Epigallocatechin Gallate Enzymatic Alpha Glucosylation Potentiates Its Skin-Lightening Activity—Involvement of Skin Microbiota
Abstract
:1. Introduction
2. Results
2.1. Chemical Structure of EGCG-G1
2.2. EGCG-G1 Skin Penetration
2.3. Affinity of EGCG and EGCG-G1 for GLUT1 Transporter
2.4. In Vitro Antioxidant Activity of EGCG-G1
2.5. Impact of EGCG-G1 on Melanogenesis Ex Vivo
2.6. Impact of EGCG-G1 on Genes Controlling Melanogenesis
2.7. Impact of EGCG-G1 on Bacterial Metabolism
2.7.1. EGCG-G1 Intake by Bacillus sp.
2.7.2. EGCG-G1 Impact on Lactobacillus sp. Growth and Metabolism
2.8. Clinical Evaluation of EGCG-G1 on Skin Hyperpigmentation and Microbiota
2.8.1. EGCG-G1 Reduced Uneven Skin Tone and Hyperpigmented Spots in Facial Asian Mature Skin Better than Vitamin C
2.8.2. EGCG-G1 Reduced Brown Spots and Increase Facial Skin Lightness on African Skin and Outperformed EGCG
2.8.3. EGCG-G1 Reduced Brown Spots and Increased Facial Skin Lightness on Indian Skin
2.8.4. EGCG-G1 Reduced Brown Spots on Fair Skin Hands
2.8.5. EGCG-G1 Increased Cheek Skin Lactobacillus Population In Vivo
3. Discussion
4. Materials and Methods
4.1. EGCG-G1 Obtention and Characterization
4.2. EGCG-G1 and EGCG Concentrations
4.3. Comparison of EGCG and EGCG-G1 Skin Penetration Using Raman Spectroscopy
4.3.1. Skin Explants’ Culture and Preparation
4.3.2. Raman Micro-Imaging
4.4. Molecular Docking Analysis of EGCG-G1 with GLUT1
4.4.1. Modeling of Inward Conformation of GLUT1
4.4.2. Modeling of Outward Conformation of GLUT1
4.4.3. Molecular Docking
4.5. In Vitro Analysis of EGCG-G1 Antioxidant Effect
4.6. Ex Vivo Analysis of EGCG-G1 Effect on Melanogenesis
4.6.1. Skin Culture and Melanin Staining
4.6.2. Quantification of Melanin Content by Imagery Analysis
4.7. Gene Expression Study on EGCG-G1 on a Melanocytes/Keratinocytes Coculture Model
4.8. Impact of EGCG-G1 on Bacillus sp. and Lactobacillus sp. In Vitro
4.8.1. Analysis of EGCG-G1 Composition Modification by Bacillus sp.
4.8.2. Effect of EGCG-G1 on Lactobacillus acidophilus
4.9. Clinical Evaluation of EGCG-G1 vs. Vitamin C on Face in Asian Skin (Study 1)
4.9.1. Panel Description
4.9.2. INCI Formula of Face Creams
4.9.3. Skin Color Analysis by Colorface® Technology
4.10. Clinical Evaluation of EGCG-G1 vs. EGCG on Face in African Skin (Study 2)
4.10.1. Panel Description
4.10.2. INCI Formula of Face Creams
4.10.3. Overall and Localized Skin Color Analysis by Chromameter®
4.11. Clinical Evaluation of EGCG-G1 vs. EGCG on Face in Indian Skin (Study 3)
4.11.1. Panel Description
4.11.2. INCI Formula of Face Creams
4.11.3. Overall Skin Color Analysis by L* and ITA Parameters by Using VISIOFACE®
4.11.4. Localized Skin Color Analysis by Chromameter®
4.12. Clinical Evaluation of EGCG-G1 on Hands and Cheeks in Caucasian Skin (Study 4)
4.12.1. Panel Description
4.12.2. INCI Formula of Hand and Face Creams
4.12.3. Hand Skin Color Analysis by Measuring Melanin Autofluorescence by Raman Spectroscopy
4.12.4. DNA Extraction, Microbial DNA Sequencing and Data Analysis
4.13. Statistical Analysis
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serre, C.; Busuttil, V.; Botto, J.-M. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. Int. J. Cosmet. Sci. 2018, 40, 328–347. [Google Scholar] [CrossRef]
- Yuan, X.H.; Jin, Z.H. Paracrine Regulation of Melanogenesis. Br. J. Dermatol. 2018, 178, 632–639. [Google Scholar] [CrossRef]
- Ohbayashi, N.; Fukuda, M. Recent Advances in Understanding the Molecular Basis of Melanogenesis in Melanocytes. F1000Res 2020, 9, 608. [Google Scholar] [CrossRef]
- Hida, T.; Kamiya, T.; Kawakami, A.; Ogino, J.; Sohma, H.; Uhara, H.; Jimbow, K. Elucidation of Melanogenesis Cascade for Identifying Pathophysiology and Therapeutic Approach of Pigmentary Disorders and Melanoma. Int. J. Mol. Sci. 2020, 21, 6129. [Google Scholar] [CrossRef]
- D’Mello, S.A.N.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling Pathways in Melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef]
- Jablonski, N.G.; Chaplin, G. Human Skin Pigmentation as an Adaptation to UV Radiation. Proc. Natl. Acad. Sci. USA 2010, 107, 8962–8968. [Google Scholar] [CrossRef]
- Ainger, S.A.; Jagirdar, K.; Lee, K.J.; Soyer, H.P.; Sturm, R.A. Skin Pigmentation Genetics for the Clinic. Dermatology 2017, 233, 1–15. [Google Scholar] [CrossRef]
- Passeron, T.; Krutmann, J.; Andersen, M.L.; Katta, R.; Zouboulis, C.C. Clinical and Biological Impact of the Exposome on the Skin. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 4–25. [Google Scholar] [CrossRef]
- Markiewicz, E.; Idowu, O.C. Melanogenic Difference Consideration in Ethnic Skin Type: A Balance Approach Between Skin Brightening Applications and Beneficial Sun Exposure. Clin. Cosmet. Investig. Dermatol. 2020, 13, 215–232. [Google Scholar] [CrossRef]
- Nasti, T.H.; Timares, L. Invited Review MC1R, Eumelanin and Pheomelanin: Their Role in Determining the Susceptibility to Skin Cancer. Photochem. Photobiol. 2015, 91, 188. [Google Scholar] [CrossRef]
- Gromkowska-Kępka, K.J.; Puścion-Jakubik, A.; Markiewicz-Żukowska, R.; Socha, K. The Impact of Ultraviolet Radiation on Skin Photoaging—Review of in Vitro Studies. J. Cosmet. Dermatol. 2021, 20, 3427–3431. [Google Scholar] [CrossRef]
- Vashi, N.A.; de Castro Maymone, M.B.; Kundu, R.V. Aging Differences in Ethnic Skin. J. Clin. Aesthet. Dermatol. 2016, 9, 31–38. [Google Scholar]
- Oh, J.; Byrd, A.L.; Park, M.; Kong, H.H.; Segre, J.A. Temporal Stability of the Human Skin Microbiome. Cell 2016, 165, 854–866. [Google Scholar] [CrossRef]
- Shibagaki, N.; Suda, W.; Clavaud, C.; Bastien, P.; Takayasu, L.; Iioka, E.; Kurokawa, R.; Yamashita, N.; Hattori, Y.; Shindo, C.; et al. Aging-Related Changes in the Diversity of Women’s Skin Microbiomes Associated with Oral Bacteria. Sci. Rep. 2017, 7, 10567. [Google Scholar] [CrossRef]
- Bosman, E.S.; Albert, A.Y.; Lui, H.; Dutz, J.P.; Vallance, B.A. Skin Exposure to Narrow Band Ultraviolet (UVB) Light Modulates the Human Intestinal Microbiome. Front. Microbiol. 2019, 10, 2410. [Google Scholar] [CrossRef]
- Burns, E.M.; Ahmed, H.; Isedeh, P.N.; Kohli, I.; Van Der Pol, W.; Shaheen, A.; Muzaffar, A.F.; Al-Sadek, C.; Foy, T.M.; Abdelgawwad, M.S.; et al. Ultraviolet Radiation, Both UVA and UVB, Influences the Composition of the Skin Microbiome. Exp. Dermatol. 2019, 28, 136–141. [Google Scholar] [CrossRef]
- Patra, V.; Wagner, K.; Arulampalam, V.; Wolf, P. Skin Microbiome Modulates the Effect of Ultraviolet Radiation on Cellular Response and Immune Function. iScience 2019, 15, 211–222. [Google Scholar] [CrossRef]
- Patra, V.; Bordag, N.; Clement, Y.; Köfeler, H.; Nicolas, J.-F.; Vocanson, M.; Ayciriex, S.; Wolf, P. Ultraviolet Exposure Regulates Skin Metabolome Based on the Microbiome. Sci. Rep. 2023, 13, 7207. [Google Scholar] [CrossRef]
- Zanchetta, C.; Vilanova, D.; Jarrin, C.; Scandolera, A.; Chapuis, E.; Auriol, D.; Robe, P.; Dupont, J.; Lapierre, L.; Reynaud, R. Bacterial Taxa Predictive of Hyperpigmented Skins. Health Sci. Rep. 2022, 5, e609. [Google Scholar] [CrossRef]
- Huang, H.-C.; Lee, I.J.; Huang, C.; Chang, T.-M. Lactic Acid Bacteria and Lactic Acid for Skin Health and Melanogenesis Inhibition. Curr. Pharm. Biotechnol. 2020, 21, 566–577. [Google Scholar] [CrossRef]
- Patra, V.; Gallais Sérézal, I.; Wolf, P. Potential of Skin Microbiome, Pro- and/or Pre-Biotics to Affect Local Cutaneous Responses to UV Exposure. Nutrients 2020, 12, 1795. [Google Scholar] [CrossRef]
- Lee, L.-S.; Kim, S.-H.; Kim, Y.-B.; Kim, Y.-C. Quantitative Analysis of Major Constituents in Green Tea with Different Plucking Periods and Their Antioxidant Activity. Molecules 2014, 19, 9173–9186. [Google Scholar] [CrossRef]
- Gensler, H.L.; Timmermann, B.N.; Valcic, S.; Wächter, G.A.; Dorr, R.; Dvorakova, K.; Alberts, D.S. Prevention of Photocarcinogenesis by Topical Administration of Pure Epigallocatechin Gallate Isolated from Green Tea. Nutr. Cancer 1996, 26, 325–335. [Google Scholar] [CrossRef]
- Kim, E.; Hwang, K.; Lee, J.; Han, S.Y.; Kim, E.-M.; Park, J.; Cho, J.Y. Skin Protective Effect of Epigallocatechin Gallate. Int. J. Mol. Sci. 2018, 19, 173. [Google Scholar] [CrossRef]
- Liang, Y.R.; Kang, S.; Deng, L.; Xiang, L.P.; Zheng, X.Q. Inhibitory Effects of (-)-Epigallocatechin-3-Gallate on Melanogenesis in Ultraviolet A-Induced B16 Murine Melanoma Cell. Trop. J. Pharm. Res. 2014, 13, 1825–1831. [Google Scholar] [CrossRef]
- Roh, E.; Kim, J.-E.; Kwon, J.Y.; Park, J.S.; Bode, A.M.; Dong, Z.; Lee, K.W. Molecular Mechanisms of Green Tea Polyphenols with Protective Effects against Skin Photoaging. Crit. Rev. Food Sci. Nutr. 2017, 57, 1631–1637. [Google Scholar] [CrossRef]
- Janjua, R.; Munoz, C.; Gorell, E.; Rehmus, W.; Egbert, B.; Kern, D.; Chang, A.L.S. A Two-Year, Double-Blind, Randomized Placebo-Controlled Trial of Oral Green Tea Polyphenols on the Long-Term Clinical and Histologic Appearance of Photoaging Skin. Dermatol. Surg. 2009, 35, 1057–1065. [Google Scholar] [CrossRef]
- Nadim, M.; Auriol, D.; Lamerant-FayeL, N.; Lefèvre, F.; Dubanet, L.; Redziniak, G.; Kieda, C.; Grillon, C. Improvement of polyphenol properties upon glucosylation in a UV-induced skin cell ageing model. Int. J. Cosmet. Sci. 2014, 36, 579–587. [Google Scholar] [CrossRef]
- Moon, Y.-H.; Lee, J.-H.; Ahn, J.-S.; Nam, S.-H.; Oh, D.-K.; Park, D.-H.; Chung, H.-J.; Kang, S.; Day, D.F.; Kim, D. Synthesis, Structure Analyses, and Characterization of Novel Epigallocatechin Gallate (EGCG) Glycosides Using the Glucansucrase from Leuconostoc Mesenteroides B-1299CB. J. Agric. Food Chem. 2006, 54, 1230–1237. [Google Scholar] [CrossRef]
- Kitao, S.; Matsudo, T.; Saitoh, M.; Horiuchi, T.; Sekine, H. Enzymatic Syntheses of Two Stable (–)-Epigallocatechin Gallate-Glucosides by Sucrose Phosphorylase. Biosci. Biotechnol. Biochem. 1995, 59, 2167–2169. [Google Scholar] [CrossRef]
- Kim, J.; Nguyen, T.T.H.; Kim, N.M.; Moon, Y.-H.; Ha, J.-M.; Park, N.; Lee, D.-G.; Hwang, K.-H.; Park, J.-S.; Kim, D. Functional Properties of Novel Epigallocatechin Gallate Glucosides Synthesized by Using Dextransucrase from Leuconostoc Mesenteroides B-1299CB4. J. Agric. Food Chem. 2016, 64, 9203–9213. [Google Scholar] [CrossRef] [PubMed]
- Jing, R.; Dong, X.; Li, K.; Yan, J.; Chen, X.; Feng, L. The Ap3b1 Gene Regulates the Ocular Melanosome Biogenesis and Tyrosinase Distribution Differently from the Hps1 Gene. Exp. Eye Res. 2014, 128, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Bueschbell, B.; Manga, P.; Schiedel, A.C. The Many Faces of G Protein-Coupled Receptor 143, an Atypical Intracellular Receptor. Front. Mol. Biosci. 2022, 9, 873777. [Google Scholar] [CrossRef] [PubMed]
- Watt, B.; van Niel, G.; Raposo, G.; Marks, M.S. PMEL: A Pigment Cell-Specific Model For Functional Amyloid Formation. Pigment Cell Melanoma Res. 2013, 26, 300–315. [Google Scholar] [CrossRef]
- Rossberg, W.; Saternus, R.; Wagenpfeil, S.; Kleber, M.; März, W.; Reichrath, S.; Vogt, T.; Reichrath, J. Human Pigmentation, Cutaneous Vitamin D Synthesis and Evolution: Variants of Genes (SNPs) Involved in Skin Pigmentation Are Associated with 25(OH)D Serum Concentration. Anticancer Res. 2016, 36, 1429–1437. [Google Scholar] [PubMed]
- Sharlow, E.R.; Paine, C.S.; Babiarz, L.; Eisinger, M.; Shapiro, S.; Seiberg, M. The Protease-Activated Receptor-2 Upregulates Keratinocyte Phagocytosis. J. Cell Sci. 2000, 113, 3093–3101. [Google Scholar] [CrossRef]
- Lim, H.-W.; Huang, Y.-H.; Kyeong, G.; Park, M.; Lim, C.-J. Comparative Insights into the Skin Beneficial Properties of Probiotic Lactobacillus Isolates of Skin Origin. BioMed Res. Int. 2022, 2022, 7728789. [Google Scholar] [CrossRef]
- Meunier, M.; Bracq, M.; Chapuis, E.; Lapierre, L.; Humeau, A.; Bernard, S.; Lambert, C.; Paulus, C.; Auriol, P.; Lemagnen, P.; et al. Targeting SDF-1 as an Efficient Strategy to Resolve Skin Hyperpigmentation Issues with Himanthalia Elongata Extract. J. Cosmet. Dermatol. 2023, 22, 383–394. [Google Scholar] [CrossRef]
- Marionnet, C.; Nouveau, S.; Hourblin, V.; Pillai, K.; Manco, M.; Bastien, P.; Tran, C.; Tricaud, C.; de Lacharrière, O.; Bernerd, F. UVA1-Induced Skin Darkening Is Associated with Molecular Changes Even in Highly Pigmented Skin Individuals. J. Investig. Dermatol. 2017, 137, 1184–1187. [Google Scholar] [CrossRef]
- Talib, W.H.; Awajan, D.; Alqudah, A.; Alsawwaf, R.; Althunibat, R.; Abu AlRoos, M.; Al Safadi, A.; Abu Asab, S.; Hadi, R.W.; Al Kury, L.T. Targeting Cancer Hallmarks with Epigallocatechin Gallate (EGCG): Mechanistic Basis and Therapeutic Targets. Molecules 2024, 29, 1373. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Kim, D.-S.; Kwon, S.-B.; Park, E.-S.; Huh, C.-H.; Youn, S.-W.; Kim, S.-W.; Park, K.-C. Protective Effects of EGCG on UVB-Induced Damage in Living Skin Equivalents. Arch. Pharm. Res. 2005, 28, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, Y.; Ruan, X.; Zhang, T.; Zi, M.; Zhang, Q. Photoprotective Effects of Epigallocatechin Gallate on Ultraviolet-Induced Zebrafish and Human Skin Fibroblasts Cells. Mediat. Inflamm. 2024, 2024, 7887678. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-S.; Park, S.-H.; Kwon, S.-B.; Li, K.; Youn, S.-W.; Park, K.-C. (-)-Epigallocatechin-3-Gallate and Hinokitiol Reduce Melanin Synthesis via Decreased MITF Production. Arch. Pharm. Res. 2004, 27, 334–339. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Li, Y.; Liu, Z.; Lin, Y.; Huang, J. Anti-Melanogenic Effects of Epigallocatechin-3-Gallate (EGCG), Epicatechin-3-Gallate (ECG) and Gallocatechin-3-Gallate (GCG) via down-Regulation of cAMP/CREB /MITF Signaling Pathway in B16F10 Melanoma Cells. Fitoterapia 2020, 145, 104634. [Google Scholar] [CrossRef]
- Wang, W.; Di, T.; Wang, W.; Jiang, H. EGCG, GCG, TFDG, or TSA Inhibiting Melanin Synthesis by Downregulating MC1R Expression. Int. J. Mol. Sci. 2023, 24, 11017. [Google Scholar] [CrossRef]
- Messire, G.; Serreau, R.; Berteina-Raboin, S. Antioxidant Effects of Catechins (EGCG), Andrographolide, and Curcuminoids Compounds for Skin Protection, Cosmetics, and Dermatological Uses: An Update. Antioxidants 2023, 12, 1317. [Google Scholar] [CrossRef]
- Nahhas, A.F.; Abdel-Malek, Z.A.; Kohli, I.; Braunberger, T.L.; Lim, H.W.; Hamzavi, I.H. The Potential Role of Antioxidants in Mitigating Skin Hyperpigmentation Resulting from Ultraviolet and Visible Light-Induced Oxidative Stress. Photodermatol. Photoimmunol. Photomed. 2019, 35, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Cibrian, D.; de la Fuente, H.; Sánchez-Madrid, F. Metabolic Pathways That Control Skin Homeostasis and Inflammation. Trends Mol. Med. 2020, 26, 975–986. [Google Scholar] [CrossRef]
- Li, Z.; Bai, X.; Peng, T.; Yi, X.; Luo, L.; Yang, J.; Liu, J.; Wang, Y.; He, T.; Wang, X.; et al. New Insights Into the Skin Microbial Communities and Skin Aging. Front. Microbiol. 2020, 11, 565549. [Google Scholar] [CrossRef]
- Tsai, W.-H.; Chou, C.-H.; Chiang, Y.-J.; Lin, C.-G.; Lee, C.-H. Regulatory Effects of Lactobacillus plantarum-GMNL6 on Human Skin Health by Improving Skin Microbiome. Int. J. Med. Sci. 2021, 18, 1114–1120. [Google Scholar] [CrossRef]
- Lee, D.E.; Huh, C.-S.; Ra, J.; Choi, I.-D.; Jeong, J.-W.; Kim, S.-H.; Ryu, J.H.; Seo, Y.K.; Koh, J.S.; Lee, J.-H.; et al. Clinical Evidence of Effects of Lactobacillus Plantarum HY7714 on Skin Aging: A Randomized, Double Blind, Placebo-Controlled Study. J. Microbiol. Biotechnol. 2015, 25, 2160–2168. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.Y.; Lee, H.Y. Enhancement of Skin Whitening and Anti-Wrinkle Activities of the Co-Culture of Lactobacillus rhamnosus and Lactobacillus paracasei. J. Soc. Cosmet. Sci. Korea 2015, 41, 253–261. [Google Scholar] [CrossRef]
- Usuki, A.; Ohashi, A.; Sato, H.; Ochiai, Y.; Ichihashi, M.; Funasaka, Y. The Inhibitory Effect of Glycolic Acid and Lactic Acid on Melanin Synthesis in Melanoma Cells. Exp. Dermatol. 2003, 12 (Suppl. S2), 43–50. [Google Scholar] [CrossRef] [PubMed]
- Sourabh, A.; Kanwar, S.S.; Sud, R.G.; Ghabru, A.; Sharma, O.P. Influence of Phenolic Compounds of Kangra Tea [Camellia Sinensis (L) O Kuntze] on Bacterial Pathogens and Indigenous Bacterial Probiotics of Western Himalayas. Braz. J. Microbiol. 2014, 44, 709–715. [Google Scholar] [CrossRef]
- Sun, L.; Zeng, X.; Yan, C.; Sun, X.; Gong, X.; Rao, Y.; Yan, N. Crystal Structure of a Bacterial Homologue of Glucose Transporters GLUT1–4. Nature 2012, 490, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, J.G.; Laiño, J.E.; Del Valle, M.J.; Vannini, V.; Van Sinderen, D.; Taranto, M.P.; De Valdez, G.F.; De Giori, G.S.; Sesma, F. B-Group Vitamin Production by Lactic Acid Bacteria—Current Knowledge and Potential Applications. J. Appl. Microbiol. 2011, 111, 1297–1309. [Google Scholar] [CrossRef] [PubMed]
- Masjedi, M.; Solhjoo, A. Does Trigonelline Help Skin Tone? Molecular Docking Studies of Trigonelline on the Human Tyrosinase, Formulation, Optimization, and Characterization of an Emulgel-containing Trigonella Foenum-graecum L. Fenugreek Standardized Hydroalcoholic Extract. J. Cosmet. Dermatol. 2022, 21, 7178–7193. [Google Scholar] [CrossRef]
- Sanadi, R.M.; Deshmukh, R.S. The Effect of Vitamin C on Melanin Pigmentation—A Systematic Review. J. Oral Maxillofac. Pathol. 2020, 24, 374–382. [Google Scholar] [CrossRef]
- Xiao, J. Dietary Flavonoid Aglycones and Their Glycosides: Which Show Better Biological Significance? Crit. Rev. Food Sci. Nutr. 2017, 57, 1874–1905. [Google Scholar] [CrossRef]
- Lambert, C.; Lemagnen, P.; Don Simoni, E.; Hubert, J.; Kotland, A.; Paulus, C.; De Bizemont, A.; Bernard, S.; Humeau, A.; Auriol, D.; et al. Enzymatic Synthesis of α-Glucosyl-Baicalin through Transglucosylation via Cyclodextrin Glucanotransferase in Water. Molecules 2023, 28, 3891. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A Versatile Open Source Tool for Metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Mahé, F.; Rognes, T.; Quince, C.; De Vargas, C.; Dunthorn, M. Swarm v2: Highly-Scalable and High-Resolution Amplicon Clustering. PeerJ 2015, 3, e1420. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
Step of Melanogenesis Regulation | Gene | Fold Change vs. Untreated | % vs. Untreated and p-Value |
---|---|---|---|
Regulation of signaling pathways | KIT | 0.52 | −93% *** |
EDNRB | 0.6 | −68% *** | |
MC1R | 0.51 | −96% *** | |
SOX10 | 0.62 | −60% *** | |
MITF | 0.48 | −108% *** | |
Melanin synthesis | TYR | 0.63 | −58% *** |
TYRP1 | 0.51 | −95% ** | |
Melanosome biogenesis | AP3B1 | 0.63 | −59% * |
GPR143 | 0.21 | −365% *** | |
PMEL | 0.32 | −212% *** | |
DTNBP1 | 0.63 | −59% * | |
LYST | 0.67 | −48% *** | |
Melanin uptake | F2RL1 | 0.67 | −49% *** |
Study Nb. | Skin Type | Nb Vol. (Nb/Group) | Skin Area for Appl. | Age Range (Years) | Inclusion Criteria | Products Tested by Groups | Frequency of Appl. | Tools | Effect Of EGCG-G1 0.4% |
---|---|---|---|---|---|---|---|---|---|
1 | Asian | 38 (19,19) | Face (hemiface) | 45–75 | Hyperpigmented spots | EGCG-G1 0.4%/placebo Vitamin C 2%/placebo | 2 | Colorface | 🡕 radiance 🡕 skin homogeneity 🡖 surface pigment defect Efficacy > Vitamin C 2% |
2 | African | 85 (27,34,24) | Face (whole face) | 18–47 | Dull skin, hyperpigmentation, skin heterogeneity | EGCG-G1 0.4% EGCG 0.01% Placebo | 2 | Chromameter | 🡕 L* on brown spots 🡕 L*whole face 🡖 uneven skin tone Efficacy >> EGCG |
3 | Indian | 38 (20,18) | Face (whole face) | 18–30 | Melanin-rich skin | EGCG-G1 0.4% Placebo | 1 | Visioface Chromameter | Chromameter: 🡕 L* 🡕 ITA 🡖 ΔE Visioface: 🡕 L* 🡕 ITA |
4 | Caucasian | 30 (15,15) | Hands | 45–75 | Hyperpigmented spots | EGCG-G1 0.4% Placebo | 2 | Raman probe | 🡖 melanin in brown spots 🡖 skin heterogeneity |
Face | Brown spots, sagging | Microbiota sampling, 16S rRNA sequencing | 🡕 Lactobacillus population |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boira, C.; Chapuis, E.; Lapierre, L.; Auriol, D.; Jarrin, C.; Robe, P.; Tiguemounine, J.; Scandolera, A.; Reynaud, R. Epigallocatechin Gallate Enzymatic Alpha Glucosylation Potentiates Its Skin-Lightening Activity—Involvement of Skin Microbiota. Molecules 2024, 29, 5391. https://doi.org/10.3390/molecules29225391
Boira C, Chapuis E, Lapierre L, Auriol D, Jarrin C, Robe P, Tiguemounine J, Scandolera A, Reynaud R. Epigallocatechin Gallate Enzymatic Alpha Glucosylation Potentiates Its Skin-Lightening Activity—Involvement of Skin Microbiota. Molecules. 2024; 29(22):5391. https://doi.org/10.3390/molecules29225391
Chicago/Turabian StyleBoira, Cloé, Emilie Chapuis, Laura Lapierre, Daniel Auriol, Cyrille Jarrin, Patrick Robe, Jean Tiguemounine, Amandine Scandolera, and Romain Reynaud. 2024. "Epigallocatechin Gallate Enzymatic Alpha Glucosylation Potentiates Its Skin-Lightening Activity—Involvement of Skin Microbiota" Molecules 29, no. 22: 5391. https://doi.org/10.3390/molecules29225391
APA StyleBoira, C., Chapuis, E., Lapierre, L., Auriol, D., Jarrin, C., Robe, P., Tiguemounine, J., Scandolera, A., & Reynaud, R. (2024). Epigallocatechin Gallate Enzymatic Alpha Glucosylation Potentiates Its Skin-Lightening Activity—Involvement of Skin Microbiota. Molecules, 29(22), 5391. https://doi.org/10.3390/molecules29225391