Synthesis and Antimicrobial Activity of 3-Alkylidene-2-Indolone Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Evaluation of the Antimicrobial Activity
2.3. Cytotoxic Activity
2.4. Docking
3. Materials and Methods
3.1. General Chemistry Section
3.2. Experimental Section
3.2.1. General Procedure of 3-Alkylidene-2-Indolones 5a–w
- (Z)-3-(1-hydroxyethylidene)-1-methylindolin-2-one (5a) [27]. (DCM:MeOH = 150:1, Rf = 0.38); Yield: 91%; Purple crystals; mp: 95–97 °C; Lit. [24] mp: 90–92 °C. 1H NMR (300 MHz, Chloroform-d) δ 13.43 (br. s, 1H), 7.40–7.32 (m, 1H), 7.25–7.17 (m, 1H), 7.15–7.06 (m, 1H), 6.94 (d, J = 7.8 Hz, 1H), 3.34 (s, 3H), 2.45 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 173.0, 171.1, 139.0, 125.3, 122.3, 122.2, 119.8, 108.5, 101.9, 76.7, 25.8, 20.4.
- (Z)-3-(1-hydroxyethylidene)-1,7-dimethylindolin-2-one (5b) [25]. (DCM:MeOH = 150:1, Rf = 0.37); Yield: 82%; Purple crystals; mp: 101.4–106.4 °C; Lit. [25] mp: 94 °C. 1H NMR (300 MHz, Chloroform-d) δ 13.91 (br. s, 1H), 7.2 (dd, J = 7.1, 1.7 Hz, 1H), 7.0–6.9 (m, 1H), 6.9–6.9 (m, 1H), 3.6 (s, 3H), 2.6 (s, 3H), 2.4 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 173.1, 171.6, 136.9, 129.0, 123.0, 122.1, 120.3, 117.9, 101.7, 29.1, 20.5, 19.4.
- (Z)-3-(1-hydroxyethylidene)-1,6-dimethylindolin-2-one (5c) [25]. (DCM:MeOH = 150:1, Rf = 0.36);Yield: 74%; Purple crystals; mp: 149–152 °C; 1H NMR (300 MHz, Chloroform-d) δ 13.39 (br. s, 1H), 7.23 (d, J = 7.8 Hz, 1H), 6.91 (d, J = 7.7 Hz, 1H), 6.76 (s, 1H), 3.32 (s, 3H), 2.44–2.39 (m, 6H). 13C NMR (75 MHz, Chloroform-d) δ 171.8, 171.4, 139.3, 135.5, 122.9, 119.7, 119.6, 109.4, 102.0, 25.8, 21.9, 20.3.
- (Z)-3-(1-hydroxyethylidene)-1,5-dimethylindolin-2-one (5d) [25]. (DCM:MeOH = 150:1, Rf = 0.37); Yield: 73%; Purple crystals; mp: 128.9–130.9 °C; Lit. [25] mp: 90 °C. 1H NMR (300 MHz, Chloroform-d) δ 13.46 (br. s, 1H), 7.17 (s, 1H), 7.02 (d, J = 7.8 Hz, 1H), 6.83 (d, J = 7.9 Hz, 1H), 3.31 (s, 3H), 2.44 (s, 3H), 2.39 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 171.7, 170.2, 136.0, 130.6, 124.8, 121.4, 119.6, 107.2, 100.9, 24.8, 20.6, 19.4.
- (Z)-7-fluoro-3-(1-hydroxyethylidene)-1-methylindolin-2-one (2–5e). (DCM:MeOH = 150:1, Rf = 0.37); Yield: 62%; Purple crystals; mp: 122.1–124.1 °C; 1H NMR (300 MHz, Chloroform-d) δ 13.79 (br. s, 1H), 7.17–7.08 (m, 1H), 7.05–6.86 (m, 2H), 3.55 (d, J = 2.7 Hz, 3H), 2.45 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 174.5, 170.9, 148.7 (d, J = 242.4 Hz), 125.5 (d, J = 4.8 Hz), 125.4, 122.6 (d, J = 6.8 Hz), 115.6 (d, J = 3.2 Hz), 112.8 (d, J = 19.1 Hz), 101.8 (d, J = 2.8 Hz), 28.4 (d, J = 5.8 Hz), 20.6; HRMS (ESI) m/z calcd for C11H10FNO2Na+230.0588 [M+Na]+, found 230.0590[M+Na]+.
- (Z)-6-fluoro-3-(1-hydroxyethylidene)-1-methylindolin-2-one (5f). (DCM:MeOH = 150:1, Rf = 0.39); Yield: 38%; Purple crystals; mp: 109.2–113.7 °C; 1H NMR (300 MHz, Chloroform-d) δ 14.44 (br. s, 1H), 7.21–7.11 (m, 1H), 6.85–6.71 (m, 2H), 3.35 (s, 3H), 2.57 (d, J = 2.4 Hz, 3H). 13C NMR (75 MHz, Chloroform-d) δ 176.5 (d, J = 2.2 Hz), 171.1, 155.2 (d, J = 245.5 Hz), 140.6 (d, J = 10.1 Hz), 126.4 (d, J = 9.0 Hz), 109.9 (d, J = 23.6 Hz), 109.2 (d, J = 19.0 Hz), 104.6 (d, J = 3.0 Hz), 99.9 (d, J = 2.3 Hz), 26.3, 21.8 (d, J = 15.1 Hz); HRMS (ESI) m/z calcd for C11H10FNO2Na+ 230.0588[M+Na]+, found 230.0588[M+Na]+.
- (Z)-5-fluoro-3-(1-hydroxyethylidene)-1-methylindolin-2-one (5g) [25]. (DCM:MeOH = 150:1, Rf = 0.38); Yield: 74%; Purple crystals; mp: 169.5–171.5 °C; Lit. [25] mp: 137 °C. 1H NMR (300 MHz, Chloroform-d) δ 13.60 (br. s, 1H), 7.08 (dd, J = 9.1, 2.3 Hz, 1H), 6.96–6.81 (m, 2H), 3.33 (s, 3H), 2.43 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 174.3, 171.1, 159.3 (d, J = 237.8 Hz), 135.0, 123.4 (d, J = 9.6 Hz), 111.5 (d, J = 24.1 Hz), 108.8 (d, J = 9.0 Hz), 107.4 (d, J = 26.2 Hz), 101.9 (d, J = 2.8 Hz), 25.9, 20.4.
- (Z)-4-fluoro-3-(1-hydroxyethylidene)-1-methylindolin-2-one (5h). (DCM:MeOH = 150:1, Rf = 0.37); Yield: 21%; Purple crystals; mp: 107.7–111.1 °C; 1H NMR (300 MHz, Chloroform-d) δ 13.36 ((br. s, 1H), 7.24 (d, J = 5.1 Hz, 1H), 6.84–6.75 (m, 1H), 6.67 (dd, J = 8.9, 2.3 Hz, 1H), 3.31 (s, 3H), 2.42 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 172.4 (d, J = 1.9 Hz), 171.6, 161.5 (d, J = 242.8 Hz), 140.1 (d, J = 11.3 Hz), 120.4 (d, J = 9.3 Hz), 118.2 (d, J = 2.5 Hz), 108.6 (d, J = 22.6 Hz), 101.4, 97.1 (d, J = 27.4 Hz), 25.9, 20.3; HRMS (ESI) m/z calcd for C11H10FNO2Na+ 230.0588[M+Na]+, found 230.0588[M+Na]+.
- (Z)-7-chloro-3-(1-hydroxyethylidene)-1-methylindolin-2-one (5i) [26]. (DCM:MeOH = 150:1, Rf = 0.39); Yield: 76%; purple crystals; mp: 140.9–142.9 °C; 1H NMR (300 MHz, Chloroform-d) δ 13.94 (br. s, 1H), 7.24 (s, 1H), 7.16–7.09 (m, 1H), 7.04–6.93 (m, 1H), 3.71 (s, 3H), 2.46 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 174.6, 171.4, 134.5, 127.3, 125.2, 122.8, 118.2, 116.4, 101.2, 29.2, 20.7.
- (Z)-6-chloro-3-(1-hydroxyethylidene)-1-methylindolin-2-one (5j). (DCM:MeOH = 150:1, Rf = 0.38); Yield: 58%; purple crystals; mp: 109.6–111.6 °C; 1H NMR (300 MHz, Chloroform-d) δ 13.44 (br. s, 1H), 7.26–7.21 (m, 1H), 7.09–7.03 (m, 1H), 6.92 (d, J = 1.8 Hz, 1H), 3.31 (s, 3H), 2.42 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 173.5, 171.3, 139.9, 131.0, 122.1, 120.8, 120.4, 109.1, 101.3, 25.9, 20.5; HRMS (ESI) m/z calcd for C11H10ClNO2Na+ 246.0292[M+Na]+, found 246.0292[M+Na]+.
- (Z)-5-chloro-3-(1-hydroxyethylidene)-1-methylindolin-2-one (5k) [25]. (DCM:MeOH = 150:1, Rf = 0.37); Yield: 88%; purple crystals; mp: 89.7–91.1 °C; Lit. [25] mp: 90–92 °C.1H NMR (300 MHz, Chloroform-d) δ 13.36 (br. s, 1H), 7.30 (d, J = 2.0 Hz, 1H), 7.20–7.15 (m, 1H), 6.84 (d, J = 8.4 Hz, 1H), 3.32 (s, 3H), 2.44 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 174.4, 171.0, 137.3, 127.7, 125.0, 123.7, 119.8, 109.2, 101.3, 25.9, 20.5.
- (Z)-7-bromo-3-(1-hydroxyethylidene)-1-methylindolin-2-one (5l) [26]. (DCM:MeOH = 150:1, Rf = 0.37); Yield: 80%; purple crystals; mp: 102–104 °C; Lit. [26] mp: 122–124 °C. 1H NMR (300 MHz, Chloroform-d) δ 13.80 (br. s, 1H), 7.35–7.26 (m, 2H), 6.99–6.87 (m, 1H), 3.73 (s, 3H), 2.46 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 174.6, 171.6, 135.9, 130.6, 125.5, 123.2, 118.7, 103.3, 101.2, 29.4, 20.8.
- (Z)-6-bromo-3-(1-hydroxyethylidene)-1-methylindolin-2-one (5m). (DCM:MeOH = 150:1, Rf = 0.35); Yield: 66%; purple crystals; mp: 118–123 °C; 1H NMR (300 MHz, Chloroform-d) δ 13.43 (br. s, 1H), 7.24–7.15 (m, 2H), 7.07 (d, J = 1.3 Hz, 1H), 3.31 (s, 3H), 2.42 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 173.7, 171.1, 140.0, 125.0, 121.3, 120.7, 118.5, 111.9, 101.4, 25.9, 20.6; HRMS (ESI) m/z calcd for C11H10BrNO2Na+ 289.9787[M+Na]+, found 289.9788[M+Na]+.
- (Z)-5-bromo-3-(1-hydroxyethylidene)-1-methylindolin-2-one (5n). (DCM:MeOH = 150:1, Rf = 0.38); Yield: 70%; purple crystals; mp: 135.7–138.7 °C; 1H NMR (300 MHz, Chloroform-d) δ 13.43 (br. s, 1H), 7.44 (d, J = 1.9 Hz, 1H), 7.32 (dd, J = 8.3, 1.9 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H), 3.31 (s, 3H), 2.44 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 174.5, 170.8, 137.8, 127.8, 124.2, 122.6, 115.1, 109.8, 101.2, 25.9, 20.6; HRMS (ESI) m/z calcd for C11H10BrNO2Na+ 289.9787[M+Na]+, found 289.9788[M+Na]+.
- (Z)-3-(1-hydroxyethylidene)-7-methoxy-1-methylindolin-2-one (5o) [26]. (DCM:MeOH = 150:1, Rf = 0.37); Yield: 65%; purple crystals; mp: 143.8–146 °C; Lit. [24] mp: 80–90 °C.1H NMR (300 MHz, Chloroform-d) δ 13.96 (br. s, 1H), 7.06–6.97 (m, 2H), 6.81–6.73 (m, 1H), 3.87 (s, 3H), 3.62 (s, 3H), 2.44 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 173.8, 171.0, 146.1, 126.8, 124.0, 122.6, 113.0, 108.9, 102.1, 56.0, 29.2, 20.5.
- (Z)-3-(1-hydroxyethylidene)-1-methyl-2-oxoindoline-5-carbonitrile (5p). (DCM:MeOH = 150:1, Rf = 0.39); Yield: 34%; purple crystals; mp: 145.1–147.1 °C; 1H NMR (500 MHz, Chloroform-d) δ 13.39 (br. s, 1H), 7.60 (d, J = 1.5 Hz, 1H), 7.55–7.50 (m, 1H), 7.01 (d, J = 8.1 Hz, 1H), 3.38 (s, 3H), 2.49 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 175.8, 171.3, 141.8, 129.9, 123.1, 122.9, 119.8, 108.9, 105.4, 100.6, 26.1, 20.8; HRMS (ESI) m/z calcd for C12H10N2O2Na+ 237.0634[M+Na]+, found 237.0635[M+Na]+.
- (Z)-3-(1-hydroxyethylidene)-1-methyl-5-(trifluoromethyl)indolin-2-one (5q) [24]. (DCM:MeOH = 150:1, Rf = 0.39); Yield: 67%; purple crystals; mp: 144.3–147.1 °C; Lit. [24] mp: 102–104 °C.1H NMR (300 MHz, Chloroform-d) δ 13.60 (br. s, 1H), 7.55 (s, 1H), 7.52–7.46 (m, 1H), 7.01 (d, J = 8.2 Hz, 1H), 3.38 (s, 3H), 2.50 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 174.9, 171.4, 141.2, 124.8 (q, J = 270 Hz),124.7, 124.3, 122.8–122.5 (m), 116.6–116.4 (m), 108.2, 101.2, 26.0, 20.7.
- (Z)-3-(1-hydroxyethylidene)-1-methyl-6-(trifluoromethyl)indolin-2-one (5r). (DCM:MeOH = 150:1, Rf = 0.38); Yield: 51%; purple crystals; mp: 109.4–111.4 °C; 1H NMR (300 MHz, Chloroform-d) δ 13.84 (s, 1H), 7.47–7.34 (m, 2H), 7.16 (s, 1H), 3.39 (s, 3H), 2.50 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 175.7, 171.2, 138.8, 127.3 (q, J = 32.6 Hz), 127.0 (q, J = 270 Hz),125.7, 119.5, 119.3 (d, J = 4.0 Hz), 105.3 (d, J = 3.8 Hz), 101.3, 26.0, 20.7; HRMS (APCI) m/z calcd for C12H11F3NO2+258.0736[M+H]+, found 258.0733[M+H]+.
- (Z)-1-benzyl-3-(1-hydroxyethylidene)-5-methoxyindolin-2-one (5s). (DCM:MeOH = 150:1, Rf = 0.37); Yield: 57%; white crystals; mp: 109.1–111.1 °C; 1H NMR (300 MHz, Chloroform-d) δ 13.74 (br. s, 1H), 7.35–7.22 (m, 6H), 6.97 (d, J = 2.4 Hz, 1H), 6.75–6.70 (m, 1H), 6.68–6.63 (m, 1H), 5.02 (s, 2H), 3.80 (s, 3H), 2.46 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 173.6, 171.2, 155.8, 136.2, 132.3, 128.9 (2C), 127.7, 127.3 (2C), 123.6, 109.7, 109.6, 107.5, 102.0, 56.0, 43.5, 20.5; HRMS (ESI) m/z calcd for C18H17NO3Na+ 318.1101[M+Na]+, found 318.1103[M+Na]+.
- (Z)-1-ethyl-3-(1-hydroxyethylidene) indolin-2-one (5t). (DCM:MeOH = 150:1, Rf = 0.36); Yield: 59%; purple crystals; mp: 149.8–151.8 °C; 1H NMR (300 MHz, Chloroform-d) δ 13.67 (br. s, 1H), 7.38 (d, J = 7.5 Hz, 1H), 7.25–7.18 (m, 1H), 7.14–7.06 (m, 1H), 6.98 (d, J = 8.3 Hz, 1H), 3.91 (q, J = 7.2 Hz, 2H), 2.46 (s, 3H), 1.32 (t, J = 7.2 Hz, 3H). 13C NMR (75 MHz, Chloroform-d) δ 173.1, 170.8, 138.0, 125.2, 122.6, 122.0, 120.0, 108.7, 101.9, 34.4, 20.5, 13.4; HRMS (ESI) m/z calcd for C12H13NO2Na+ 226.0838[M+Na]+, found 226.0843[M+Na]+.
- (Z)-1-benzyl-3-(1-hydroxyethylidene)indolin-2-one (5u) [25]. (DCM:MeOH = 150:1, Rf = 0.37); Yield: 70%; purple crystals; mp: 127.9–130.9 °C; Lit. [23] mp: 127–129 °C.1H NMR (300 MHz, Chloroform-d) δ 13.59 (br. s, 1H), 7.39 (d, J = 6.7 Hz, 1H), 7.33–7.26 (m, 5H), 7.16–7.04 (m, 2H), 6.86 (d, J = 7.2 Hz, 1H), 5.06 (s, 2H), 2.49 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 173.4, 171.2, 138.2, 136.2, 128.9 (2C), 127.7, 127.3 (2C), 125.3, 122.5, 122.3, 119.9, 109.5, 101.8, 43.4, 20.5.
- (Z)-3-(1-hydroxyethylidene)-1-propylindolin-2-one (5v). (DCM:MeOH = 150:1, Rf = 0.37); Yield: 73%; purple crystals; mp: 258.9–260.9 °C; 1H NMR (300 MHz, Chloroform-d) δ 13.65 (br. s, 1H), 7.38 (d, J = 6.5 Hz, 1H), 7.24–7.17 (m, 1H), 7.13–7.06 (m, 1H), 6.97 (d, J = 7.4 Hz, 1H), 3.81 (dd, J = 7.9, 6.6 Hz, 2H), 2.46 (s, 3H), 1.76 (h, J = 7.4 Hz, 2H), 0.97 (t, J = 7.4 Hz, 3H). 13C NMR (75 MHz, Chloroform-d) δ 173.2, 171.2, 138.4, 125.2, 122.5, 122.0, 119.9, 108.8, 101.8, 41.3, 21.5, 20.5, 11.5; HRMS (ESI) m/z calcd for C13H15NO2Na+ 240.0995[M+Na]+, found 240.0995[M+Na]+.
- (Z)-3-(1-hydroxyethylidene)-1-(4-methoxybenzyl)indolin-2-one (5w) [25]. (DCM:MeOH = 150:1, Rf = 0.39); purple crystals; Yield: 80%; mp: 119.7–121.7 °C; Lit. [25] mp: 136 °C. 1H NMR (300 MHz, Chloroform-d) δ 13.62 (br. s, 1H), 7.40–7.35 (m, 1H), 7.25–7.20 (m, 2H), 7.16–7.03 (m, 2H), 6.91–6.81 (m, 3H), 4.99 (s, 2H), 3.76 (s, 3H), 2.48 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 173.3, 171.2, 159.2, 138.2, 128.8 (2C), 128.3, 125.3, 122.5, 122.2, 119.9, 114.3 (2C), 109.5, 101.8, 55.4, 42.9, 20.5.
3.2.2. General Procedure of 3-Alkylidene-2-Indolones 10a–i
- (Z)-3-(hydroxy(thiophen-2-yl)methylene)-1-methylindolin-2-one (10a) [28]. (DCM:MeOH = 150:1, Rf = 0.38); Yield: 74%; purple crystals; mp: 141.0–143.0 °C; Lit. [24] mp: 99–101 °C.1H NMR (300 MHz, Chloroform-d) δ 14.34 (br. s, 1H), 7.90–7.87 (m, 1H), 7.73–7.64 (m, 2H), 7.25–7.20 (m, 2H), 7.04–6.95 (m, 2H), 3.40 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 172.2, 164.2, 139.1, 136.6, 130.9, 130.9, 127.6, 126.2, 122.1, 121.5, 119.8, 108.6, 101.1, 26.1.
- (Z)-3-(hydroxy(phenyl)methylene)-1-methylindolin-2-one (10b) [25]. (DCM:MeOH = 150:1, Rf = 0.38); Yield: 83%; purple crystals; mp: 141.0–143.0 °C; Lit. [3] mp: 147–149 °C. 1H NMR (300 MHz, Chloroform-d) δ 14.18 (br. s, 1H), 7.84–7.75 (m, 2H), 7.62–7.50 (m, 3H), 7.24–7.15 (m, 2H), 7.00–6.86 (m, 2H), 3.41 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 172.1, 171.1, 139.2, 134.3, 131.5, 128.8 (2C), 128.5 (2C), 126.0, 122.0, 121.7, 119.8, 108.5, 101.6, 26.0.
- (Z)-3-(hydroxy(p-tolyl)methylene)-1-methylindolin-2-one (10c) [28]. (DCM:MeOH = 150:1, Rf = 0.38); Yield: 84%; purple crystals; mp: 141.0–143.0 °C; Lit. [3] mp: 140–141 °C. 1H NMR (300 MHz, Chloroform-d) δ 13.93 (br. s, 1H), 7.70 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 7.8 Hz, 2H), 7.28–7.16 (m, 2H), 6.99–6.87 (m, 2H), 3.40 (s, 3H), 2.47 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 172.1, 171.5, 142.0, 139.1, 131.4, 129.4 (2C), 128.5 (2C), 125.8, 121.9, 121.9, 119.8, 108.4, 101.3, 26.0, 21.8.
- (Z)-3-((4-fluorophenyl)(hydroxy)methylene)-1-methylindolin-2-one (10d) [28]. (DCM:MeOH = 150:1, Rf = 0.38); Yield: 68%; purple crystals; mp: 141.0–143.0 °C; Lit. [3] mp: 96–97 °C 1H NMR (300 MHz, Chloroform-d) δ 14.12 (br. s, 1H), 7.91–7.83 (m, 2H), 7.33–7.26 (m, 3H), 7.26–7.21 (m, 1H), 7.04–6.95 (m, 2H), 3.46 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 172.1, 169.9, 164.6 (d, J = 252.3 Hz), 139.3, 130.9 (d, J = 8.7 Hz, 2C), 130.4 (d, J = 3.5 Hz), 126.2, 122.1, 121.5, 119.6, 116.0 (d, J = 22.0 Hz, 2C), 108.6, 101.6, 26.0.
- (Z)-3-((4-chlorophenyl)(hydroxy)methylene)-1-methylindolin-2-one (10e) [29]. (DCM:MeOH = 150:1, Rf = 0.38); Yield: 74%; purple crystals; mp: 141.0–143.0 °C; 1H NMR (300 MHz, Chloroform-d) δ 14.03 (br. s, 1H), 7.74 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 8.5 Hz, 2H), 7.25–7.15 (m, 2H), 6.98–6.89 (m, 2H), 3.40 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 172.0, 169.6, 139.3, 137.6, 132.7, 130.0 (2C), 129.2 (2C), 126.3, 122.1, 121.4, 119.8, 108.7, 101.8, 26.0.
- (Z)-3-((4-chlorophenyl)(hydroxy)methylene)-1,7-dimethylindolin-2-one (10f). (DCM:MeOH = 150:1, Rf = 0.38); Yield: 71%; purple crystals; mp: 141.0–143.0 °C; 1H NMR (300 MHz, Chloroform-d) δ 14.33 (br. s, 1H), 7.73–7.67 (m, 2H), 7.53–7.47 (m, 2H), 7.02–6.96 (m, 1H), 6.95–6.90 (m, 1H), 6.81–6.74 (m, 1H), 3.67 (s, 3H), 2.63 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 172.4, 169.6, 137.4, 137.3, 132.8, 130.0 (2C), 129.9, 129.1 (2C), 122.0, 121.9, 120.4, 117.8, 101.7, 29.4, 19.5; HRMS (APCI) m/z calcd for C17H15ClNO2+ 300.0786[M+H]+, found 300.0782[M+H]+.
- (Z)-7-bromo-3-((4-chlorophenyl)(hydroxy)methylene)-1-methylindolin-2-one (10g). (DCM:MeOH = 150:1, Rf = 0.38); Yield: 62%; purple crystals; mp: 141.0–143.0 °C; 1H NMR (300 MHz, Chloroform-d) δ 14.27 (br. s, 1H), 7.72–7.66 (m, 2H), 7.55–7.49 (m, 2H), 7.32–7.27 (m, 1H), 7.09–7.03 (m, 1H), 6.77–6.69 (m, 1H), 3.79 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 172.4, 171.1, 137.9, 136.2, 132.3, 131.5, 130.0 (2C), 129.3 (2C), 124.5, 123.1, 118.6, 103.3, 101.0, 29.7; HRMS (APCI) m/z calcd for C16H12BrClNO2+ 363.9734[M+H]+, found 363.9730[M+H]+.
- (Z)-3-((4-chlorophenyl)(hydroxy)methylene)-1-propylindolin-2-one (10h). (DCM:MeOH = 150:1, Rf = 0.38); Yield: 80%; purple crystals; mp: 141.0–143.0 °C; 1H NMR (300 MHz, Chloroform-d) δ 14.08 (br. s, 1H), 7.79–7.70 (m, 2H), 7.56–7.49 (m, 2H), 7.23–7.15 (m, 2H), 7.01–6.87 (m, 2H), 3.93–3.81 (m, 2H), 1.80 (h, J = 7.4 Hz, 2H), 1.01 (t, J = 7.4 Hz, 3H). 13C NMR (75 MHz, Chloroform-d) δ 172.0, 169.8, 138.7, 137.5, 132.8, 130.0 (2C), 129.2 (2C), 126.2, 121.9, 121.6, 119.9, 109.0, 101.8, 41.6, 21.4, 11.6; HRMS (APCI) m/z calcd for C18H17ClNO2+ 314.0942[M+H]+, found 314.0940[M+H]+.
- (Z)-3-((4-bromophenyl)(hydroxy)methylene)-1-methylindolin-2-one (10i). (DCM:MeOH = 150:1, Rf = 0.38); Yield: 83%; purple crystals; mp: 141.0–143.0 °C; 1H NMR (300 MHz, Chloroform-d) δ 13.99 (br. s, 1H), 7.68 (s, 4H), 7.25–7.15 (m, 2H), 6.98–6.89 (m, 2H), 3.40 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 172.0, 169.6, 139.4, 133.2, 132.1 (2C), 130.2 (2C), 126.3, 126.0, 122.1, 121.4, 119.8, 108.7, 101.8, 26.0; HRMS (APCI) m/z calcd for C16H13BrNO2+ 330.0124[M+H]+, found 330.0121[M+H]+.
3.3. In Vitro Biological Assays
3.3.1. Antimicrobial Activity
3.3.2. Evaluation of Cytotoxicity
3.3.3. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nambiar, S.; Laessig, K.; Toerner, J.; Farley, J.; Cox, E. Antibacterial Drug Development: Challenges, Recent Developments, and Future Considerations. Clin. Pharmacol. Ther. 2014, 96, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Jackson, N.; Czaplewski, L.; Piddock, L.J.V. Discovery and development of new antibacterial drugs: Learning from experience? J. Antimicrob. Chemother. 2018, 73, 1452–1459. [Google Scholar] [CrossRef] [PubMed]
- Qian, D.; Zhang, J. Catalytic oxidation/C–H functionalization of N-arylpropiolamides by means of gold carbenoids: Concise route to 3-acyloxindoles. Chem. Commun. 2012, 48, 7082–7084. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.H.M.; Moreira, A.C.D.; De Carvalho, R.M.; Sales, G.W.P.; Nogueira, P.C.N.; Grangeiro, T.B.; Medeiros, S.C.; Silveira, E.R.; Nogueira, N.A.P. Antimicrobial Effects of Violacein against Planktonic Cells and Biofilms of Staphylococcus aureus. Molecules 2017, 22, 1534. [Google Scholar] [CrossRef]
- Lu, B.; Ma, D. Assembly of 3-acyloxindoles via CuI/L-proline-catalyzed intramolecular arylation of β-keto amides. Org. Lett. 2006, 8, 6115–6118. [Google Scholar] [CrossRef]
- Parkes, K.E.; Ermert, P.; Fässler, J.; Ives, J.; Martin, J.A.; Merrett, J.H.; Obrecht, D.; Williams, G.; Klumpp, K. Use of a pharmacophore model to discover a new class of influenza endonuclease inhibitors. J. Med. Chem. 2003, 46, 1153–1164. [Google Scholar] [CrossRef]
- Tang, X.-H.; Wu, X.-Y.; Xu, L.; Fang, Y.-X.; Wang, J.-H.; Zhu, G.-X.; Hong, Z. Tenidap is neuroprotective in a pilocarpine rat model of temporal lobe epilepsy. Chin. Med. J. 2013, 126, 1900–1905. [Google Scholar] [CrossRef]
- Ferrari, S.M.; Centanni, M.; Virili, C.; Miccoli, M.; Ferrari, P.; Ruffilli, I.; Ragusa, F.; Antonelli, A.; Fallahi, P. Sunitinib in the treatment of thyroid cancer. Curr. Med. Chem. 2019, 26, 963–972. [Google Scholar] [CrossRef]
- O’Farrell, A.-M.; Abrams, T.J.; Yuen, H.A.; Ngai, T.J.; Louie, S.G.; Yee, K.W.; Wong, L.M.; Hong, W.; Lee, L.B.; Town, A. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood J. Am. Soc. Hematol. 2003, 101, 3597–3605. [Google Scholar] [CrossRef]
- Lamb, Y.N. Nintedanib: A review in fibrotic interstitial lung diseases. Drugs 2021, 81, 575–586. [Google Scholar] [CrossRef]
- Zheng, G.-H.; Shen, J.-J.; Zhan, Y.-C.; Yi, H.; Xue, S.-T.; Wang, Z.; Ji, X.-Y.; Li, Z.-R. Design, synthesis and in vitro and in vivo antitumour activity of 3-benzylideneindolin-2-one derivatives, a novel class of small-molecule inhibitors of the MDM2–p53 interaction. Eur. J. Med. Chem. 2014, 81, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Rindhe, S.; Karale, B.; Gupta, R.; Rode, M. Synthesis, antimicrobial and antioxidant activity of some oxindoles. Indian J. Pharm. Sci. 2011, 73, 292. [Google Scholar] [PubMed]
- Cazoto, L.L.; Martins, D.; Ribeiro, M.G.; Durán, N.; Nakazato, G. Antibacterial activity of violacein against Staphylococcus aureus isolated from Bovine Mastitis. J. Antibiot. 2011, 64, 395–397. [Google Scholar] [CrossRef] [PubMed]
- Martins, D.; Costa, F.; Brocchi, M.; Duran, N. Evaluation of the antibacterial activity of poly-(D, L-lactide-co-glycolide) nanoparticles containing violacein. J. Nanoparticle Res. 2011, 13, 355–363. [Google Scholar] [CrossRef]
- Li, M.-C.; Sun, W.-S.; Cheng, W.; Liu, D.; Liang, H.; Zhang, Q.-Y.; Lin, W.-H. Four new minor brominated indole related alkaloids with antibacterial activities from Laurencia similis. Bioorganic Med. Chem. Lett. 2016, 26, 3590–3593. [Google Scholar] [CrossRef]
- Zhou, Y.; Ju, Y.; Yang, Y.; Sang, Z.; Wang, Z.; He, G.; Yang, T.; Luo, Y. Discovery of hybrids of indolin-2-one and nitroimidazole as potent inhibitors against drug-resistant bacteria. J. Antibiot. 2018, 71, 887–897. [Google Scholar] [CrossRef]
- Majik, M.S.; Rodrigues, C.; Mascarenhas, S.; D’Souza, L. Design and synthesis of marine natural product-based 1H-indole-2, 3-dione scaffold as a new antifouling/antibacterial agent against fouling bacteria. Bioorganic Chem. 2014, 54, 89–95. [Google Scholar] [CrossRef]
- Tangadanchu, V.K.R.; Sui, Y.-F.; Zhou, C.-H. Isatin-derived azoles as new potential antimicrobial agents: Design, synthesis and biological evaluation. Bioorganic Med. Chem. Lett. 2021, 41, 128030. [Google Scholar] [CrossRef]
- Acharya, A.P.; Kamble, R.D.; Patil, S.D.; Hese, S.V.; Yemul, O.S.; Dawane, B.S. Green method for synthesis of 3-[2-(substituted-phenyl)-2-oxo ethylidene]-1, 3-dihydro-indol-2-one and their in vitro antimicrobial activity. Res. Chem. Intermed. 2015, 41, 2953–2959. [Google Scholar] [CrossRef]
- Bolós, M.; Fernandez, S.; Torres-Aleman, I. Oral Administration of a GSK3 Inhibitor Increases Brain Insulin-like Growth Factor I Levels. J. Biol. Chem. 2010, 285, 17693–17700. [Google Scholar] [CrossRef]
- Robinson, R.P.; Reiter, L.A.; Barth, W.E.; Campeta, A.M.; Cooper, K.; Cronin, B.J.; Destito, R.; Donahue, K.M.; Falkner, F.C.; Fiese, E.F.; et al. Discovery of the Hemifumarate and (α-l-Alanyloxy)methyl Ether as Prodrugs of an Antirheumatic Oxindole: Prodrugs for the Enolic OH Group. J. Med. Chem. 1996, 39, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, A.Y.; Ammar, Y.A.; Abu-Elghait, M.; Salem, M.A.; Assiri, M.A.; Ali, T.E.; Ragab, A. Development of novel indolin-2-one derivative incorporating thiazole moiety as DHFR and quorum sensing inhibitors: Synthesis, antimicrobial, and antibiofilm activities with molecular modelling study. Bioorganic Chem. 2022, 119, 105571. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.; Yang, Z.; Xu, J. Aqueous Copper Nitrate Catalyzed Synthesis of 3-Alkylideneoxindoles from α-Diazo-β-ketoanilides. Eur. J. Org. Chem. 2014, 2014, 3923–3929. [Google Scholar] [CrossRef]
- Chan, W.-W.; Kwong, T.-L.; Yu, W.-Y. Ruthenium-catalyzed intramolecular cyclization of diazo-β-ketoanilides for the synthesis of 3-alkylideneoxindoles. Org. Biomol. Chem. 2012, 10, 3749–3755. [Google Scholar] [CrossRef]
- Xia, X.-D.; Lu, L.-Q.; Liu, W.-Q.; Chen, D.-Z.; Zheng, Y.-H.; Wu, L.-Z.; Xiao, W.-J. Visible-Light-Driven Photocatalytic Activation of Inert Sulfur Ylides for 3-Acyl Oxindole Synthesis. Chem.—A Eur. J. 2016, 22, 8432–8437. [Google Scholar] [CrossRef]
- Yu, Z.; Ma, L.; Yu, W. Ag2O-Mediated Intramolecular Oxidative Coupling of Acetoacetanilides for the Synthesis of 3-Acetyloxindoles. Synlett 2010, 2010, 2607–2610. [Google Scholar] [CrossRef]
- Li, Z.; Gao, H.-X. Theoretical study on the mechanism of Ag-catalyzed synthesis of 3-alkylideneoxindoles from N-aryl-α-diazoamides: A Lewis acid or Ag-carbene pathway? Org. Biomol. Chem. 2012, 10, 6294–6298. [Google Scholar] [CrossRef]
- Sreedharan, R.; Rajeshwaran, P.; Panyam, P.K.R.; Yadav, S.; Nagaraja, C.M.; Gandhi, T. Acylation of oxindoles using methyl/phenyl esters via the mixed Claisen condensation—An access to 3-alkylideneoxindoles. Org. Biomol. Chem. 2020, 18, 3843–3847. [Google Scholar] [CrossRef]
- Lian, Z.; Friis, S.D.; Skrydstrup, T. Palladium-Catalyzed Carbonylative α-Arylation of 2-Oxindoles with (Hetero)aryl Bromides: Efficient and Complementary Approach to 3-Acyl-2-oxindoles. Angew. Chem. Int. Ed. 2014, 53, 9582–9586. [Google Scholar] [CrossRef]
- Rashid, N.; Thapliyal, C.; Chaudhuri, P. Dihydrofolate reductase as a versatile drug target in healthcare. J. Proteins Proteomics. 2016, 7, 247–257. [Google Scholar]
- Rodríguez-Melcón, C.; Alonso-Calleja, C.; García-Fernández, C.; Carballo, J.; Capita, R. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for Twelve Antimicrobials (Biocides and Antibiotics) in Eight Strains of Listeria monocytogenes. Biology 2022, 11, 46. [Google Scholar] [CrossRef]
Comp. | Gram-Positive Bacteria | Gram-Negative Bacteria | Fungus | ||||
---|---|---|---|---|---|---|---|
4220 b | 6538 c | 43300 d | 10211 e | 25922 f | 1924 g | 98001 h | |
5a | 64 | >64 | >64 | 64 | >64 | 64 | 32 |
5b | >64 | 64 | >64 | 64 | 64 | 32 | 32 |
5c | >64 | 64 | >64 | 64 | 64 | 16 | 16 |
5d | 16 | 64 | >64 | 64 | >64 | 2 | 32 |
5e | 4 | 64 | 64 | >64 | >64 | 16 | 32 |
5f | >64 | >64 | >64 | >64 | >64 | 32 | 64 |
5g | >64 | 64 | >64 | >64 | >64 | 64 | 32 |
5h | 64 | >64 | >64 | >64 | >64 | 32 | 16 |
5i | 32 | 32 | 64 | 64 | >64 | 8 | 64 |
5j | 32 | 16 | >64 | >64 | >64 | 8 | 64 |
5k | 4 | 16 | >64 | >64 | >64 | 1 | 32 |
5l | 32 | 64 | 64 | >64 | >64 | 8 | 64 |
5m | >64 | 32 | 64 | >64 | >64 | 16 | 64 |
5n | 32 | 32 | >64 | >64 | >64 | 8 | 64 |
5o | >64 | >64 | 64 | 64 | >64 | 16 | 32 |
5p | 64 | 64 | >64 | >64 | >64 | >64 | >64 |
5q | 64 | 16 | >64 | >64 | >64 | 16 | >64 |
5r | 64 | 8 | 8 | >64 | >64 | >64 | 16 |
5s | 32 | 64 | 64 | >64 | >64 | 16 | >64 |
5t | >64 | 64 | >64 | >64 | >64 | 32 | 32 |
5u | 8 | 16 | 64 | >64 | 64 | 2 | 32 |
5v | 64 | 64 | 16 | >64 | >64 | 16 | 32 |
5w | >64 | 64 | 64 | >64 | >64 | 8 | 32 |
10a | >64 | 64 | 64 | 64 | >64 | 32 | 64 |
10b | 32 | 8 | 32 | >64 | 64 | 8 | >64 |
10c | 8 | 2 | 16 | >64 | 64 | 8 | 64 |
10d | 16 | 4 | 32 | >64 | 64 | 8 | 8 |
10e | 8 | 2 | 16 | >64 | 64 | 8 | 64 |
10f | 4 | 0.5 | 2 | >64 | >64 | 8 | >64 |
10g | 0.5 | 2 | 0.5 | >64 | 64 | 1 | >64 |
10h | 1 | 0.5 | 0.5 | 16 | 16 | 1 | 64 |
10i | 16 | 2 | 16 | >64 | >64 | 8 | >64 |
Gati i | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | >64 |
Flu j | >64 | >64 | >64 | >64 | >64 | >64 | 2 |
Comp. | Microbial Strains | MIC [μg/mL] | MBC [μg/mL] | MFC [μg/mL] | MBC/MIC | MFC/MIC |
---|---|---|---|---|---|---|
10f | Staphylococcus aureus ATCC 6538 | 0.5 | 32 | - | 64 | - |
10g | Staphylococcus aureus 4220 | 0.5 | 32 | - | 64 | - |
10h | Staphylococcus aureus ATCC 43300 | 0.5 | 32 | - | 64 | - |
10d | Candida albicans CMCC 98001 | 8 | - | 16 | - | 2 |
Comp. | HepG2 | L-02 |
---|---|---|
IC50/µM | ||
10f | >100 | >100 |
10g | >100 | >100 |
10h | 41.6 | 53.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Zhang, Y.; Du, Q.; Zheng, C.; Jin, C.; Li, S. Synthesis and Antimicrobial Activity of 3-Alkylidene-2-Indolone Derivatives. Molecules 2024, 29, 5384. https://doi.org/10.3390/molecules29225384
Huang H, Zhang Y, Du Q, Zheng C, Jin C, Li S. Synthesis and Antimicrobial Activity of 3-Alkylidene-2-Indolone Derivatives. Molecules. 2024; 29(22):5384. https://doi.org/10.3390/molecules29225384
Chicago/Turabian StyleHuang, He, Yating Zhang, Qiu Du, Changji Zheng, Chenghua Jin, and Siqi Li. 2024. "Synthesis and Antimicrobial Activity of 3-Alkylidene-2-Indolone Derivatives" Molecules 29, no. 22: 5384. https://doi.org/10.3390/molecules29225384
APA StyleHuang, H., Zhang, Y., Du, Q., Zheng, C., Jin, C., & Li, S. (2024). Synthesis and Antimicrobial Activity of 3-Alkylidene-2-Indolone Derivatives. Molecules, 29(22), 5384. https://doi.org/10.3390/molecules29225384