Efficient Removal of Cationic Dye by Biomimetic Amorphous Calcium Carbonate: Behavior and Mechanisms
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the BACC
2.2. Adsorbent Dosage Effect
2.3. Adsorption Isotherm and Thermodynamic Analysis
2.4. Adsorption Kinetics Analysis
2.5. The Effect of pH
2.6. The Effect of Coexisting Substances and Different Water Bodies
2.7. Regeneration Experiment
2.8. Proposed Adsorption Mechanisms
3. Materials and Methods
3.1. Preparation of BACC and Its Characterization
3.2. The Effects of Adsorbent Dose
3.3. Adsorption Isotherms and Thermodynamic Analysis
3.4. Analysis of Adsorption Kinetics
3.5. The Alterations Caused by pH
3.6. The Effect of Coexisting Ions
3.7. The Effect of Different Water Bodies
3.8. Regeneration Experiment and Practical Application
3.9. DFT-Based Theoretical Evaluation of Interatomic Adsorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Liu, Y.; Xu, X.; Sun, M.; Jiang, M.; Xue, G.; Li, X.; Liu, Z. How does iron facilitate the aerated biofilter for tertiary simultaneous nutrient and refractory organics removal from real dyeing wastewater? Water Res. 2019, 148, 344–358. [Google Scholar] [CrossRef]
- Walter, A.D.; Benamor, H.; Ferrer, L.M.; Reji, T.; Curran, T.; Schwenk, G.R.; Hadji, M.; Creighton, M.A.; Barsoum, M.W. Self-sensitized photodegradation and adsorption of aqueous malachite green dye using one-dimensional titanium oxide nanofilaments. iScience 2024, 27, 110647. [Google Scholar] [CrossRef]
- Mujtaba, G.; Ullah, A.; Khattak, D.; Shah, M.U.H.; Daud, M.; Ahmad, S.; Hai, A.; Ahmed, F.; Alshahrani, T.; Banat, F. Simultaneous adsorption of methylene blue and amoxicillin by starch-impregnated mgal layered double hydroxide: Parametric optimization, isothermal studies and thermo-kinetic analysis. Environ. Res. 2023, 235, 116610. [Google Scholar] [CrossRef]
- Obayomi, K.S.; Lau, S.Y.; Danquah, M.K.; Zhang, J.; Chiong, T.; Meunier, L.; Gray, S.R.; Rahman, M.M. Green synthesis of graphene-oxide based nanocomposites for efficient removal of methylene blue dye from wastewater. Desalination 2023, 564, 116749. [Google Scholar] [CrossRef]
- Pervez, M.N.; Hassan, M.M.; Naddeo, V. Separation of cationic methylene blue dye from its aqueous solution by s-sulfonated wool keratin-based sustainable electrospun nanofibrous membrane biosorbent. Sep. Purif. Technol. 2024, 333, 125903. [Google Scholar] [CrossRef]
- Shi, T.; Yang, B.; Hu, W.; Gao, G.; Jiang, X.; Yu, J. Garlic peel-based biochar prepared under weak carbonation conditions for efficient removal of methylene blue from wastewater. Molecules 2024, 29, 4772. [Google Scholar] [CrossRef]
- Mondal, M.I.H.; Chandra Chakraborty, S.; Rahman, M.S.; Marjuban, S.M.H.; Ahmed, F.; Zhou, J.L.; Ahmed, M.B.; Zargar, M. Adsorbents from rice husk and shrimp shell for effective removal of heavy metals and reactive dyes in water. Environ. Pollut. 2024, 346, 123637. [Google Scholar] [CrossRef]
- Teo, S.H.; Ng, C.H.; Islam, A.; Abdulkareem-Alsultan, G.; Joseph, C.G.; Janaun, J.; Taufiq-Yap, Y.H.; Khandaker, S.; Islam, G.J.; Znad, H.; et al. Sustainable toxic dyes removal with advanced materials for clean water production: A comprehensive review. J. Clean. Prod. 2022, 332, 130039. [Google Scholar] [CrossRef]
- Flilissa, A.; Laouameur, K.; Hammoudi, N.; Tamam, N.; Yadav, K.K.; Achouri, B.; Alyami, A.Y.; Flilissa, O.; Algethami, J.S.; Abbas, M.; et al. Bentonite sdbs-loaded composite for methylene blue removal from wastewater: An experimental and theoretical investigation. Environ. Res. 2024, 241, 117544. [Google Scholar] [CrossRef]
- Wolski, R.; Bazan-Wozniak, A.; Nosal-Wiercińska, A.; Pietrzak, R. Methylene blue and rhodamine b dyes’ efficient removal using biocarbons developed from waste. Molecules 2024, 29, 4022. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, Y.; Zhou, A.; Wang, A.; Zhu, T. Removal of azo dye in an up-flow membrane-less bioelectrochemical system integrated with bio-contact oxidation reactor. Chem. Eng. J. 2017, 326, 454–461. [Google Scholar] [CrossRef]
- Liu, R.; Huang, S.; Zhang, X.; Song, Y.; He, G.; Wang, Z.; Lian, B. Bio-mineralisation, characterization, and stability of calcium carbonate containing organic matter. RSC Adv. 2021, 11, 14415–14425. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Chang, X.; Li, M.; Ge, T.; Niu, S.; Wang, D.; Jiang, Y.; Sun, S. Fabrication of calcium carbonate coated-stainless steel mesh for efficient oil-water separation via bacterially induced biomineralization technique. Chem. Eng. J. 2021, 405, 126597. [Google Scholar] [CrossRef]
- Mehta, N.; Vantelon, D.; Gaëtan, J.; Fernandez-Martinez, A.; Delbes, L.; Travert, C.; Benzerara, K. Calcium speciation and coordination environment in intracellular amorphous calcium carbonate (acc) formed by cyanobacteria. Chem. Geol. 2023, 641, 121765. [Google Scholar] [CrossRef]
- Dhami, N.K.; Reddy, M.S.; Mukherjee, A. Biomineralization of calcium carbonates and their engineered applications: A review. Front. Microbiol. 2013, 4, 314. [Google Scholar] [CrossRef]
- Giuseppe, F.; Simona, F.; Michela, R.; Branka, N.D.A.; Damir, K. Evidence of structural variability among synthetic and biogenic vaterite. Chem. Commun. 2014, 50, 15370–15373. [Google Scholar]
- Zou, Z.; Yang, X.; Albéric, M.; Heil, T.; Wang, Q.; Pokroy, B.; Politi, Y.; Bertinetti, L. Additives control the stability of amorphous calcium carbonate via two different mechanisms: Surface adsorption versus bulk incorporation. Adv. Funct. Mater. 2020, 30, 23. [Google Scholar] [CrossRef]
- Dupraz, C.; Reid, R.P.; Braissant, O.; Decho, A.W.; Norman, R.S.; Visscher, P.T. Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 2009, 96, 141–162. [Google Scholar] [CrossRef]
- Liu, R.; Guan, Y.; Chen, L.; Lian, B. Adsorption and desorption characteristics of Cd2+ and Pb2+ by micro and nano-sized biogenic CaCO3. Front. Microbiol. 2018, 9, 41. [Google Scholar] [CrossRef]
- Liu, R.; Yu, Y.; Liu, X.; Guan, Y.; Chen, L.; Lian, B. Adsorption of Ni2+ and Cu2+ using bio-mineral: Adsorption isotherms and mechanisms. Geomicrobiol. J. 2018, 35, 742–748. [Google Scholar] [CrossRef]
- Kim, J.; Won, Y.; Ji, C.; Yang, Y.; Ryu, S.; Ju, S.; Kwon, Y.; Lee, Y.; Lee, J. The difference in in vivo sensitivity between Bacillus licheniformis perr and Bacillus subtilis perr is due to the different cellular environments. Biochem. Biophys. Res. Commun. 2017, 484, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Wang, G.; Nong, J.; Xie, Q. Biodegradation of benzo(a)pyrene by a genetically engineered Bacillus licheniformis: Degradation, metabolic pathway and toxicity analysis. Chem. Eng. J. 2023, 478, 147478. [Google Scholar] [CrossRef]
- Enyedi, N.T.; Makk, J.; Kótai, L.; Berényi, B.; Klébert, S.; Sebestyén, Z.; Molnár, Z.; Borsodi, A.K.; Leél-Qssy, S.; Demény, A.; et al. Cave bacteria-induced amorphous calcium carbonate formation. Sci. Rep. 2020, 10, 8696. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Navarro, C.; Kudłacz, K.; Cizer, Ö.; Ruiz-Agudo, E. Formation of amorphous calcium carbonate and its transformation into mesostructured calcite. CrystEngComm 2015, 17, 58–72. [Google Scholar] [CrossRef]
- Martignier, A.; Pacton, M.; Filella, M.; Jaquet, J.M.; Barja, F.; Pollok, K.; Langenhorst, F.; Lavigne, S.; Guagliardo, P.; Kilburn, M.R. Intracellular amorphous carbonates uncover a new biomineralization process in eukaryotes. Geobiology 2017, 15, 240–253. [Google Scholar] [CrossRef]
- Li, H.; Yao, Q.; Wang, F.; Huang, Y.; Fu, S.; Zhou, G. Insights into the formation mechanism of vaterite mediated by a deep-sea bacterium Shewanella piezotolerans wp3. Geochim. Cosmochim. Acta 2019, 256, 35–48. [Google Scholar] [CrossRef]
- Wu, Z.; Zhong, H.; Yuan, X.; Wang, H.; Wang, L.; Chen, X.; Zeng, G.; Wu, Y. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater. Water Res. 2014, 67, 330–344. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Jimenez-Lopez, C.; Rodriguez-Navarro, A.; Gonzalez-Munoz, M.T.; Rodriguez-Gallego, M. Bacterially mediated mineralization of vaterite. Geochim. Cosmochim. Acta 2007, 71, 1197–1213. [Google Scholar] [CrossRef]
- Lyu, J.; Li, F.; Zhang, C.; Gower, L.; Wasman, S.; Sun, J.; Yang, G.; Chen, J.; Gu, L.; Tang, X.; et al. From the inside out: Elemental compositions and mineral phases provide insights into bacterial calcification. Chem. Geol. 2021, 559, 119974. [Google Scholar] [CrossRef]
- Wu, Q.; Siddique, M.S.; Wu, M.; Wang, H.; Zhang, Y.; Yang, R.; Cui, L.; Ma, W.; Yan, J.; Yang, Y. Synergistically enhancing the selective adsorption of cationic dyes through copper impregnation and amino functionality into iron-based metal-organic frameworks. Sci. Total Environ. 2024, 923, 171280. [Google Scholar] [CrossRef]
- Shukla, A.; Zhang, Y.H.; Dubey, P.; Margrave, J.L.; Shukla, S.S. The role of sawdust in the removal of unwanted materials from water. J. Hazard. Mater. 2002, 95, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Aroguz, A.Z.; Gulen, J.; Evers, R.H. Adsorption of methylene blue from aqueous solution on pyrolyzed petrified sediment. Bioresour. Technol. 2008, 99, 1503–1508. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Luo, X.; Crittenden, J.; Qu, J.; Bai, Y.; Peng, Y.; Li, J. Removal of antimonite (sb(iii)) and antimonate (sb(v)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2). Environ. Sci. Technol. 2015, 49, 11115–11124. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Rahmanian, O.; Fazlzadeh, M.; Heidari, M. Enhancement of methylene blue adsorption onto activated carbon prepared from date press cake by low frequency ultrasound. J. Mol. Liq. 2018, 264, 591–599. [Google Scholar] [CrossRef]
- Heidarizad, M.; Şengör, S.S. Synthesis of graphene oxide/magnesium oxide nanocomposites with high-rate adsorption of methylene blue. J. Mol. Liq. 2016, 224, 607–617. [Google Scholar] [CrossRef]
- Unuabonah, E.I.; Adie, G.U.; Onah, L.O.; Adeyemi, O.G. Multistage optimization of the adsorption of methylene blue dye onto defatted carica papaya seeds. Chem. Eng. J. 2009, 155, 567–579. [Google Scholar] [CrossRef]
- He, C.; Lin, H.; Dai, L.; Qiu, R.; Tang, Y.; Wang, Y.; Duan, P.; Ok, Y.S. Waste shrimp shell-derived hydrochar as an emergent material for methyl orange removal in aqueous solutions. Environ. Int. 2020, 134, 105340. [Google Scholar] [CrossRef]
- Jain, M.; Khan, S.A.; Sahoo, A.; Dubey, P.; Pant, K.K.; Ziora, Z.M.; Blaskovich, M.A.T. Statistical evaluation of cow-dung derived activated biochar for phenol adsorption: Adsorption isotherms, kinetics, and thermodynamic studies. Bioresour. Technol. 2022, 352, 127030. [Google Scholar] [CrossRef]
- Mani, D.; Elango, D.; Priyadharsan, A.; Al-Humaid, L.A.; Al-Dahmash, N.D.; Ragupathy, S.; Jayanthi, P.; Ahn, Y. Groundnut shell chemically treated with koh to prepare inexpensive activated carbon: Methylene blue adsorption and equilibrium isotherm studies. Environ. Res. 2023, 231, 116026. [Google Scholar] [CrossRef]
- Egbosiuba, T.C.; Abdulkareem, A.S.; Kovo, A.S.; Afolabi, E.A.; Tijani, J.O.; Auta, M.; Roos, W.D. Ultrasonic enhanced adsorption of methylene blue onto the optimized surface area of activated carbon: Adsorption isotherm, kinetics and thermodynamics. Chem. Eng. Res. Des. 2020, 153, 315–336. [Google Scholar] [CrossRef]
- Miyah, Y.; Lahrichi, A.; Idrissi, M.; Khalil, A.; Zerrouq, F. Adsorption of methylene blue dye from aqueous solutions onto walnut shells powder: Equilibrium and kinetic studies. Surf. Interfaces 2018, 11, 74–81. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Huo, J.; Zhang, X.; Wen, H.; Zhang, D.; Zhao, Y.; Kang, D.; Guo, W.; Ngo, H.H. Adsorption recovery of phosphorus in contaminated water by calcium modified biochar derived from spent coffee grounds. Sci. Total Environ. 2024, 909, 168426. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhu, W.; Zhang, C.; Zhang, S.; Liu, L.; Zhu, L.; Zhao, W. Effect of a magnetic field on the adsorptive removal of methylene blue onto wheat straw biochar. Bioresour. Technol. 2016, 206, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Li, X.; Sun, B.; Li, Y.; Li, Y.; Yang, R.; Wang, C. Branched polyethylenimine grafted electrospun polyacrylonitrile fiber membrane: A novel and effective adsorbent for cr(vi) remediation in wastewater. J. Mater. Chem. A 2017, 5, 1133–1144. [Google Scholar] [CrossRef]
- Yu, Z.; Wu, Z.; Sheng, R.; Liu, C.; Chen, H.; Zhang, J.; Qiu, Z. Ultra-high adsorption of cr from aqueous solution using ldhs decorated magnetic hydrochar: Selectivity and anti-interference exploration. Sep. Purif. Technol. 2023, 313, 123438. [Google Scholar] [CrossRef]
- Su, X.; Wang, X.; Ge, Z.; Bao, Z.; Lin, L.; Chen, Y.; Dai, W.; Sun, Y.; Yuan, H.; Yang, W.; et al. Koh-activated biochar and chitosan composites for efficient adsorption of industrial dye pollutants. Chem. Eng. J. 2024, 486, 150387. [Google Scholar] [CrossRef]
- Chen, X.; Yang, M.; Zheng, S.; Temprano-Coleto, F.; Dong, Q.; Cheng, G.; Yao, N.; Stone, H.A.; Hu, L.; Ren, Z.J. Spatially separated crystallization for selective lithium extraction from saline water. Nat. Water 2023, 1, 808–817. [Google Scholar] [CrossRef]
- Li, D.; Sun, L.; Yang, L.; Liu, J.; Shi, L.; Zhuo, L.; Ye, T.; Wang, S. Adsorption behavior and mechanism of modified pinus massoniana pollen microcarriers for extremely efficient and rapid adsorption of cationic methylene blue dye. J. Hazard. Mater. 2024, 465, 133308. [Google Scholar] [CrossRef]
- Liu, R.; Lian, B. Immobilisation of cd(ii) on biogenic and abiotic calcium carbonate. J. Hazard. Mater. 2019, 378, 120707. [Google Scholar] [CrossRef]
- Espinosa, H.D.; Rim, J.E.; Barthelat, F.; Buehler, M.J. Merger of structure and material in nacre and bone—Perspectives on de novo biomimetic materials. Prog. Mater. Sci. 2009, 54, 1059–1100. [Google Scholar] [CrossRef]
- Wendler, J.E.; Bown, P. Exceptionally well-preserved cretaceous microfossils reveal new biomineralization styles. Nat. Commun. 2013, 4, 2052. [Google Scholar] [CrossRef] [PubMed]
- Vecht, A.; Ireland, T.G. The role of vaterite and aragonite in the formation of pseudo-biogenic carbonate structures: Implications for martian exobiology. Geochim. Cosmochim. Acta 2000, 64, 2719–2725. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhang, J.; Fu, H.; Yin, L.; Song, Y.; He, G. A comparative study of methylene blue adsorption and removal mechanisms by calcium carbonate from different sources. Bioresour. Technol. 2023, 387, 129603. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.; Li, W.; Chen, D.; Cui, T.; Xiang, T.; Zhang, Y.; Wang, H.; Xu, R. Co-removal of mercury and organic dye via the rectangle-shaped nanosheets loaded hydrochar: Surface interactions and dft calculations. Sep. Purif. Technol. 2025, 353, 128553. [Google Scholar] [CrossRef]
- Diao, Z.; Zhang, L.; Li, Q.; Gao, X.; Gao, X.; Seliem, M.K.; Dhaoudi, F.; Sellaoui, L.; Deng, S.; Bonilla-Petriciolet, A.; et al. Adsorption of food dyes from aqueous solution on a sweet potato residue-derived carbonaceous adsorbent: Analytical interpretation of adsorption mechanisms via adsorbent characterization and statistical physics modeling. Chem. Eng. J. 2024, 482, 148982. [Google Scholar] [CrossRef]
- Wang, X.; Yang, L.; Zhang, J.; Wang, C.; Li, Q. Preparation and characterization of chitosan-poly(vinyl alcohol)/bentonite nanocomposites for adsorption of hg(ii) ions. Chem. Eng. J. 2014, 251, 404–412. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, J.; Xu, S.; Shao, M.; Zhang, Q.; Wei, F.; Ma, J.; Wei, M.; Evans, D.G.; Xue, D. Hierarchical nimn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Adv. Funct. Mater. 2014, 24, 2938–2946. [Google Scholar] [CrossRef]
- Liu, R.; Shi, Y.; Wan, Y.; Meng, Y.; Zhang, F.; Gu, D.; Chen, Z.; Tu, B.; Zhao, D. Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas. J. Am. Chem. Soc. 2006, 128, 11652–11662. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, L.; Liang, G.; Gu, A. Mechanically durable and self-healing super-hydrophobic coating with hierarchically structured kh570 modified sio2-decorated aligned carbon nanotube bundles. Chem. Eng. J. 2021, 408, 127263. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, X.; Chen, B. Nanoscale profiling of 2d surface hydrophobicity recognition of environmental media via afm measurements in situ. Environ. Sci. Technol. 2020, 54, 9315–9324. [Google Scholar] [CrossRef]
- Ofili, N.E.R.; Thetford, A.; Kaltsoyannis, N. Adsorption of u(vi) on stoichiometric and oxidised mackinawite: A dft study. Environ. Sci. Technol. 2020, 54, 6792–6799. [Google Scholar] [CrossRef] [PubMed]
- Meng, R.; Deng, Q.; Peng, C.; Chen, B.; Liao, K.; Li, L.; Yang, Z.; Yang, D.; Zheng, L.; Zhang, C.; et al. Two-dimensional organic-inorganic heterostructures of in situ-grown layered cof on ti3c2 mxene nanosheets for lithium-sulfur batteries. Nano Today 2020, 35, 100991. [Google Scholar] [CrossRef]
- Zong, M.; Song, D.; Zhang, X.; Huang, X.; Lu, X.; Rosso, K.M. Facet-dependent photodegradation of methylene blue by hematite nanoplates in visible light. Environ. Sci. Technol. 2021, 55, 677–688. [Google Scholar] [CrossRef]
- Ullah, F.; Ji, G.; Irfan, M.; Gao, Y.; Shafiq, F.; Sun, Y.; Ain, Q.U.; Li, A. Adsorption performance and mechanism of cationic and anionic dyes by koh activated biochar derived from medical waste pyrolysis. Environ. Pollut. 2022, 314, 120271. [Google Scholar] [CrossRef]
- Minisy, I.M.; Salahuddin, N.A.; Ayad, M.M. Adsorption of methylene blue onto chitosan–montmorillonite/polyaniline nanocomposite. Appl. Clay Sci. 2021, 203, 105993. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, Y.; Feng, X.; Yan, F.; Li, Q.; Cui, Q.; Li, B. Fabrication of cationic cellulose nanofibrils/sodium alginate beads for congo red removal. iScience 2023, 26, 107783. [Google Scholar] [CrossRef]
- Dutta, S.; Srivastava, S.K.; Gupta, B.; Gupta, A.K. Hollow polyaniline microsphere/mno2/fe3o4 nanocomposites in adsorptive removal of toxic dyes from contaminated water. ACS Appl. Mater. Interfaces 2021, 13, 54324–54338. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.; Hosseini-Bandegharaei, A.; Chao, H. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef]
- Boukarma, L.; Aziam, R.; Aboussabek, A.; El Qdhy, S.; Zerbet, M.; Sinan, F.; Chiban, M. Novel insights into crystal violet dye adsorption onto various macroalgae: Comparative study, recyclability and overview of chromium (vi) removal. Bioresour. Technol. 2024, 394, 130197. [Google Scholar] [CrossRef]
- Wang, D.; Song, J.; Wen, J.; Yuan, Y.; Liu, Z.; Lin, S.; Wang, H.; Wang, H.; Zhao, S.; Zhao, X.; et al. Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent. Adv. Energy Mater. 2018, 8, 1802607. [Google Scholar] [CrossRef]
- Hafner, J. Ab-initio simulations of materials using vasp: Density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044–2078. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Burke, K.; Ernzerhof, M.; Perdew, J.P. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar]
- Grimme, S. Semiempirical gga-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Hensley, A.J.R.; Wang, Y.; Mcewen, J. Adsorption of guaiacol on fe (110) and pd (111) from first principles. Surf. Sci. 2016, 648, 227–235. [Google Scholar] [CrossRef]
- Li, S.; Huang, L.; Zhang, H.; Huang, Z.; Jia, Q.; Zhang, S. Adsorption mechanism of methylene blue on oxygen-containing functional groups modified graphitic carbon spheres: Experiment and dft study. Appl. Surf. Sci. 2021, 540, 148386. [Google Scholar] [CrossRef]
- Mouni, L.; Belkhiri, L.; Bollinger, J.; Bouzaza, A.; Assadi, A.; Tirri, A.; Dahmoune, F.; Madani, K.; Remini, H. Removal of methylene blue from aqueous solutions by adsorption on kaolin: Kinetic and equilibrium studies. Appl. Clay Sci. 2018, 153, 38–45. [Google Scholar] [CrossRef]
- Bilgi, C. Investigation of the factors affecting organic cation adsorption on some silicate minerals. J. Colloid Interface Sci. 2005, 281, 33–38. [Google Scholar] [CrossRef]
- Gürses, A.; Karaca, S.; Doğar, Ç.; Bayrak, R.; Açıkyıldız, M.; Yalçın, M. Determination of adsorptive properties of clay/water system: Methylene blue sorption. J. Colloid. Interface. Sci. 2004, 269, 310–314. [Google Scholar] [CrossRef]
- Su, H.; Guo, X.; Zhang, X.; Zhang, Q.; Huang, D.; Lin, L.; Qiang, X. Ultrafine biosorbent from waste oyster shell: A comparative study of congo red and methylene blue adsorption. Bioresour. Technol. Rep. 2022, 19, 101124. [Google Scholar] [CrossRef]
- Albadarin, A.B.; Collins, M.N.; Mu, N.; Shirazian, S.; Mangwandi, C. Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem. Eng. J. 2017, 307, 264–272. [Google Scholar] [CrossRef]
- Han, R.; Wang, Y.; Han, P.; Shi, J.; Yang, J.; Lu, Y. Removal of methylene blue from aqueous solution by chaff in batch mode. J. Hazard. Mater. 2006, 137, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Lonappan, L.; Rouissi, T.; Das, R.K.; Brar, S.K.; Ramirez, A.A.; Verma, M.; Surampalli, R.Y.; Valero, J.R. Adsorption of methylene blue on biochar microparticles derived from different waste materials. Waste Manag. 2016, 49, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Tao, X.; Yang, Z.; Li, K.; Yang, H.; Li, A.; Cheng, R. Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue. J. Hazard. Mater. 2014, 268, 191–198. [Google Scholar] [CrossRef]
- Peydayesh, M.; Rahbar-Kelishami, A. Adsorption of methylene blue onto platanus orientalis leaf powder: Kinetic, equilibrium and thermodynamic studies. J. Ind. Eng. Chem. 2015, 21, 1014–1019. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, F.; Chen, M.; Xu, Z.; Zhu, Z. Adsorption behavior of methylene blue on carbon nanotubes. Bioresour. Technol. 2010, 101, 3040–3046. [Google Scholar] [CrossRef]
- Othman, N.H.; Alias, N.H.; Shahruddin, M.Z.; Abu Bakar, N.F.; Nik Him, N.R.; Lau, W.J. Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide. J. Environ. Chem. Eng. 2018, 6, 2803–2811. [Google Scholar] [CrossRef]
- Özer, D.; Dursun, G.; Özer, A. Methylene blue adsorption from aqueous solution by dehydrated peanut hull. J. Hazard. Mater. 2007, 144, 171–179. [Google Scholar] [CrossRef]
- Gupta, N.; Kushwaha, A.K.; Chattopadhyaya, M.C. Application of potato (solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arab. J. Chem. 2016, 9, S707–S716. [Google Scholar] [CrossRef]
- Zhao, C.; Luan, J.; Zhai, Q.; Liu, W.; Ge, H.; Ke, X.; Yan, Z. Releasing sio tetrahedron and alo octahedron from montmorillonite to enhance the adsorption performance of carbon@chitosan@montmorillonite nanosheet for cationic dyes: Coupling quantum chemistry simulations with experiments. Sci. Total Environ. 2022, 851, 158174. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Wang, T.; Zhai, L.; Wu, W.; Dong, S.; Gao, S.; Mao, L. Adsorption behavior and mechanism of fe-mn binary oxide nanoparticles: Adsorption of methylene blue. J. Colloid. Interface. Sci. 2019, 539, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Luo, L.; Cui, J.; Zhang, H.; Guo, Y.; Li, L.; Cheng, F. Impact of inherent calcium in coal on the structure and performance of activated carbon in flue gas activation: The enhanced mechanism of calcite on the methylene blue adsorption. J. Clean. Prod. 2023, 428, 139374. [Google Scholar] [CrossRef]
- Rida, K.; Bouraoui, S.; Hadnine, S. Adsorption of methylene blue from aqueous solution by kaolin and zeolite. Appl. Clay Sci. 2013, 83–84, 99–105. [Google Scholar] [CrossRef]
- Vasiraja, N.; Saravana Sathiya Prabhahar, R.; Joshua, A. Preparation and physio–chemical characterisation of activated carbon derived from prosopis juliflora stem for the removal of methylene blue dye and heavy metal containing textile industry effluent. J. Clean. Prod. 2023, 397, 136579. [Google Scholar] [CrossRef]
- Yao, X.; Ji, L.; Guo, J.; Ge, S.; Lu, W.; Cai, L.; Wang, Y.; Song, W.; Zhang, H. Magnetic activated biochar nanocomposites derived from wakame and its application in methylene blue adsorption. Bioresour. Technol. 2020, 302, 122842. [Google Scholar] [CrossRef]
T (°C) | Langmuir | Freundlich | ||||||
---|---|---|---|---|---|---|---|---|
Qm (mg/g) | KL (L/mg) | R2 | ARE | 1/n | KF (mg1−(1/n) · L1/n/g) | R2 | ARE | |
10 | 544.87 | 0.006 | 0.9921 | 0.9914 | 0.35 | 34.168 | 0.8939 | 0.8842 |
25 | 494.86 | 0.005 | 0.9885 | 0.9875 | 0.36 | 28.367 | 0.8925 | 0.8827 |
40 | 470.86 | 0.003 | 0.9896 | 0.9887 | 0.40 | 18.513 | 0.9120 | 0.9040 |
55 | 414.55 | 0.003 | 0.9938 | 0.9933 | 0.42 | 13.884 | 0.9272 | 0.9206 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Ji, W.; Min, J.; Wen, P.; Li, Y.; Hu, J.; Yin, L.; He, G. Efficient Removal of Cationic Dye by Biomimetic Amorphous Calcium Carbonate: Behavior and Mechanisms. Molecules 2024, 29, 5426. https://doi.org/10.3390/molecules29225426
Liu R, Ji W, Min J, Wen P, Li Y, Hu J, Yin L, He G. Efficient Removal of Cationic Dye by Biomimetic Amorphous Calcium Carbonate: Behavior and Mechanisms. Molecules. 2024; 29(22):5426. https://doi.org/10.3390/molecules29225426
Chicago/Turabian StyleLiu, Renlu, Weizhen Ji, Jie Min, Pengjun Wen, Yan Li, Jialu Hu, Li Yin, and Genhe He. 2024. "Efficient Removal of Cationic Dye by Biomimetic Amorphous Calcium Carbonate: Behavior and Mechanisms" Molecules 29, no. 22: 5426. https://doi.org/10.3390/molecules29225426
APA StyleLiu, R., Ji, W., Min, J., Wen, P., Li, Y., Hu, J., Yin, L., & He, G. (2024). Efficient Removal of Cationic Dye by Biomimetic Amorphous Calcium Carbonate: Behavior and Mechanisms. Molecules, 29(22), 5426. https://doi.org/10.3390/molecules29225426