Insecticidal and Repellent Activity of Piper crassinervium Essential Oil and Its Pure Compounds Against Imported Fire Ants (Hymenoptera: Formicidae)
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of EO
2.2. Digging Bioassay
2.3. Toxicity Bioassay
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Plant Material
4.3. Extraction of EO
4.4. GC-MS Analysis
4.5. General Experimental Procedures
4.6. Ants
4.7. Digging Bioassay
4.8. Toxicity Bioassay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lofgren, C.S.; Banks, W.A.; Glancey, B. Biology and control of imported fire ants. Annu. Rev. Entomol. 1975, 20, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Vinson, S.B. Impact of the invasion of the imported fire ant. Insect Sci. 2013, 20, 439–455. [Google Scholar] [CrossRef]
- Bockoven, A.A.; Wilder, S.M.; Eubanks, M.D. Intraspecific variation among social insect colonies: Persistent regional and colony-level differences in fire ant foraging behavior. PLoS ONE 2015, 10, e0133868. [Google Scholar] [CrossRef]
- Zhou, Y.; Lei, Y.; Lu, L.; He, Y. Temperature-and food-dependent foraging gene expression in foragers of the red imported fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae). Physiol. Entomol. 2020, 45, 1–6. [Google Scholar] [CrossRef]
- Langkilde, T. Invasive fire ants alter behavior and morphology of native lizards. Ecology 2009, 90, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.R.; Epperson, D.; Garmestani, A. Red imported fire ant impacts on wildlife: A decade of research. Am. Midl. Nat. 2004, 152, 88–103. [Google Scholar] [CrossRef]
- Jemal, A.; Hugh-Jones, M. A review of the red imported fire ant (Solenopsis invicta Buren) and its impacts on plant, animal, and human health. Prev. Vet. Med. 1993, 17, 19–32. [Google Scholar] [CrossRef]
- Chan, K.H.; Guénard, B. Ecological and socio-economic impacts of the red import fire ant, Solenopsis invicta (Hymenoptera: Formicidae), on urban agricultural ecosystems. Urban Ecosyst. 2020, 23, 1–12. [Google Scholar] [CrossRef]
- Tschinkel, W.R. The Fire Ants; Harvard University Press: Cambridge, MA, USA, 2006; p. 723. [Google Scholar]
- Wang, H.; Zhang, Q.; Liu, R.; Sun, Y.; Xiao, J.; Gao, L.; Gao, X.; Wang, H. Impacts of changing climate on the distribution of Solenopsis invicta Buren in Mainland China: Exposed urban population distribution and suitable habitat change. Ecol. Indic. 2022, 139, 108944. [Google Scholar] [CrossRef]
- Morrison, L.W.; Porter, S.D.; Daniels, E.; Korzukhin, M.D. Potential global range expansion of the invasive fire ant, Solenopsis invicta. Biol. Invasions 2004, 6, 183–191. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, F.; Tao, Q.; Li, J.; Xu, Y.; Li, Z.; Lu, Y. Toxicity and sublethal effect of triflumezopyrim against red imported fire ant (Hymenoptera: Formicidae). J. Econ. Entomol. 2020, 113, 1753–1760. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, H.; Goka, K. Acute toxicity of typical ant control agents to the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Appl. Entomol. Zool. 2021, 56, 217–224. [Google Scholar] [CrossRef]
- Wen, C.; Shen, L.; Chen, J.; Zhang, J.; Feng, Y.; Wang, Z.; Chen, X.; Cai, J.; Wang, L.; He, Y. Red imported fire ants cover the insecticide-treated surfaces with particles to reduce contact toxicity. J. Pest Sci. 2022, 95, 1135–1150. [Google Scholar] [CrossRef]
- Drees, B.M.; Calixto, A.A.; Nester, P.R. Integrated pest management concepts for red imported fire ants Solenopsis invicta (Hymenoptera: Formicidae). Insect Sci. 2013, 20, 429–438. [Google Scholar] [CrossRef]
- Siddiqui, J.A.; Zhang, Y.; Luo, Y.; Bamisile, B.S.; Rehman, N.U.; Islam, W.; Qasim, M.; Jiang, Q.; Xu, Y. Comprehensive detoxification mechanism assessment of red imported fire ant (Solenopsis invicta) against indoxacarb. Molecules 2022, 27, 870. [Google Scholar] [CrossRef]
- Zhang, B.-Z.; Kong, F.-C.; Wang, H.-T.; Gao, X.-W.; Zeng, X.-N.; Shi, X.-Y. Insecticide induction of O-demethylase activity and expression of cytochrome P450 genes in the red imported fire ant (Solenopsis invicta Buren). J. Integr. Agric. 2016, 15, 135–144. [Google Scholar] [CrossRef]
- Sparks, T.C.; Sparks, J.M.; Duke, S.O. Natural product-based crop protection compounds–origins and future prospects. J. Agric. Food Chem. 2023, 71, 2259–2269. [Google Scholar] [CrossRef]
- Zhang, P.; Duan, C.-B.; Jin, B.; Ali, A.S.; Han, X.; Zhang, H.; Zhang, M.-Z.; Zhang, W.-H.; Gu, Y.-C. Recent advances in the natural products-based lead discovery for new agrochemicals. Adv. Agrochem 2023, 2, 324–339. [Google Scholar] [CrossRef]
- Singh, B.; Singh, P.R.; Mohanty, M.K. Toxicity of a plant based mosquito repellent/killer. Interdiscip. Toxicol. 2012, 5, 184–191. [Google Scholar] [CrossRef]
- Chen, S.; Chen, H.; Xu, Y. Safe chemical repellents to prevent the spread of invasive ants. Pest Manag. Sci. 2019, 75, 821–827. [Google Scholar] [CrossRef]
- Chen, J.; Oi, D.H. Naturally occurring compounds/materials as alternatives to synthetic chemical insecticides for use in fire ant management. Insects 2020, 11, 758. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.C.; Hung, S.H.; Lin, X.R.; Huang, R.N. Herbal plants as alternatives for the management of the red imported fire ant, Solenopsis invicta. J. Appl. Entomol. 2022, 146, 975–989. [Google Scholar] [CrossRef]
- Ali, A.; Shah, F.M.; Radwan, M.M.; Elhendawy, M.A.; Elsohly, M.A.; Khan, I.A. Curcuma longa essential oils: Toxicity and repellency against imported fire ants (Formicidae: Hymenoptera). J. Med. Entomol. 2024, 61, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Shah, F.M.; Manfron, J.; Monteiro, L.M.; de Almeida, V.P.; Raman, V.; Khan, I.A. Baccharis Species essential oils: Repellency and toxicity against yellow fever mosquitoes and imported fire ants. J. Xenobiotics 2023, 13, 641–652. [Google Scholar] [CrossRef]
- Lengai, G.M.; Muthomi, J.W.; Mbega, E.R. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. Afr. 2020, 7, e00239. [Google Scholar] [CrossRef]
- Chellappandian, M.; Vasantha-Srinivasan, P.; Han, Y.S.; Senthil-Nathan, S.; Karthi, S.; Kalaivani, K.; Park, K.B.; Veerabahu, C.; Radhakrishnan, N.; Pandiyan, R. Essential oils from Murraya koenigii (L.) Spreng. and their phytochemicals as an environmental-friendly agent against pests of medical importance. Biocatal. Agric. Biotechnol. 2024, 58, 103161. [Google Scholar] [CrossRef]
- Abdelgaleil, S.A.M.; Gad, H.A.; Ramadan, G.R.; El-Bakry, A.M.; El-Sabrout, A.M. Monoterpenes: Chemistry, insecticidal activity against stored product insects and modes of action—A review. Int. J. Pest Manag. 2021, 70, 1–23. [Google Scholar] [CrossRef]
- Souto, A.L.; Sylvestre, M.; Tölke, E.D.; Tavares, J.F.; Barbosa-Filho, J.M.; Cebrián-Torrejón, G. Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules 2021, 26, 4835. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cantrell, C.; Duke, S.; Allen, M. Repellency of callicarpenal and intermedeol against workers of imported fire ants (Hymenoptera: Formicidae). J. Econ. Entomol. 2008, 101, 265–271. [Google Scholar] [CrossRef]
- Ali, A.; Chen, J.; Khan, I.A. Toxicity and repellency of Magnolia grandiflora seed essential oil and selected pure compounds against the workers of hybrid imported fire ants (Hymenoptera: Formicidae). J. Econ. Entomol. 2022, 115, 412–416. [Google Scholar] [CrossRef]
- Shah, F.M.; Guddeti, D.K.; Paudel, P.; Chen, J.; Li, X.-C.; Khan, I.A.; Ali, A. Matricaria chamomilla essential oils: Repellency and toxicity against imported fire ants (Hymenoptera: Formicidae). Molecules 2023, 28, 5584. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhang, J.; Shen, L.; Wang, L.; Qian, C.; Lyu, H.; Yi, C.; Cai, J.; Chen, X.; Wen, X. Eugenol derivatives: Strong and long-lasting repellents against both undisturbed and disturbed red imported fire ants. J. Pest Sci. 2023, 96, 327–344. [Google Scholar] [CrossRef]
- Chen, J.; Allen, M. Significance of digging behavior to mortality of red imported fire ant workers, Solenopsis invicta, in fipronil-treated sand. J. Econ. Entomol. 2006, 99, 476–482. [Google Scholar] [CrossRef]
- Xu, Y.; Zeng, L.; Lu, Y.; Liang, G. Effect of soil humidity on the survival of Solenopsis invicta Buren workers. Insectes Sociaux 2009, 56, 367–373. [Google Scholar] [CrossRef]
- Souto, R.; Harada, A.; Andrade, E.; Maia, J. Insecticidal activity of Piper essential oils from the Amazon against the fire ant Solenopsis saevissima (Smith) (Hymenoptera: Formicidae). Neotrop. Entomol. 2012, 41, 510–517. [Google Scholar] [CrossRef]
- Mgbeahuruike, E.E.; Yrjönen, T.; Vuorela, H.; Holm, Y. Bioactive compounds from medicinal plants: Focus on Piper species. S. Afr. J. Bot. 2017, 112, 54–69. [Google Scholar] [CrossRef]
- de Oliveira, A.C.; Simões, R.C.; Lima, C.A.; da Silva, F.M.; Nunomura, S.M.; Roque, R.A.; Tadei, W.P.; Nunomura, R.C. Essential oil of Piper purusanum C. DC (Piperaceae) and its main sesquiterpenes: Biodefensives against malaria and dengue vectors, without lethal effect on non-target aquatic fauna. Environ. Sci. Pollut. Res. 2022, 29, 47242–47253. [Google Scholar] [CrossRef]
- de Souza, M.T.; de Souza, M.T.; Bernardi, D.; Krinski, D.; de Melo, D.J.; da Costa Oliveira, D.; Rakes, M.; Zarbin, P.H.G.; de Noronha Sales Maia, B.H.L.; Zawadneak, M.A.C. Chemical composition of essential oils of selected species of Piper and their insecticidal activity against Drosophila suzukii and Trichopria anastrephae. Environ. Sci. Pollut. Res. 2020, 27, 13056–13065. [Google Scholar] [CrossRef] [PubMed]
- Pereira Filho, A.A.; Pessoa, G.C.D.Á.; Yamaguchi, L.F.; Stanton, M.A.; Serravite, A.M.; Pereira, R.H.; Neves, W.S.; Kato, M.J. Larvicidal activity of essential oils from Piper species against strains of Aedes aegypti (Diptera: Culicidae) resistant to pyrethroids. Front. Plant Sci. 2021, 12, 685864. [Google Scholar] [CrossRef]
- Cysne, J.B.; Canuto, K.M.; Pessoa, O.D.L.; Nunes, E.P.; Silveira, E.R. Leaf essential oils of four Piper species from the State of Ceará-Northeast of Brazil. J. Braz. Chem. Soc. 2005, 16, 1378–1381. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 5th ed.; Texensis Publishing: Gruver, TX, USA, 2017. [Google Scholar]
- Hematpoor, A.; Liew, S.Y.; Azirun, M.S.; Awang, K. Insecticidal activity and the mechanism of action of three phenylpropanoids isolated from the roots of Piper sarmentosum Roxb. Sci. Rep. 2017, 7, 12576. [Google Scholar] [CrossRef] [PubMed]
- Scott, I.M.; Jensen, H.R.; Philogène, B.J.; Arnason, J.T. A review of Piper spp. (Piperaceae) phytochemistry, insecticidal activity and mode of action. Phytochem. Rev. 2008, 7, 65–75. [Google Scholar] [CrossRef]
- Muñoz-Acevedo, A.; González, M.C.; Alonso, J.E.; Flórez, K.C. The repellent capacity against Sitophilus zeamais (Coleoptera: Curculionidae) and in vitro inhibition of the acetylcholinesterase enzyme of 11 essential oils from six plants of the caribbean region of Colombia. Molecules 2024, 29, 1753. [Google Scholar] [CrossRef]
- Araújo, M.J.; Câmara, C.A.; Born, F.S.; Moraes, M.M.; Badji, C.A. Acaricidal activity and repellency of essential oil from Piper aduncum and its components against Tetranychus urticae. Exp. Appl. Acarol. 2012, 57, 139–155. [Google Scholar] [CrossRef]
- Misni, N.; Sulaiman, S.; Othman, H. The repellent activity of Piper aduncum Linn (Family: Piperaceae) essential oil against Aedes aegypti using human volunteers. J. Trop. Med. Parasitol. 2008, 31, 63–69. [Google Scholar]
- Qi, Y.T.; Wang, J.Z.; Zhang, J.W.; Fei, C.; Yuan, Y.K.; Du, S.S. Assessment of contact toxicity and repellent effects of essential oils from Piper plants Piper yunnanense and Piper boehmeriifolium against three stored-product insects. Chem. Biodivers. 2023, 20, e202301206. [Google Scholar] [CrossRef]
- Bhoopong, P.; Chareonviriyaphap, T.; Sukkanon, C. Excito-repellency of Myristica fragrans Houtt. and Curcuma longa L. extracts from Southern Thailand against Aedes aegypti (L.). PeerJ 2022, 10, e13357. [Google Scholar] [CrossRef]
- Paudel, P.; Shah, F.M.; Guddeti, D.K.; Ali, A.; Chen, J.; Khan, I.A.; Li, X.-C. Repellency of carvacrol, thymol, and their Acetates against Imported Fire Ants. Insects 2023, 14, 790. [Google Scholar] [CrossRef]
- Lopes, A.A.; Lopez, S.N.; Regasini, L.O.; Junior, J.M.B.; Ambrosio, D.L.; Kato, M.J.; da Silva Bolzani, V.; Cicarelli, R.M.B.; Furlan, M. In vitro activity of compounds isolated from Piper crassinervium against Trypanosoma cruzi. Nat. Prod. Res. 2008, 22, 1040–1046. [Google Scholar] [CrossRef]
- Almadiy, A.A.; Nenaah, G.E.; Albogami, B.Z. Bioactivity of Deverra tortuosa essential oil, its nanoemulsion, and phenylpropanoids against the cowpea weevil, a stored grain pest with eco-toxicological evaluations. Environ. Sci. Pollut. Res. 2022, 29, 65112–65127. [Google Scholar] [CrossRef]
- Dorla, E.; Gauvin-Bialecki, A.; Deuscher, Z.; Allibert, A.; Grondin, I.; Deguine, J.P.; Laurent, P. Insecticidal activity of the leaf essential oil of Peperomia borbonensis Miq. (Piperaceae) and its major components against the Melon Fly Bactrocera cucurbitae (Diptera: Tephritidae). Chem. Biodivers. 2017, 14, e1600493. [Google Scholar] [CrossRef] [PubMed]
- Götz, M.E.; Sachse, B.; Schäfer, B.; Eisenreich, A. Myristicin and elemicin: Potentially toxic alkenylbenzenes in food. Foods 2022, 11, 1988. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Alarcón, K.; Martorell, M.; Gürer, E.S.; Laher, I.; Lam, H.L.; Mohieldin, E.A.M.; Muddathir, A.M.; Akram, M.; Iqbal, M.; Shafique, H. Myristicin: From its biological effects in traditional medicine in plants to preclinical studies and use as ecological remedy in plant protection. eFood 2023, 4, e90. [Google Scholar] [CrossRef]
- NIST Chemistry WebBook. Available online: https://webbook.nist.gov/chemistry/ (accessed on 13 May 2024).
- Ross, K.G.; Meer, R.K.V.; Fletcher, D.J.; Vargo, E.L. Biochemical phenotypic and genetic studies of two introduced fire ants and their hybrid (Hymenoptera: Formicidae). Evolution 1987, 41, 280–293. [Google Scholar] [CrossRef]
- Chen, J. Assessment of repellency of nine phthalates against red imported fire ant (Hymenoptera: Formicidae) workers using ant digging behavior. J. Entomol. Sci. 2005, 40, 368–377. [Google Scholar] [CrossRef]
No. | RRIa | RRIb | Compound Name | Relative Peak Area % | Identification Method |
---|---|---|---|---|---|
1 | 930 | 939 | α-pinene | 1.78 | tR, RRI, MS |
2 | 942 | 954 | camphene | 0.37 | tR, RRI, MS |
3 | 969 | 979 | β-pinene | 0.66 | tR, RRI, MS |
4 | 1004 | 1011 | 3-carene | 0.11 | tR, RRI, MS |
5 | 1021 | 1029 | limonene | 0.17 | tR, RRI, MS |
6 | 1177 | 1136 | 3-caren-10-al | 0.10 | RRI, MS |
7 | 1324 | 1338 | δ-elemene | 0.34 | RRI, MS |
8 | 1347 | 1351 | α-cubebene | 0.19 | RRI, MS |
9 | 1365 | 1371 | cyclosativene | 0.16 | RRI, MS |
10 | 1374 | 1376 | α-copaene | 1.00 | RRI, MS |
11 | 1381 | 1388 | β-bourbonene | 0.34 | RRI, MS |
12 | 1386 | 1390 | β-elemene | 1.98 | tR, RRI, MS |
13 | 1397 | 1398 | cyperene | 0.13 | RRI, MS |
14 | 1407 | 1409 | α-gurjunene | 0.58 | tR, RRI, MS |
15 | 1412 | 1413 | β-maaliene | 0.24 | RRI, MS |
16 | 1416 | 1419 | β-caryophyllene | 4.32 | tR, RRI, MS |
17 | 1423 | 1432 | β-copaene | 0.19 | RRI, MS |
18 | 1428 | 1433 | β-gurjunene | 0.10 | RRI, MS |
19 | 1430 | 1434 | α-bergamotene | 0.30 | RRI, MS |
20 | 1435 | 1443 | guaia-6,9-diene | 1.35 | RRI, MS |
21 | 1446 | 1454 | α-humulene | 0.91 | tR, RRI, MS |
22 | 1453 | 1466 | epi-β-caryophyllene | 7.20 | RRI, MS |
23 | 1464 | 1477 | γ-gurjunene | 0.23 | RRI, MS |
24 | 1467 | 1479 | γ-muurolene | 3.22 | RRI, MS |
25 | 1472 | 1481 | germacrene-D | 2.29 | RRI, MS |
26 | 1477 | 1490 | β-eudesmene | 0.88 | RRI, MS |
27 | 1480 | 1518 | myristicin | 33.55 | tR, RRI, MS |
28 | 1481 | 1522 | β-cadinene | 0.29 | RRI, MS |
29 | 1483 | 1515 | cubebol | 0.44 | RRI, MS |
30 | 1490 | 1500 | α-muurolene | 3.50 | RRI, MS |
31 | 1497 | 1486 | eremophilene | 0.32 | RRI, MS |
32 | 1499 | 1505 | β-bisabolene | 0.21 | RRI, MS |
33 | 1502 | 1516 | sesquicineole | 0.48 | RRI, MS |
34 | 1506 | 1522 | calamenene | 0.97 | RRI, MS |
35 | 1511 | 1523 | cadina-1(10),4-diene | 1.71 | RRI, MS |
36 | 1515 | 1557 | elemicin | 9.63 | tR, RRI, MS |
37 | 1520 | 1495 | cubenene | 0.18 | RRI, MS |
38 | 1524 | 1545 | α-calacorene | 0.17 | RRI, MS |
39 | 1529 | 1549 | elemol | 0.55 | RRI, MS |
40 | 1554 | 1568 | palustrol | 0.29 | RRI, MS |
41 | 1557 | 1578 | spathulenol | 2.85 | tR, RRI, MS |
42 | 1563 | 1583 | caryophyllene oxide | 0.80 | tR, RRI, MS |
43 | 1568 | 1590 | globulol | 0.34 | tR, RRI, MS |
44 | 1575 | 1592 | viridiflorol | 0.22 | tR, RRI, MS |
45 | 1587 | 1602 | ledol | 1.21 | RRI, MS |
46 | 1610 | 1619 | di-epi-1,10-cubenol | 0.51 | RRI, MS |
47 | 1612 | 1628 | epicubenol | 0.36 | RRI, MS |
48 | 1615 | 1619 | epi-cedrol | 0.21 | tR, RRI, MS |
49 | 1620 | 1642 | τ-muurolol | 0.42 | RRI, MS |
50 | 1623 | 1654 | δ-cadinol | 0.53 | RRI, MS |
51 | 1625 | 1646 | cubenol | 0.22 | RRI, MS |
52 | 1632 | 1654 | α-cadinol | 0.73 | RRI, MS |
53 | 1640 | 1678 | apiol | 0.47 | RRI, MS |
54 | 1680 | 1691 | alloaromadendrene epoxide | 0.86 | RRI, MS |
55 | 1714 | 1709 | cis-thujopsenal | 0.15 | RRI, MS |
56 | 1739 | 1740 | oplopanone | 0.18 | RRI, MS |
Total | 91.49 |
Conc. (µg/g) | Mean ± SE † | F-Value | p-Value | Mean ± SE † | F-Value | p-Value |
---|---|---|---|---|---|---|
RIFA | HIFA | |||||
P. crassinervium EO | - | |||||
Control | 1.75 ± 0.06 A | 6.39 | 0.008 | 2.48 ± 0.03 A | 4.61 | 0.037 |
15.6 | 1.23 ± 0.09 B | 1.74 ± 0.13 B | ||||
7.8 | 1.17 ± 0.09 B | 1.80 ± 0.26 B | ||||
3.9 | 1.38 ± 0.14 AB | 2.06 ± 0.12 AB | ||||
Frs. 7–8 * | ||||||
Control | - | 2.08 ± 0.19 A | 4.69 | 0.036 | ||
15.6 | - | 0.73 ± 0.37 B | ||||
7.8 | - | 1.45 ± 0.21 AB | ||||
3.9 | - | 1.16 ± 0.23 AB | ||||
Fr. 9 * | ||||||
Control | - | 1.83 ± 0.22 A | 4.01 | 0.026 | ||
15.6 | - | 0.61 ± 0.20 B | ||||
7.8 | - | 1.26 ± 0.25 AB | ||||
3.9 | - | 1.31 ± 0.31 AB | ||||
elemicin | ||||||
Control | 1.74 ± 0.20 A | 1.04 | 0.423 | |||
1.95 | 1.49 ± 0.08 A | |||||
0.98 | 1.58 ± 0.16 A | |||||
0.49 | 1.33 ± 0.01 A | |||||
Control | 1.11 ± 0.20 A | 12.17 | 0.002 | 1.35 ± 0.16 A | 14.11 | 0.001 |
15.6 | 0.08 ± 0.08 B | 0.04 ± 0.20 B | ||||
7.8 | 0.20 ± 0.16 B | 0.17 ± 0.17 B | ||||
3.9 | 0.35 ± 0.01 B | 0.83 ± 0.10 A | ||||
myristicin | ||||||
Control | 1.12 ± 0.21 A | 18.34 | <0.001 | 1.38 ± 0.06 A | 9.31 | 0.005 |
15.6 | 0.01 ± 0.01 B | 0.33 ± 0.11 B | ||||
7.8 | 0.10 ± 0.05 B | 0.61 ± 0.10 B | ||||
3.9 | 0.77 ± 0.13 A | 0.89 ± 0.25 AB | ||||
DEET | ||||||
Control | - | 1.26 ± 0.19 A | 0.24 | 0.87 | ||
15.6 | - | 0.98 ± 0.49 A | ||||
7.8 | - | 1.37 ± 0.28 A | ||||
3.9 | - | 1.16 ± 0.29 A | ||||
Control | 1.43 ± 0.19 A | 16.24 | 0.001 | 1.58 ± 0.11 A | 9.71 | 0.005 |
125 | 0.08 ± 0.04 C | 0.42 ± 0.25 B | ||||
62.5 | 0.74 ± 0.18 B | 0.87 ± 0.13 B | ||||
31.25 | 1.14 ± 0.10 AB | 0.84 ± 0.04 B |
Compound | n | Slope ± SE | LC50 (95% CI) * | LC90 (95% CI) * | χ2 | df |
---|---|---|---|---|---|---|
RIFA | ||||||
P. crassinervium EO | 30 | 1.23 ± 0.22 | 97.9 (71.6–142.6) | 277.8 (179.9–664.4) | 30.644 | 13 |
Frs. 7–8 ** | 30 | 20% | ||||
Fr. 9 | 30 | 1.14 ± 0.27 | 50.5 (32.7–91.7) | 155.3 (87.1–746.1) | 17.285 | 13 |
myristicin | 30 | 1.04 ± 0.25 | 43.4 (27.3–81.1) | 148.3 (79.9–812.1) | 17.076 | 13 |
Elemicin ** | 30 | 20% | ||||
fipronil | 40 | 0.94 ±0.22 | 0.43 (0.26–0.81) | 1.67 (0.88–7.8) | 19.16 | 26 |
HIFA | ||||||
P. crassinervium EO | 30 | 2.83 ± 0.47 | 73.7 (64.2–85.2) | 115.8 (97.9–153.8) | 35.734 | 13 |
Frs. 7–8 ** | 30 | 100% | ||||
Fr. 9 | 30 | 1.69 ± 0.24 | 53.4 (44.8–64.5) | 114.1 (89.4–169.6) | 46.116 | 13 |
myristicin | 30 | 1.77 ± 0.53 | 31.3 (18.9–57.5) | 148.2 (79.7–812.1) | 11.13 | 13 |
Elemicin ** | 30 | 40% | ||||
fipronil | 40 | 1.86 ± 0.33 | 0.51 (0.4 ± 0.7) | 1.02 (0.77 ± 1.7) | 33.87 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, F.M.; Wang, M.; Zhao, J.; Lee, J.; Farago, P.V.; Manfron, J.; Khan, I.A.; Ali, A. Insecticidal and Repellent Activity of Piper crassinervium Essential Oil and Its Pure Compounds Against Imported Fire Ants (Hymenoptera: Formicidae). Molecules 2024, 29, 5430. https://doi.org/10.3390/molecules29225430
Shah FM, Wang M, Zhao J, Lee J, Farago PV, Manfron J, Khan IA, Ali A. Insecticidal and Repellent Activity of Piper crassinervium Essential Oil and Its Pure Compounds Against Imported Fire Ants (Hymenoptera: Formicidae). Molecules. 2024; 29(22):5430. https://doi.org/10.3390/molecules29225430
Chicago/Turabian StyleShah, Farhan Mahmood, Mei Wang, Jianping Zhao, Joseph Lee, Paulo Vitor Farago, Jane Manfron, Ikhlas A. Khan, and Abbas Ali. 2024. "Insecticidal and Repellent Activity of Piper crassinervium Essential Oil and Its Pure Compounds Against Imported Fire Ants (Hymenoptera: Formicidae)" Molecules 29, no. 22: 5430. https://doi.org/10.3390/molecules29225430
APA StyleShah, F. M., Wang, M., Zhao, J., Lee, J., Farago, P. V., Manfron, J., Khan, I. A., & Ali, A. (2024). Insecticidal and Repellent Activity of Piper crassinervium Essential Oil and Its Pure Compounds Against Imported Fire Ants (Hymenoptera: Formicidae). Molecules, 29(22), 5430. https://doi.org/10.3390/molecules29225430