FeNi-Based Aerogels Containing FeNi3 Nanoclusters Embedded with a Crystalline–Amorphous Heterojunction as High-Efficiency Oxygen Evolution Catalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of FeNi-Based Aerogels
2.3. Sample Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, L.; Dong, S.; Wang, E. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266–9291. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Lu, Q.; Tang, M.; Wu, J.; Zhang, K.; Li, W.; Hu, Y.; Xu, X.; Zhang, X.; Shao, Z.; et al. Catalyst–Support Interaction in Polyaniline-Supported Ni3Fe Oxide to Boost Oxygen Evolution Activities for Rechargeable Zn-Air Batteries. Nano-Micro Lett. 2024, 17, 6. [Google Scholar] [CrossRef] [PubMed]
- Martini, B.K.; Maia, G. Using a combination of Co, Mo, and Pt oxides along with graphene nanoribbon and MoSe2 as efficient catalysts for OER and HER. Electrochim. Acta 2021, 391, 138907. [Google Scholar] [CrossRef]
- Abdelghafar, F.; Xu, X.; Jiang, S.P.; Shao, Z. Perovskite for Electrocatalytic Oxygen Evolution at Elevated Temperatures. ChemSusChem 2024, 17, e202301534. [Google Scholar] [CrossRef]
- Kumar, K.R.; Maiyalagan, T. Iron nickel sulphide embedded on multi-walled carbon nanotubes as efficient electrocatalysts for oxygen evolution reaction in alkaline medium. Ceram. Int. 2023, 49, 1195–1202. [Google Scholar] [CrossRef]
- Jahan, M.; Liu, Z.; Loh, K.P. A Graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 2013, 23, 5363–5372. [Google Scholar] [CrossRef]
- Xue, Z.; Zhang, X.; Qin, J.; Liu, R. TMN4 complex embedded graphene as bifunctional electrocatalysts for high efficiency OER/ORR. J. Energy Chem. 2021, 55, 437–443. [Google Scholar] [CrossRef]
- Morales, D.M.; Kazakova, M.A.; Dieckhöfer, S.; Selyutin, A.G.; Golubtsov, G.V.; Schuhmann, W.; Masa, J. Trimetallic Mn-Fe-Ni oxide nanoparticles supported on multi-walled carbon nanotubes as high-performance bifunctional ORR/OER electrocatalyst in alkaline media. Adv. Funct. Mater. 2020, 30, 1905992. [Google Scholar] [CrossRef]
- Hui, B.; Chen, H.; Zhou, C.; Cai, L.; Zhang, K.; Quan, F.; Yang, D. Biochar aerogel-based electrocatalyst towards efficient oxygen evolution in acidic media. Biochar 2022, 4, 39. [Google Scholar] [CrossRef]
- Han, X.; Suo, N.; Chen, C.; Lin, Z.; Dou, Z.; He, X.; Cui, L. Graphene oxide guiding the constructing of nickel-iron layered double hydroxides arrays as a desirable bifunctional electrocatalyst for HER and OER. Int. J. Hydrogen Energy 2019, 44, 29876–29888. [Google Scholar] [CrossRef]
- Anantharaj, S.; Kundu, S.; Noda, S. “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514. [Google Scholar] [CrossRef]
- Li, C.; Lepre, E.; Bi, M.; Antonietti, M.; Zhu, J.; Fu, Y.; López-Salas, N. Oxygen-Rich Carbon Nitrides from an Eutectic Template Strategy Stabilize Ni, Fe Nanosites for Electrocatalytic Oxygen Evolution. Adv. Sci. 2023, 10, 2300526. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Huang, J.; Tang, J.; Zhang, S.; Deng, X. Preparation of FeNi-based nanoporous amorphous alloy films and their electrocatalytic oxygen evolution properties. Int. J. Hydrogen Energy 2023, 48, 19984–19994. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, X.; Han, M.; Xiang, X.; Guo, C.; Lin, Y.; Shi, N.; Xu, D.; Lai, Y.; Bao, J. Amorphous Ni-Fe-Mo Oxides Coupled with Crystalline Metallic Domains for Enhanced Electrocatalytic Oxygen Evolution by Promoted Lattice-Oxygen Participation. Small 2024, 20, 2303927. [Google Scholar] [CrossRef]
- Han, H.; Choi, H.; Mhin, S.; Hong, Y.-R.; Kim, K.M.; Kwon, J.; Ali, G.; Chung, K.Y.; Je, M.; Umh, H.N.; et al. Advantageous crystalline-amorphous phase boundary for enhanced electrochemical water oxidation. Energy Environ. Sci. 2019, 12, 2443–2454. [Google Scholar] [CrossRef]
- Guan, D.; Zhou, W.; Shao, Z. Rational design of superior electrocatalysts for water oxidation: Crystalline or amorphous structure? Small Sci. 2021, 1, 2100030. [Google Scholar] [CrossRef]
- Sun, H.; Xu, X.; Chen, G.; Shao, Z. Perovskite oxides as electrocatalysts for water electrolysis: From crystalline to amorphous. Carbon Energy 2024, e595. [Google Scholar] [CrossRef]
- Anantharaj, S.; Noda, S. Amorphous catalysts and electrochemical water splitting: An untold story of harmony. Small 2020, 16, 1905779. [Google Scholar] [CrossRef]
- Lin, J.; Wang, P.; Wang, H.; Li, C.; Si, X.; Qi, J.; Cao, J.; Zhong, Z.; Fei, W.; Feng, J. Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting. Adv. Sci. 2019, 6, 1900246. [Google Scholar] [CrossRef]
- Qiu, B.; Wang, C.; Zhang, N.; Cai, L.; Xiong, Y.; Chai, Y. CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation. ACS Catal. 2019, 9, 6484–6490. [Google Scholar] [CrossRef]
- Zhang, T.; Dai, M.; Lang, X.; Huang, J.; Li, Q.; Chen, Y.; Lin, H. Self-oxidized amorphous FeOx@ NiOy electrocatalyst with double-shell hollow nanoarchitecture for boosting oxygen evolution reaction. Ceram. Int. 2024, 50, 4415–4422. [Google Scholar] [CrossRef]
- Yan, S.; Zhong, M.; Wang, C.; Lu, X. Amorphous aerogel of trimetallic FeCoNi alloy for highly efficient oxygen evolution. Chem. Eng. J. 2022, 430, 132955. [Google Scholar] [CrossRef]
- Feng, X.; Xiao, Y.; Huang, H.; Wang, Q.; Wu, J.; Ke, Z.; Tong, Y.; Zhang, J. Phytic Acid-Based FeCo Bimetallic Metal-Organic Gels for Electrocatalytic Oxygen Evolution Reaction. Chem. Asian J. 2021, 16, 3213–3220. [Google Scholar] [CrossRef]
- Du, R.; Jin, W.; Hübner, R.; Zhou, L.; Hu, Y.; Eychmüller, A. Engineering multimetallic aerogels for pH-universal HER and ORR electrocatalysis. Adv. Energy Mater. 2020, 10, 1903857. [Google Scholar] [CrossRef]
- Huang, S.; Lu, J.; Wu, X.; Zhu, H.; Shen, X.; Cui, S.; Chen, X. Ru-promoted NiFe oxyhydroxide anchored on the hierarchical porous N-doped carbon aerogel: Electronic structures modulation for much enhanced OER/HER dual-functional characteristics. Appl. Catal. A Gen. 2023, 664, 119331. [Google Scholar] [CrossRef]
- Yan, S.; Liao, W.; Zhong, M.; Li, W.; Wang, C.; Pinna, N.; Chen, W.; Lu, X. Partially oxidized ruthenium aerogel as highly active bifunctional electrocatalyst for overall water splitting in both alkaline and acidic media. Appl. Catal. B Environ. Eng. 2022, 307, 121199. [Google Scholar] [CrossRef]
- Liu, L.; Huang, H.; Tai, J.; Wu, X.; Guo, Z.; Shen, X.; Cui, S.; Chen, X. The catalytic activity of reduced graphene aerogel anchored with CoFe2O4 spinel via self-assembly technique for enhanced oxygen evolution reaction. Carbon 2024, 219, 118847. [Google Scholar] [CrossRef]
- Lai, W.; Ge, L.; Li, H.; Deng, Y.; Xu, B.; Ouyang, B.; Kan, E. In situ Raman spectroscopic study towards the growth and excellent HER catalysis of Ni/Ni (OH)2 heterostructure. Int. J. Hydrogen Energy 2021, 46, 26861–26872. [Google Scholar] [CrossRef]
- De Faria, D.L.; Venâncio Silva, S.; de Oliveira, M.T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878. [Google Scholar] [CrossRef]
- Rudatis, P.; Hrubesch, J.; Kremshuber, S.; Apaydin, D.H.; Eder, D. Enhanced Oxygen Evolution Reaction Activity in Hematite Photoanodes: Effect of Sb-Li Co-Doping. ACS Omega 2023, 8, 2027–2033. [Google Scholar] [CrossRef]
- Glasscock, J.A.; Barnes, P.R.F.; Plumb, I.C.; Savvides, N. Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. C 2007, 111, 16477–16488. [Google Scholar] [CrossRef]
- Bersani, D.; Lottici, P.P.; Montenero, A. Montenero, Micro-Raman investigation of iron oxide films and powders produced by sol-gel syntheses. J. Raman Spectrosc. 1999, 30, 355–360. [Google Scholar] [CrossRef]
- Fernández, J.M.; Ulibarri, M.A.; Labajos, F.M.; Rives, V. The effect of iron on the crystalline phases formed upon thermal decomposition of Mg-Al-Fe hydrotalcites. J. Energy Chem. 1998, 8, 2507–2514. [Google Scholar] [CrossRef]
- Chen, L.; Sun, B.; Wang, X.; Qiao, F.; Ai, S. 2D ultrathin nanosheets of Co-Al layered double hydroxides prepared in lasparagine solution: Enhanced peroxidase-like activity and colorimetric detection of glucose. J. Mater. Chem. B 2013, 1, 2268–2274. [Google Scholar] [CrossRef]
- Zhai, Y.; Ren, X.; Sun, Y.; Li, D.; Wang, B.; Liu, S.F. Synergistic effect of multiple vacancies to induce lattice oxygen redox in NiFe-layered double hydroxide OER catalysts. Appl. Catal. B Environ. Eng. 2023, 323, 122091. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, Q.; Dong, L.; Bin Wu, H.; Yu, X.-Y. Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction. Appl. Catal. B Environ. Eng. 2020, 266, 118627. [Google Scholar] [CrossRef]
- Ye, Y.; Yang, C.; Chen, P.; Ma, C.; Chen, X.; Guo, K. Thorn-like nanostructured NiCo2S4 arrays anchoring graphite paper as self-supported electrodes for ultrahigh rate flexible supercapacitors. Electrochim. Acta 2021, 399, 139420. [Google Scholar] [CrossRef]
- Dubale, A.A.; Zheng, Y.; Wang, H.; Hübner, R.; Li, Y.; Yang, J.; Zhang, J.; Sethi, N.K.; He, L.; Zheng, Z.; et al. High-performance bismuth-doped nickel aerogel electrocatalyst for the methanol oxidation reaction. Angew. Chem. Int. Ed. 2020, 59, 13891–13899. [Google Scholar] [CrossRef]
- de Andrade Afonso, M.L.C.; Jaimes, R.F.V.V.; Nascente, P.A.P.; Rogero, S.O.; Agostinho, S.M.L. Surface characterization, electrochemical behaviour and cytotoxicity of UNS S31254 stainless steel for orthopaedic applications. Mater. Lett. 2015, 148, 71–75. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Z.; Wu, M.; Liu, R. FeCoNi ternary alloy embedded mesoporous carbon nanofiber: An efficient oxygen evolution catalyst for rechargeable zinc-air battery. Mater. Lett. 2019, 238, 138–142. [Google Scholar] [CrossRef]
- Chen, T.; Li, Z.; Chen, J.; Ge, W.; Liu, M.; Lu, Y. Hydrothermal synthesis and formation mechanism of Aurivillius Bi5Fe0.9Co0.1Ti3O15 nanosheets. CrystEngComm 2016, 18, 7449–7456. [Google Scholar] [CrossRef]
- Gao, X.; Chen, D.; Qi, J.; Li, F.; Song, Y.; Zhang, W.; Cao, R. NiFe Oxalate Nanomesh Array with Homogenous Doping of Fe for Electrocatalytic Water Oxidation. Small 2019, 15, 1904579. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.-Z.; Du, X.; Pang, Q.-Q.; Zhang, S.; Liu, Z.-Y.; Yue, X.-Z. In Situ construction of bifunctional N-doped carbon-anchored Co nanoparticles for OER and ORR. ACS Appl. Mater. Interfaces 2022, 14, 8549–8556. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, A.; Antony, R.P.; Zhao, J.; Lee, J.-M. MOF-derived nickel and cobalt metal nanoparticles in a N-doped coral shaped carbon matrix of coconut leaf sheath origin for high performance supercapacitors and OER catalysis. Electrochim. Acta 2018, 265, 336–347. [Google Scholar] [CrossRef]
- Gu, X.; Liu, Z.; Li, M.; Tian, J.; Feng, L. Surface structure regulation and evaluation of FeNi-based nanoparticles for oxygen evolution reaction. Appl. Catal. B Environ. 2021, 297, 120462. [Google Scholar] [CrossRef]
- Wu, W.; Gao, Z.; Li, Q.; Wang, Z.; Liu, S.; Wu, H.; Zhao, Y.; Jiao, Y.; Zhao, X. Structural transformation of metal-organic framework with constructed tetravalent nickel sites for efficient water oxidation. J. Energy Chem. 2022, 74, 404–411. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Chen, H.; Zhang, Z.; Zou, X. Design of a multilayered oxygen-evolution electrode with high catalytic activity and corrosion resistance for saline water splitting. Adv. Funct. Mater. 2021, 31, 2101820. [Google Scholar] [CrossRef]
- Jiang, B.; Wan, Z.; Kang, Y.; Guo, Y.; Henzie, J.; Na, J.; Li, H.; Wang, S.; Bando, Y.; Sakka, Y.; et al. Auto-programmed synthesis of metallic aerogels: Core-shell Cu@Fe@Ni aerogels for efficient oxygen evolution reaction. Nano Energy 2021, 81, 105644. [Google Scholar] [CrossRef]
- Zhong, H.; Gao, G.; Wang, X.; Wu, H.; Shen, S.; Zuo, W.; Cai, G.; Wei, G.; Shi, Y.; Fu, D.; et al. Ion irradiation inducing oxygen vacancy-rich NiO/NiFe2O4 heterostructure for enhanced electrocatalytic water splitting. Small 2021, 17, 2103501. [Google Scholar] [CrossRef]
- Zou, H.; Li, G.; Duan, L.; Kou, Z.; Wang, J. In situ coupled amorphous cobalt nitride with nitrogen-doped graphene aerogel as a trifunctional electrocatalyst towards Zn-air battery deriven full water splitting. Appl. Catal. B Environ. 2019, 259, 118100. [Google Scholar] [CrossRef]
- Tang, X.; Cao, R.; Li, L.; Huang, B.; Zhai, W.; Yuan, K.; Chen, Y. Engineering efficient bifunctional electrocatalysts for rechargeable zinc-air batteries by confining Fe-Co-Ni nanoalloys in nitrogen-doped carbon nanotube@ nanosheet frameworks. J. Mater. Chem. A 2020, 8, 25919–25930. [Google Scholar] [CrossRef]
- Ma, X.-X.; Dai, X.-H.; He, X.-Q. Co9S8-modified N, S, and P ternary-doped 3D graphene aerogels as a high-performance electrocatalyst for both the oxygen reduction reaction and oxygen evolution reaction. ACS Sustain. Chem. Eng. 2017, 5, 9848–9857. [Google Scholar] [CrossRef]
- Fu, G.; Yan, X.; Chen, Y.; Xu, L.; Sun, D.; Lee, J.; Tang, Y. Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO particles. Adv. Sci. 2018, 30, 1704609. [Google Scholar] [CrossRef]
- Fu, G.; Liu, Y.; Chen, Y.; Tang, Y.; Goodenough, J.B.; Lee, J.-M. Robust N-doped carbon aerogels strongly coupled with iron–cobalt particles as efficient bifunctional catalysts for rechargeable Zn-air batteries. Nanoscale 2018, 10, 19937–19944. [Google Scholar] [CrossRef]
- Sun, S.; Jin, X.; Cong, B.; Zhou, X.; Hong, W.; Chen, G. Construction of porous nanoscale NiO/NiCo2O4 heterostructure for highly enhanced electrocatalytic oxygen evolution activity. J. Catal. 2019, 379, 1–9. [Google Scholar] [CrossRef]
- Li, Y.; Alorku, K.; Shen, C.; Yan, L.; Li, Q.; Tian, X.; Li, W.; Xu, Y.; Wang, C.; Li, C.; et al. In-situ redispersion of Ni@C catalyst boosts 5-hydroxymethylfurfural electrooxidation by increasing Ni4+ sites. Appl. Catal. B Environ. Energy 2024, 357, 124250. [Google Scholar] [CrossRef]
- Zhu, K.; Shi, F.; Zhu, X.; Yang, W. The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction. Nano Energy 2020, 73, 104761. [Google Scholar] [CrossRef]
- Tao, H.B.; Fang, L.; Chen, J.; Bin Yang, H.; Gao, J.; Miao, J.; Chen, S.; Liu, B. Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction. J. Am. Chem. Soc. 2016, 138, 9978–9985. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Chen, J.; Song, Z.; Zhong, S.; Feng, W. FeNi-Based Aerogels Containing FeNi3 Nanoclusters Embedded with a Crystalline–Amorphous Heterojunction as High-Efficiency Oxygen Evolution Catalysts. Molecules 2024, 29, 5429. https://doi.org/10.3390/molecules29225429
Li T, Chen J, Song Z, Zhong S, Feng W. FeNi-Based Aerogels Containing FeNi3 Nanoclusters Embedded with a Crystalline–Amorphous Heterojunction as High-Efficiency Oxygen Evolution Catalysts. Molecules. 2024; 29(22):5429. https://doi.org/10.3390/molecules29225429
Chicago/Turabian StyleLi, Tao, Jiahui Chen, Zihao Song, Shujie Zhong, and Wei Feng. 2024. "FeNi-Based Aerogels Containing FeNi3 Nanoclusters Embedded with a Crystalline–Amorphous Heterojunction as High-Efficiency Oxygen Evolution Catalysts" Molecules 29, no. 22: 5429. https://doi.org/10.3390/molecules29225429
APA StyleLi, T., Chen, J., Song, Z., Zhong, S., & Feng, W. (2024). FeNi-Based Aerogels Containing FeNi3 Nanoclusters Embedded with a Crystalline–Amorphous Heterojunction as High-Efficiency Oxygen Evolution Catalysts. Molecules, 29(22), 5429. https://doi.org/10.3390/molecules29225429