First-Principles Study of 3R-MoS2 for High-Capacity and Stable Aluminum Ion Batteries Cathode Material
Abstract
:1. Introduction
2. Results and Discussions
2.1. Single Al3+ Inserted in 3R-MoS2
2.2. More Al3+ Inserted in 3R-MoS2
2.3. Staging Mechanism
2.4. Binding Energy
2.5. Electronic Properties
2.6. Diffusion of Al3+ in 3R-MoS2
2.7. Electrochemical Properties of Al3+ Intercalated 3R-MoS2
3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, J.; Cai, X.; Cai, S.; Shao, Y.; Hu, C.; Lu, S.; Ding, S. High-Energy Lithium-Ion Batteries: Recent Progress and a Promising Future in Applications. Energy Environ. Mater. 2023, 6, e12450. [Google Scholar] [CrossRef]
- Chang, X.; Zhao, Y.-M.; Yuan, B.; Fan, M.; Meng, Q.; Guo, Y.-G.; Wan, L.-J. Solid-state lithium-ion batteries for grid energy storage: Opportunities and challenges. Sci. China-Chem. 2023, 67, 43–66. [Google Scholar] [CrossRef]
- Xie, J.; Lu, Y.-C. A retrospective on lithium-ion batteries. Nat. Commun. 2020, 11, 2499. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; He, D.; Wang, B.; Wu, T.; Zhao, S.; Li, X.; He, S.; Liang, Y.; Zhou, Y.; Sun, S.; et al. A Low-Voltage Layered Na2TiGeO5 Anode for Lithium-Ion Battery. Small 2022, 18, 2107608. [Google Scholar] [CrossRef] [PubMed]
- Langdon, J.; Manthiram, A. A perspective on single-crystal layered oxide cathodes for lithium-ion batteries. Energy Storage Mater. 2021, 37, 143–160. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Zhang, R.; Lei, T.; Kisslinger, K.; Xin, H.L. Resolving complex intralayer transition motifs in high-Ni-content layered cathode materials for lithium-ion batteries. Nat. Mater. 2023, 22, 235–241. [Google Scholar] [CrossRef]
- Cui, Z.; Xie, Q.; Manthiram, A. A Cobalt- and Manganese-Free High-Nickel Layered Oxide Cathode for Long-Life, Safer Lithium-Ion Batteries. Adv. Energy Mater. 2021, 11, 2102421. [Google Scholar] [CrossRef]
- Hudak, N.S. Chloroaluminate-Doped Conducting Polymers as Positive Electrodes in Rechargeable Aluminum Batteries. J. Phys. Chem. C 2014, 118, 5203–5215. [Google Scholar] [CrossRef]
- Xu, X.; Hui, K.S.; Hui, K.N.; Shen, J.; Zhou, G.; Liu, J.; Sun, Y. Engineering strategies for low-cost and high-power density aluminum-ion batteries. Chem. Eng. J. 2021, 418, 129385. [Google Scholar] [CrossRef]
- Jia, B.; Thang, A.Q.; Yan, C.; Liu, C.; Lv, C.; Zhu, Q.; Xu, J.; Chen, J.; Pan, H.; Yan, Q. Rechargeable Aqueous Aluminum-Ion Battery: Progress and Outlook. Small 2022, 18, 2107773. [Google Scholar] [CrossRef]
- Lin, M.-C.; Gong, M.; Lu, B.; Wu, Y.; Wang, D.-Y.; Guan, M.; Angell, M.; Chen, C.; Yang, J.; Hwang, B.-J.; et al. An ultrafast rechargeable aluminium-ion battery. Nature 2015, 520, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, S.; Ji, Y.; Ma, J.; Yu, H. Emerging Nonaqueous Aluminum-Ion Batteries: Challenges, Status, and Perspectives. Adv. Mater. 2018, 30, 1706310. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, H.; Li, J.; Sun, Z.; He, K.; Cheng, H.; Li, F. The Rechargeable Aluminum Battery: Opportunities and Challenges. Angew. Chem. Int. Ed. 2019, 58, 11978–11996. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakash, N.; Das, S.K.; Archer, L.A. The rechargeable aluminum-ion battery. Chem. Commun. 2011, 47, 12610–12612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Luo, W.; Liu, Y.; Li, J.; Lu, S.; Chao, Z.; Fan, J. Cubic-like SnO2/ZnS Hollow Heterojunction Encapsulated in Carbon Nanoshell as Cathode for Advanced Aluminum Batteries. Energy Fuels 2024, 38, 1515–1524. [Google Scholar] [CrossRef]
- Ou, J.; Luo, W.; Li, J.; Yu, Y.; Zhang, Z.; Chao, Z.; Yi, W.; Fan, J. Sandwich-like CuS@GO as a Cathode for Advanced Aluminum Batteries. Energy Fuels 2024, 38, 6438–6445. [Google Scholar] [CrossRef]
- Li, Z.; Niu, B.; Liu, J.; Li, J.; Kang, F. Rechargeable Aluminum-Ion Battery Based on MoS2 Microsphere Cathode. ACS Appl. Mater. Interfaces 2018, 10, 9451–9459. [Google Scholar] [CrossRef]
- Tu, J.; Xiao, X.; Wang, M.; Jiao, S. Hierarchical Flower-Like MoS2 Microspheres and Their Efficient Al Storage Properties. J. Phys. Chem. C 2019, 123, 26794–26802. [Google Scholar] [CrossRef]
- Tan, D.; Willatzen, M.; Wang, Z.L. Prediction of strong piezoelectricity in 3R-MoS2 multilayer structures. Nano Energy 2019, 56, 512. [Google Scholar] [CrossRef]
- Suzuki, R.; Sakano, M.; Zhang, Y.J.; Akashi, R.; Morikawa, D.; Harasawa, A.; Yaji, K.; Kuroda, K.; Miyamoto, K.; Okuda, T.; et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotechnol. 2014, 9, 611. [Google Scholar] [CrossRef]
- Wang, B.; Deng, T.; Liu, J.; Sun, B.; Su, Y.; Ti, R.; Shangguan, L.; Zhang, C.; Tang, Y.; Cheng, N.; et al. Scaly MoS2/rGO Composite as an Anode Material for High-Performance Potassium-Ion Battery. Molecules 2024, 29, 2977. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.A.; Yoffe, A. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193. [Google Scholar] [CrossRef]
- Kang, R.; Du, Y.; Zhang, D.; Sun, C.; Zhou, W.; Wang, H.; Chen, G.; Zhang, J. Modification of 2D materials using MoS2 as a model for investigating the Al-storage properties of diverse crystal facets. J. Mater. Chem. A 2023, 11, 15509–15517. [Google Scholar] [CrossRef]
- Bhauriyal, P.; Mahata, A.; Pathak, B. The staging mechanism of AlCl4 intercalation in a graphite electrode for an aluminium-ion battery. Phys. Chem. Chem. Phys. 2017, 19, 7980–7989. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Afrinish Fatima, S. A DFT study of TiC3 as anode material for Li-ion batteries. Appl. Surf. Sci. 2023, 638, 158024. [Google Scholar] [CrossRef]
- Zhao, Z.; Yu, T.; Zhang, S.; Xu, H.; Yang, G.; Liu, Y. Metallic P3C monolayer as anode for sodium-ion batteries. J. Mater. Chem. A 2018, 7, 405–411. [Google Scholar] [CrossRef]
- Raju, V.; Kumar, V.N.Y.; Jetti, V.R.; Basak, P. MoS2/Polythiophene Composite Cathode as a Potential Host for Rechargeable Aluminum Batteries: Deciphering the Impact of Processing on the Performance. ACS Appl. Energy Mater. 2021, 4, 9227–9239. [Google Scholar] [CrossRef]
- Tan, B.; Lu, T.; Luo, W.; Chao, Z.; Dong, R.; Fan, J. A Novel MoS2-MXene Composite Cathode for Aluminum-Ion Batteries. Energy Fuels 2021, 35, 12666–12670. [Google Scholar] [CrossRef]
- Wu, Y.; Ren, C.; Wei, Q. Novel ternary compound transition metal dichalcogenide TiNbS4 as promising anodes materials for Li-ion batteries: A DFT study. Appl. Surf. Sci. 2023, 615, 156322. [Google Scholar] [CrossRef]
- Guo, S.; Yang, H.; Liu, M.; Feng, X.; Xu, H.; Bai, Y.; Wu, C. Interlayer-Expanded MoS2/N-Doped Carbon with Three-Dimensional Hierarchical Architecture as a Cathode Material for High-Performance Aluminum-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 7064–7072. [Google Scholar] [CrossRef]
- Tan, B.; Han, S.; Luo, W.; Chao, Z.; Fan, J.; Wang, M. Synthesis of RGO-supported layered MoS2 with enhanced electrochemical performance for aluminum ion batteries. J. Alloys Compd. 2020, 841, 155732. [Google Scholar] [CrossRef]
- Zhao, S.; Li, J.; Chen, H.; Zhang, J. Synthesis of Bi2S3/MoS2 Nanorods and Their Enhanced Electrochemical Performance for Aluminum Ion Batteries. J. Electrochem. Energy Convers. Storage 2020, 17, 031010. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Milman, V.; Winkler, B.; White, J.A.; Pickard, C.J.; Payne, M.C.; Akhmatskaya, E.V.; Nobes, R.H. Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study. Int. J. Quantum Chem. 2000, 77, 895–910. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Jellinek, F.; Brauer, G.; Müller, H. Molybdenum and Niobium Sulphides. Nature 1960, 185, 376–377. [Google Scholar] [CrossRef]
- Schönfeld, B.; Huang, J.J.; Moss, S.C. Anisotropic mean-square displacements (MSD) in single-crystals of 2H- and 3R-MoS2. Acta Crystallogr. B 1983, 39, 404–407. [Google Scholar] [CrossRef]
- Coutinho, S.S.; Tavares, M.S.; Barboza, C.A.; Frazao, N.F.; Moreira, E.; Azevedo, D.L. 3R and 2H polytypes of MoS2: DFT and DFPT calculations of structural, optoelectronic, vibrational and thermodynamic properties. J. Phys. Chem. Solids 2017, 111, 25–33. [Google Scholar] [CrossRef]
Stages | No. of Al | OCV (V) | BE (eV) | Ind1 (Å) | Ind2 (Å) | Ind3 (Å) |
---|---|---|---|---|---|---|
Stage-1 | 3 | 0.96 | −2.87 | 3.16 | 3.19 | 3.16 |
6 | 0.94 | −2.85 | 3.13 | 3.19 | 3.31 | |
9 | 0.94 | −2.83 | 2.42 | 2.51 | 3.26 | |
12 | 0.77 | −2.71 | 3.23 | 2.86 | 3.15 | |
Stage-2 | 2 | 0.94 | −2.83 | 3.15 | 2.78 | 3.22 |
4 | 0.86 | −2.69 | 3.33 | 2.79 | 3.23 | |
6 | 0.86 | −2.65 | 3.19 | 2.78 | 3.05 | |
8 | 0.81 | −2.60 | 3.17 | 2.80 | 3.22 | |
Stage-3 | 1 | 0.92 | −2.76 | 2.78 | 3.21 | 2.78 |
2 | 0.82 | −2.61 | 2.79 | 3.15 | 2.75 | |
3 | 0.79 | −2.53 | 2.77 | 3.21 | 2.78 | |
4 | 0.75 | −2.46 | 2.81 | 3.18 | 2.77 |
Cathode | Theoretical Capacity | Initial Capacity (mA h g−1)/ Current Density (mA g−1) | Cyclic Capacity (mA h g−1)/ Cycle Number | Discharge Plateau (V) | Ref. |
---|---|---|---|---|---|
stage-1 | 502.30 | − | − | 0.77–0.96 | − |
stage-2 | 334.87 | − | − | 0.81–0.94 | − |
stage-3 | 167.43 | − | − | 0.75–0.92 | − |
2H-MoS2 | − | 253.6/20 | 66.7/100 | 0.5–0.9 | [17] |
2H-MoS2/N-doped carbon | − | − | 232/500 | 0.4 | [30] |
2H-MoS2-Maxene | − | 224/- | 166/60 | 0.3, 0.9 | [28] |
2H-MoS2/RGO | − | 278.1/1000 | 161.1/100 | − | [31] |
2H-MoS2 | − | 249.6/1000 | 80.9/100 | − | [31] |
Spongy MoS2 | − | 214.2/500 | 129.5/1000 | 0.5 | [23] |
Bi2S3/MoS2 | − | 274.3/375 | 132.9/100 | 0.8 | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Deng, T.; Zhou, Q.; Zhang, C.; Lu, X.; Tao, R. First-Principles Study of 3R-MoS2 for High-Capacity and Stable Aluminum Ion Batteries Cathode Material. Molecules 2024, 29, 5433. https://doi.org/10.3390/molecules29225433
Wang B, Deng T, Zhou Q, Zhang C, Lu X, Tao R. First-Principles Study of 3R-MoS2 for High-Capacity and Stable Aluminum Ion Batteries Cathode Material. Molecules. 2024; 29(22):5433. https://doi.org/10.3390/molecules29225433
Chicago/Turabian StyleWang, Bin, Tao Deng, Quan Zhou, Chaoyang Zhang, Xingbao Lu, and Renqian Tao. 2024. "First-Principles Study of 3R-MoS2 for High-Capacity and Stable Aluminum Ion Batteries Cathode Material" Molecules 29, no. 22: 5433. https://doi.org/10.3390/molecules29225433
APA StyleWang, B., Deng, T., Zhou, Q., Zhang, C., Lu, X., & Tao, R. (2024). First-Principles Study of 3R-MoS2 for High-Capacity and Stable Aluminum Ion Batteries Cathode Material. Molecules, 29(22), 5433. https://doi.org/10.3390/molecules29225433