Excitation-Power-Dependent Color Tuning in a Single Sn-Doped CdS Nanowire
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology
2.2. The Structure of the Sn-Doped CdS Nanowire
2.3. Optical Lighting Behavior Sn-Doped CdS Nanowires with the Increase of Sn-Doping Concentration
2.4. Real-Color Image of Excitation-Power-Dependent Color Tuning and Corresponding PL Spectra of the Sn-Doped CdS Nanowire
2.5. The Mechanism of Lighting Emission at Different Wavelengths
3. Experimental Section
3.1. Fabrication of the Sn-Doped CdS Nanowires
3.2. Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, Z.; Bai, H.; Hong, M.; Zhu, Y.; Bao, J.; Shen, J. A novel nitrite biosensor based on the direct electron transfer of hemoglobin immobilized on CdS hollow nanospheres. Biosens. Bioelectron. 2008, 23, 1869–1873. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Herron, N. Quantum Size Effects on the Exciton Energy of CdS Clusters. Phys. Rev. B Condens. Matter 1990, 42, 7253–7255. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Katiyar, A.K.; Mukherjee, S.; Singh, S.; Singh, S.K.; Das, A.K.; Ray, S.K. Geometry Controlled White Light Emission and Extraction in CdS/Black-Si Conical Heterojunctions. ACS Appl. Electron. Mater. 2018, 1, 25–33. [Google Scholar] [CrossRef]
- Liu, Y.K.; Zapien, J.A.; Geng, C.Y.; Shan, Y.Y.; Lee, C.S.; Lifshitz, Y.; Lee, S.T. High-quality CdS nanoribbons with lasing cavity. Appl. Phys. Lett. 2004, 85, 3241–3243. [Google Scholar] [CrossRef]
- Zhang, Q.; Su, R.; Liu, X.; Xing, J.; Sum, T.C.; Xiong, Q. High-Quality Whispering-Gallery-Mode Lasing from Cesium Lead Halide Perovskite Nanoplatelets. Adv. Funct. Mater. 2016, 26, 6238–6245. [Google Scholar] [CrossRef]
- Pan, A.; Liu, D.; Liu, R.; Wang, F.; Zhu, X.; Zou, B.S. Optical waveguide through CdS nanoribbons. Small 2005, 1, 980–983. [Google Scholar] [CrossRef]
- Guo, S.; Liu, R.; Niu, C.; Weller, D.; Hao, Y.; Zhang, M.; Pan, A. Tin Nanoparticles–Enhanced Optical Transportation in Branched CdS Nanowire Waveguides. Adv. Opt. Mater. 2018, 6, 1800305. [Google Scholar] [CrossRef]
- Duan, X.; Huang, Y.; Agarwal, R.; Lieber, C.M. Single-nanowire electrically driven lasers. Nature 2003, 421, 241–245. [Google Scholar] [CrossRef]
- Park, H.G.; Barrelet, C.J.; Wu, Y.; Tian, B.; Qian, F.; Lieber, C.M. A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nat. Photonics 2008, 2, 622–626. [Google Scholar] [CrossRef]
- Ai, B.; Yu, Y.; Möhwald, H.; Zhang, G. Color Displays: Responsive Monochromatic Color Display Based on Nanovolcano Arrays. Adv. Opt. Mater. 2013, 1, 679. [Google Scholar] [CrossRef]
- Xiao, L.; Wei, L.; Cheng, X.; He, Y.; Yeung, E.S. Noise-Free Dual-Wavelength Difference Imaging of Plasmonic Resonant Nanoparticles in Living Cells. Anal. Chem. 2011, 83, 7340–7347. [Google Scholar] [CrossRef] [PubMed]
- Chen, O.; Shelby, D.E.; Yang, Y.; Zhuang, J.; Wang, T.; Niu, C.; Cao, Y.C. Excitation-Intensity-Dependent Color-Tunable Dual Emissions from Manganese-Doped CdS/ZnS Core/Shell Nanocrystals. Angew. Chem. Int. Ed. 2010, 49, 10132–10135. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Zhao, F.Y.; Li, Y.; Song, G.L.; Li, A.; Chai, K.; Liu, R.B. Individual dual-emitting CdS multi-branched nanowire arrays under various pumping powers. Appl. Phys. Lett. 2016, 109, 162101.1–162101.5. [Google Scholar] [CrossRef]
- Xu, J.; Quan, S.; Zou, Z.; Guo, P.; Lu, Y.; Yan, H.; Luo, Y. Color-tunable photoluminescence from In-doped CdS nanowires. Chem. Phys. Lett. 2016, 652, 216–219. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, W.; Song, G.; Zou, B.; Li, Z.; Guo, S.; Liu, R. Visual monitoring of laser power and spot profile in micron region by a single chip of Zn-doped CdS nanobelts. RSC Adv. 2014, 4, 52550–52554. [Google Scholar] [CrossRef]
- Liu, Z.; Yin, L.; Ning, H.; Yang, Z.; Tong, L.; Ning, C.Z. Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation. Nano Lett. 2013, 13, 4945–4950. [Google Scholar] [CrossRef]
- Orava, J.; Jääskeläinen, T.; Parkkinen, J.; Leppanen, V.P. Diffractive CIE 1931 chromaticity diagram. Color Res. Appl. 2007, 32, 409–413. [Google Scholar] [CrossRef]
- Hollemann, G.; Braun, B.; Dorsch, F.; Hennig, P.; Heist, P.; Krause, U.; Voelckel, H.A. RGB lasers for laser projection displays. Projection Displays 2000: Sixth in a Series. Int. Soc. Opt. Photonics 2000, 3954, 140–151. [Google Scholar]
- Neumann, A.; Wierer, J.J.; Davis, W.; Ohno, Y.; Brueck, S.R.; Tsao, J.Y. Four-color laser white illuminant demonstrating high color-rendering quality. Opt. Express 2011, 19, A982–A990. [Google Scholar] [CrossRef]
- Hargis, D.; Earman, A. Lasers replace conventional technology in display designs. Laser Focus World 1998, 34, 145–149. [Google Scholar]
- Gou, G.; Dai, G.; Qian, C.; Liu, Y.; Fu, Y.; Tian, Z.; Gao, Y. High-performance ultraviolet photodetectors based on CdS/CdS:SnS2 superlattice nanowires. Nanoscale 2016, 8, 14580. [Google Scholar] [CrossRef] [PubMed]
- Dai, G.; Zou, B.; Wang, Z. Preparation and Periodic Emission of Superlattice CdS/CdS:SnS2 Microwires. J. Am. Chem. Soc. 2010, 132, 12174–12175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Y.; Guo, Y.; Wang, Y.; Liu, R.; Chen, B.; Zou, B. Growth of CdS nanotubes and their strong optical microcavity effects. Nanoscale 2019, 11, 5325–5329. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Peng, Y.; Yin, Y.; Zhou, Y.; Zhang, Y.; Tang, D. Broad spectral response photodetector based on individual tin-doped CdS nanowire. AIP Adv. 2014, 4, 123005. [Google Scholar] [CrossRef]
- Song, G.L.; Guo, S.; Wang, X.X.; Li, Z.S.; Zou, B.S.; Fan, H.M.; Liu, R.B. Temperature dependent reman and photoluminescence of an individual Sn-doped CdS branched nanostructure. New J. Phys. 2015, 17, 063024. [Google Scholar] [CrossRef]
- Liu, R.; Li, Z.A.; Zhang, C.; Wang, X.; Kamran, M.A.; Farle, M.; Zou, B. Single-step synthesis of monolithic comb-like CdS nanostructures with tunable waveguide properties. Nano Lett. 2013, 13, 2997–3001. [Google Scholar] [CrossRef]
- Yue, Y.; Zhu, D.; Zhang, N.; Zhu, G.; Su, Z. Ligand-Induced Tunable Dual-Color Emission Based on Lead Halide Perovskites for White Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2019, 11, 15898–15904. [Google Scholar] [CrossRef]
- Zhou, W.; Tang, D.; Zou, B. Tuning emission property of CdS nanowires via indium doping. J. Alloys Compd. 2013, 551, 150–154. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, S.; Zhao, C.; Leng, J.; Tian, W.; Jin, S. Excitation-dependent emission color tuning from an individual Mn-doped perovskite microcrystal. J. Am. Chem. Soc. 2019, 141, 20089–20096. [Google Scholar] [CrossRef]
- Jiang, X.; Xia, S.; Zhang, J.; Ju, D.; Liu, Y.; Hu, X.; Tao, X. Exploring Organic Metal Halides with Reversible Temperature-Responsive Dual-Emissive Photoluminescence. ChemSusChem 2019, 12, 5228–5232. [Google Scholar] [CrossRef]
- Liu, B.; Chen, R.; Xu, X.L.; Li, D.H.; Zhao, Y.Y.; Shen, Z.X.; Sun, H.D. Exciton-related photoluminescence and lasing in CdS nanobelts. J. Phys. Chem. C 2011, 115, 12826–12830. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhou, W.; Peng, Y.; Yin, Y.; Zhong, M.; Zhao, Z.; Zou, B. Surface polarons and optical micro-cavity modulated broad range multi-mode emission of Te-doped CdS nanowires. Nanotechnology 2018, 29, 465709. [Google Scholar] [CrossRef] [PubMed]
- Rayleigh, L. CXII. The problem of the whispering gallery. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1910, 20, 1001–1004. [Google Scholar] [CrossRef]
- Ninomiya, S.; Adachi, S. Optical properties of wurtzite CdS. J. Appl. Phys. 1995, 78, 1183. [Google Scholar] [CrossRef]
- Liu, J.; Lee, S.; Ahn, Y.; Park, J.Y.; Koh, K.H.; Park, K.H. Identification of dispersion-dependent hexagonal cavity modes of an individual ZnO nanonail. Appl. Phys. Lett. 2008, 92, 263102. [Google Scholar] [CrossRef]
- Liu, R.B.; Zhuang, X.J.; Xu, J.Y.; Li, D.B.; Zhang, Q.L.; Ding, K.; Pan, A.L. Trap-state whispering-gallery mode lasing from high-quality tin-doped CdS whiskers. Appl. Phys. Lett. 2011, 99, 263101. [Google Scholar] [CrossRef]
- Zhou, W.; Tang, D.; Pan, A.; Zhang, Q.; Wan, Q.; Zou, B. Structure and Photoluminescence of Pure and Indium-Doped ZnTe Microstructures. J. Phys. Chem. C 2011, 115, 1415–1421. [Google Scholar] [CrossRef]
- Wille, M.; Sturm, C.; Michalsky, T.; Röder, R.; Ronning, C.; Schmidt-Grund, R.; Grundmann, M. Carrier density driven lasing dynamics in ZnO nanowires. Nanotechnology 2016, 27, 225702. [Google Scholar] [CrossRef]
- Mclaurin, E.J.; Fataftah, M.S.; Gamelin, D.R. One-step synthesis of alloyed dual-emitting semiconductor nanocrystalst. Chem. Commun. 2013, 49, 39–41. [Google Scholar] [CrossRef]
- Mclaurin, E.J.; Vlaskin, V.A.; Gamelin, D.R. Water-Soluble Dual-Emitting Nanocrystals for Ratiometric Optical Thermometry. J. Am. Chem. Soc. 2011, 133, 14978–14980. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Yao, S.; Zou, B. Excitation-Power-Dependent Color Tuning in a Single Sn-Doped CdS Nanowire. Molecules 2024, 29, 5389. https://doi.org/10.3390/molecules29225389
Tian Y, Yao S, Zou B. Excitation-Power-Dependent Color Tuning in a Single Sn-Doped CdS Nanowire. Molecules. 2024; 29(22):5389. https://doi.org/10.3390/molecules29225389
Chicago/Turabian StyleTian, Ye, Shangfei Yao, and Bingsuo Zou. 2024. "Excitation-Power-Dependent Color Tuning in a Single Sn-Doped CdS Nanowire" Molecules 29, no. 22: 5389. https://doi.org/10.3390/molecules29225389
APA StyleTian, Y., Yao, S., & Zou, B. (2024). Excitation-Power-Dependent Color Tuning in a Single Sn-Doped CdS Nanowire. Molecules, 29(22), 5389. https://doi.org/10.3390/molecules29225389