet Splitting in the Mn 2p and Fe 2p X-Ray Photoelectron Envelopes. Molecules 2016, 21, 1427. [Google Scholar] [CrossRef]
- Conradie, J.; Erasmus, E. XPS photoelectron lines, satellite structures and Wagner plot of Cu(II) β-diketonato complexes explained in terms of its electronic environment. J. Electron Spectrosc. Relat. Phenom. 2022, 259, 147241. [Google Scholar] [CrossRef]
- Twigge, L.; Conradie, J.; Erasmus, E. Spectroscopic and DFT study of tris(β-diketonato)cobalt(III) complexes. J. Chem. Res. 2023, 47, 1–13. [Google Scholar] [CrossRef]
- Lui, R.; Conradie, J.; Erasmus, E. Comparison of X-ray photoelectron spectroscopy multiplet splitting of Cr 2p peaks from chromium tris(β-diketonates) with chemical effects. J. Electron Spectrosc. Relat. Phenom. 2016, 206, 46–51. [Google Scholar]
- Jansen van Rensburg, A.; Landman, M.; Van Rooyen, P.H.; Conradie, M.M.; Erasmus, E.; Conradie, J. Structural and electronic features of triphenylstibine-functionalized Fischer carbene complexes of molybdenum(0). Polyhedron 2017, 133, 307–318. [Google Scholar] [CrossRef]
- Van As, A.; Joubert, C.C.; Buitendach, B.E.; Erasmus, E.; Conradie, J.; Cammidge, A.N.; Chambrier, I.; Cook, M.J.; Swarts, J.C. Tetrabenzoporphyrin and -mono-, -cis-di- and Tetrabenzotriazaporphyrin Derivatives: Electrochemical and Spectroscopic Implications of meso CH Group Replacement with Nitrogen. Inorg. Chem. 2015, 54, 5329–5341. [Google Scholar] [CrossRef]
- Wu, J.B.; Lin, Y.F.; Wang, J.; Chang, P.J.; Tasi, C.P.; Lu, C.C.; Chiu, H.T.; Yang, Y.W. Correlation between N 1s XPS Binding Energy and Bond Distance in Metal Amido, Imido, and Nitrido Complexes. Inorg. Chem. 2003, 42, 4516–4518. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bonben, K.D. Handbook of X-Ray Photoelectron Spectroscopy; Ulvac-PHI, Inc.: Chigasaki, Japan, 1995; pp. 42–43. [Google Scholar]
- Gerber, S.J.; Erasmus, E. Electronic effects of metal hexacyanoferrates: An XPS and FTIR study. Mater. Chem. Phys. 2018, 203, 73–81. [Google Scholar] [CrossRef]
- Geldmacher, Y.; Oleszak, M.; Sheldrick, W.S. Rhodium(III) and iridium(III) complexes as anticancer agents. Inorg. Chim. Acta 2012, 393, 84–102. [Google Scholar] [CrossRef]
- Li, Y.; Tan, C.-P.; Zhang, W.; He, L.; Ji, L.-N.; Mao, Z.-W. Phosphorescent iridium(III)-bis-N-heterocyclic carbene complexes as mitochondria-targeted theranostic and photodynamic anticancer agents. Biomaterials 2015, 39, 95–104. [Google Scholar] [CrossRef]
- Swarts, J.C.; Vosloo, T.G.; Cronje, S.J.; du Plessis, W.C.; Van Rensburg, C.E.J.; Kreft, E.; Van Lier, J.E. Cytotoxicity of Series of Ferrocene-containing β-diketones. Anticancer Res. 2008, 28, 2781–2784. [Google Scholar]
- Artin, E.; Wang, J.; Lohman, G.J.S.; Yokoyama, K.; Yu, G.; Griffin, R.G.; Bar, G.; Stubbe, J. Insight into the mechanism of inactivation of ribonucleotide reductase by gemcitabine 5′-diphosphate in the presence or absence of reductant. J. Biochem. 2009, 48, 11622–11629. [Google Scholar] [CrossRef] [PubMed]
- Osella, D.; Ferrali, M.; Zanello, P.; Laschi, F.; Fontani, M.; Nervi, C.; Carvigiolio, G. On the mechanism of the antitumor activity of ferrocenium derivatives. Inorg. Chim. Acta 2000, 306, 42–48. [Google Scholar] [CrossRef]
- Erasmus, J.J.C.; Lamprecht, G.J.; Swarts, J.C.; Roodt, A.; Oskarsson, Å. (E)-1,3-Diferrocenyl-2-buten-1-one-Water (4/1). Acta Crystallogr. 1996, C52, 3000–3002. [Google Scholar] [CrossRef]
- Bruker. APEX2 (Including SAINT and SADABS); Bruker AXS Inc.: Madison, WI, USA, 2012. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Velde, G.T.; Bickelhaupt, F.M.; Baerends, E.J.; Guerra, C.F.; van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967. [Google Scholar] [CrossRef]
- Handy, N.C.; Cohen, A.J. Left-right correlation energy. Mol. Phys. 2001, 99, 403–412. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Grimme, S.; Anthony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Suta, M.; Cimpoesu, F.; Urland, W. The Angular Overlap Model of Ligand Field Theory for f Elements: An Intuitive Approach Building Bridges between Theory and Experiment. Coord. Chem. Rev. 2021, 441, 213981. [Google Scholar] [CrossRef]
- Vichia, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Grazioli, C.; Baseggio, O.; Stener, M.; Fronzoni, G.; De Simone, M.; Coreno, M.; Guarnaccio, A.; Santagata, A.; D’Auria, M. Study of the Electronic Structure of Short Chain Oligothiophenes. J. Chem. Phys. 2017, 146, 054303-1–054303-9. [Google Scholar] [CrossRef] [PubMed]
empirical formula | C45H35IrN2O2FeRu | absorption coeff. (mm−1) | 4.408 |
molecular weight | 983.4 | θ range for data collection (deg) | 2.190–26.371 |
crystal size (mm3) | 0.488 × 0.331 × 0.162 | index ranges | −19 ≤ h ≤ 19 |
temperature (K) | 150.0(2) | −16 ≤ k ≤ 16 | |
wavelength (Å) | 0.71073 | −22 ≤ l ≤ 22 | |
crystal system | monoclinic | no. of reflections collected | 100,881 |
space group | P 21/n | no. of independent reflections | 7500 |
unit cell dim. (Å; deg) | a = 15.850(3); α = 90 | completeness to θ = 25.00° | 98.9% |
b = 13.330(2); β = 101.390(6) | refinement method | full-matrix least squares on F2 | |
c = 17.904(3); γ = 90 | data/restraints/parameters | 7500/0/471 | |
volume (Å3) | 3708.3(11) | goodness of fit on F2 | 1.124 |
Z | 4 | final R indices [I > 2σ(I)] | R1 = 0.0371; wR2 = 0.0772 |
density (calc.) (g cm−3) | 1.761 | R indices (all data) | R1 = 0.0497; wR2 = 0.0707 |
F(000) | 1926 | largest diff. peak and hole (e Å−3) | 1.751 and −0.824 |
ΣχR | Binding Energies for Ru (eV) | DFT Orb. En. (eV) | Iratio a,b | BE of Fe | Iratio a,b | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
3d5/2 | 3d5/2 dec | 3p3/2 | 3p3/2 dec | Ru (3d-t2g)ave | Ru (3p-π)ave | Fe (2p-π)ave | Ru 3p3/2 | 2p3/2 | 2p3/2 dec | Fe 2p3/2 | ||
1 | 4.68 | |||||||||||
2 | 4.33 | 281.1 | 279.5 | 461.3 | 457.2 | −274.05 | −447.42 | 0.24 (0.889) b | ||||
3 | 4.21 | −695.77 | 708.0 | 705.4 | 0.25 (0.086) b | |||||||
4 | 3.98 | 281.2 | 279.5 | 462.1 | 458.5 | −274.17 | −447.55 | 0.31 (0.771) b | ||||
5 | 3.86 | 281.3 | 279.4 | 461.5 | 457.9 | −274.13 | −447.50 | −695.91 | 0.19 (1.013) b | 707.8 | 705.9 | 0.25 (0.073) b |
6 | 3.74 | −695.87 | 707.3 | 705.1 | 0.14 (0.050) b |
Compound | IC50 (μM) |
---|---|
Cisplatin | 1.1 ± 0.1 |
[IrIII(ppy)2(CH3COCHCOCH3)], 1 | 25.1 ± 0.2 |
[IrIII(ppy)2(FcCOCHCOCH3)], 3 | 37.8 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buitendach, B.E.; Erasmus, E.; Fourie, E.; Malan, F.P.; Conradie, J.; Niemantsverdriet, J.W.; Swarts, J.C. Unexpected XPS Binding Energy Observations Further Highlighted by DFT Calculations of Ruthenocene-Containing [IrIII(ppy)2(RCOCHCORc)] Complexes: Cytotoxicity and Crystal Structure of [Ir(ppy)2(FcCOCHCORc)]. Molecules 2024, 29, 5383. https://doi.org/10.3390/molecules29225383
Buitendach BE, Erasmus E, Fourie E, Malan FP, Conradie J, Niemantsverdriet JW, Swarts JC. Unexpected XPS Binding Energy Observations Further Highlighted by DFT Calculations of Ruthenocene-Containing [IrIII(ppy)2(RCOCHCORc)] Complexes: Cytotoxicity and Crystal Structure of [Ir(ppy)2(FcCOCHCORc)]. Molecules. 2024; 29(22):5383. https://doi.org/10.3390/molecules29225383
Chicago/Turabian StyleBuitendach, Blenerhassitt E., Elizabeth Erasmus, Eleanor Fourie, Frederick P. Malan, Jeanet Conradie, J. W. (Hans) Niemantsverdriet, and Jannie C. Swarts. 2024. "Unexpected XPS Binding Energy Observations Further Highlighted by DFT Calculations of Ruthenocene-Containing [IrIII(ppy)2(RCOCHCORc)] Complexes: Cytotoxicity and Crystal Structure of [Ir(ppy)2(FcCOCHCORc)]" Molecules 29, no. 22: 5383. https://doi.org/10.3390/molecules29225383
APA StyleBuitendach, B. E., Erasmus, E., Fourie, E., Malan, F. P., Conradie, J., Niemantsverdriet, J. W., & Swarts, J. C. (2024). Unexpected XPS Binding Energy Observations Further Highlighted by DFT Calculations of Ruthenocene-Containing [IrIII(ppy)2(RCOCHCORc)] Complexes: Cytotoxicity and Crystal Structure of [Ir(ppy)2(FcCOCHCORc)]. Molecules, 29(22), 5383. https://doi.org/10.3390/molecules29225383