Comparison of Sample Preparation and Detection Methods for the Quantification of Synthetic Musk Compounds (SMCs) in Carp Fish Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Comparison of Solid-Phase Extraction (SPE) Clean-Up
2.2. Comparison of Detection Methods
2.3. Application to Real Samples
3. Materials and Methods
3.1. Reagents and Standards
3.2. Sample Pretreatment
3.3. Instrumental Analysis
3.4. Quality Assurance and Quality Control (QA/QC)
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vallecillos, L.; Borrull, F.; Pocurull, E. Recent approaches for the determination of synthetic musk fragrances in environmental samples. TrAC Trends Anal. Chem. 2015, 72, 80–92. [Google Scholar] [CrossRef]
- Tumová, J.; Šauer, P.; Golovko, O.; Ucun, O.K.; Grabic, R.; Máchová, J.; Kroupová, H.K. Effect of polycyclic musk compounds on aquatic organisms: A critical literature review supplemented by own data. Sci. Total Environ. 2019, 651, 2235–2246. [Google Scholar] [CrossRef]
- Busso, I.T.; Tames, F.; Silva, J.A.; Ramos, S.; Homem, V.; Ratola, N.; Carreras, H. Biomonitoring levels and trends of PAHs and synthetic musks associated with land use in urban environments. Sci. Total Environ. 2018, 618, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Diao, Z.; Zhang, X.; Xu, M.; Wei, F.; Xie, X.; Zhu, F.; Hui, B.; Zhang, X.; Wang, S.; Yuan, X. A critical review of distribution, toxicological effects, current analytical methods and future prospects of synthetic musks in aquatic environments. Sci. Total Environ. 2024, 914, 169872. [Google Scholar] [CrossRef]
- Abedi, G.; Talebpour, Z.; Jamechenarboo, F. The survey of analytical methods for sample preparation and analysis of fragrances in cosmetics and personal care products. TrAC Trends Anal. Chem. 2018, 102, 41–59. [Google Scholar] [CrossRef]
- Tseng, W.-J.; Tsai, S.-W. Assessment of dermal exposures for synthetic musks from personal care products in Taiwan. Sci. Total Environ. 2019, 669, 160–167. [Google Scholar] [CrossRef]
- Arruda, V.; Simões, M.; Gomes, I.B. Synthetic musk fragrances in water systems and their impact on microbial communities. Water 2022, 14, 692. [Google Scholar] [CrossRef]
- Wong, F.; Robson, M.; Melymuk, L.; Shunthirasingham, C.; Alexandrou, N.; Shoeib, M.; Luk, E.; Helm, P.; Diamond, M.L.; Hung, H. Urban sources of synthetic musk compounds to the environment. Environ. Sci. Process. Impacts 2019, 21, 74–88. [Google Scholar] [CrossRef]
- Homem, V.; Silva, E.; Alves, A.; Santos, L. Scented traces–Dermal exposure of synthetic musk fragrances in personal care products and environmental input assessment. Chemosphere 2015, 139, 276–287. [Google Scholar] [CrossRef]
- Clara, M.; Gans, O.; Windhofer, G.; Krenn, U.; Hartl, W.; Braun, K.; Scharf, S.; Scheffknecht, C. Occurrence of polycyclic musks in wastewater and receiving water bodies and fate during wastewater treatment. Chemosphere 2011, 82, 1116–1123. [Google Scholar] [CrossRef]
- Lee, C.J.; Rasmussen, T. Occurrence of organic wastewater compounds in effluent-dominated streams in Northeastern Kansas. Sci. Total Environ. 2006, 371, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Homem, V.; Alves, A.; Alves, A.; Santos, L. Ultrasound-assisted dispersive liquid–liquid microextraction for the determination of synthetic musk fragrances in aqueous matrices by gas chromatography–mass spectrometry. Talanta 2016, 148, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Homem, V.; Silva, J.A.; Ratola, N.; Santos, L.; Alves, A. Long lasting perfume–a review of synthetic musks in WWTPs. J. Environ. Manag. 2015, 149, 168–192. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Ren, S.; Zhong, F.; Han, X.; He, Y.; Tang, Z. Synthetic musk fragrances in sediments from a subtropical river-lake system in eastern China: Occurrences, profiles, and ecological risks. Environ. Sci. Pollut. Res. 2021, 28, 14597–14606. [Google Scholar] [CrossRef]
- Lee, I.-S.; Kim, U.-J.; Oh, J.-E.; Choi, M.; Hwang, D.-W. Comprehensive monitoring of synthetic musk compounds from freshwater to coastal environments in Korea: With consideration of ecological concerns and bioaccumulation. Sci. Total Environ. 2014, 470, 1502–1508. [Google Scholar] [CrossRef]
- Chase, D.A.; Karnjanapiboonwong, A.; Fang, Y.; Cobb, G.P.; Morse, A.N.; Anderson, T.A. Occurrence of synthetic musk fragrances in effluent and non-effluent impacted environments. Sci. Total Environ. 2012, 416, 253–260. [Google Scholar] [CrossRef]
- Tasselli, S.; Rogora, M.; Orrù, A.; Guzzella, L. Behaviour of synthetic musk fragrances in freshwaters: Occurrence, relations with environmental parameters, and preliminary risk assessment. Environ. Sci. Pollut. Res. 2023, 30, 109643–109658. [Google Scholar] [CrossRef] [PubMed]
- European Union. Regulation (EC) No 1223/2009 of the european parliament and of the council. Off. J. Eur. Union L 2009, 342, 59. [Google Scholar]
- Gatermann, R.; Hühnerfuss, H.; Rimkus, G.; Attar, A.; Kettrup, A. Occurrence of musk xylene and musk ketone metabolites in the aquatic environment. Chemosphere 1998, 36, 2535–2547. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Q.; Man, S.; Zeng, X.; Yu, Y.; Pang, Y.; Sheng, G.; Fu, J. Tissue concentrations, bioaccumulation, and biomagnification of synthetic musks in freshwater fish from Taihu Lake, China. Environ. Sci. Pollut. Res. 2013, 20, 311–322. [Google Scholar] [CrossRef]
- Lange, C.; Kuch, B.; Metzger, J.W. Occurrence and fate of synthetic musk fragrances in a small German river. J. Hazard. Mater. 2015, 282, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Klaschka, U.; von der Ohe, P.C.; Bschorer, A.; Krezmer, S.; Sengl, M.; Letzel, M. Occurrences and potential risks of 16 fragrances in five German sewage treatment plants and their receiving waters. Environ. Sci. Pollut. Res. 2013, 20, 2456–2471. [Google Scholar] [CrossRef] [PubMed]
- Vallecillos, L.; Pocurull, E.; Borrull, F. Influence of pre-treatment process on matrix effect for the determination of musk fragrances in fish and mussel. Talanta 2015, 134, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Ashcroft, S.; Dosoky, N.S.; Setzer, W.N.; Satyal, P. Synthetic Endocrine Disruptors in Fragranced Products. Endocrines 2024, 5, 366–381. [Google Scholar] [CrossRef]
- Sousa, S.; Pestana, D.; Faria, G.; Delerue-Matos, C.; Calhau, C.; Domingues, V.F. Assessment of synthetic musks, polychlorinated biphenyls and brominated flame retardants in adipose tissue of obese northern Portuguese women–Metabolic implications. Sci. Total Environ. 2023, 894, 165015. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.; Chen, H.; Zheng, D.; Yang, Q.; Campos, L.C. Synthetic musks in the natural environment: Sources, occurrence, concentration, and fate-A review of recent developments (2010–2013). Sci. Total Environ. 2024, 922, 171344. [Google Scholar] [CrossRef]
- Chen, C.; He, W.; Ni, Z.; Zhang, X.; Cui, Y.; Song, X.; Feng, J. Bioaccumulation, trophic transfer and risk assessment of polycyclic musk in marine food webs of the Bohai Sea. Mar. Pollut. Bull. 2024, 202, 116353. [Google Scholar] [CrossRef]
- Tran-Lam, T.-T.; Quan, T.C.; Bui, M.Q.; Dao, Y.H.; Le, G.T. Endocrine-disrupting chemicals in Vietnamese marine fish: Occurrence, distribution, and risk assessment. Sci. Total Environ. 2024, 908, 168305. [Google Scholar] [CrossRef]
- Ehiguese, F.O.; González-Delgado, M.J.; Garrido-Perez, C.; Araújo, C.V.; Martin-Diaz, M.L. Effects and risk assessment of the polycyclic musk compounds galaxolide® and tonalide® on marine microalgae, invertebrates, and fish. Processes 2021, 9, 371. [Google Scholar] [CrossRef]
- Rehman, M.U.; Nisar, B.; Yatoo, A.M.; Sehar, N.; Tomar, R.; Tariq, L.; Ali, S.; Ali, A.; Rashid, S.M.; Ahmad, S.B. After effects of Pharmaceuticals and Personal Care Products (PPCPs) on the biosphere and their counteractive ways. Sep. Purif. Technol. 2024, 342, 126921. [Google Scholar] [CrossRef]
- Jo, J.; Lee, J.Y.; Lee, H.E.; Son, Y.G.; Yoo, J.W.; Ahn, D.-S.; Ahn, Y.G. Determination of twelve synthetic musk compounds in estuary and coastal areas near Han River of Korea by improved liquid–liquid extraction coupled with GC/MS. Int. J. Environ. Anal. Chem. 2023, 103, 8658–8669. [Google Scholar] [CrossRef]
- Vimalkumar, K.; Nikhil, N.P.; Arun, E.; Mayilsamy, M.; Babu-Rajendran, R. Synthetic musks in surface water and fish from the rivers in India: Seasonal distribution and toxicological risk assessment. J. Hazard. Mater. 2021, 414, 125558. [Google Scholar] [CrossRef] [PubMed]
- Villa, S.; Assi, L.; Ippolito, A.; Bonfanti, P.; Finizio, A. First evidences of the occurrence of polycyclic synthetic musk fragrances in surface water systems in Italy: Spatial and temporal trends in the Molgora River (Lombardia Region, Northern Italy). Sci. Total Environ. 2012, 416, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Godayol, A.; Besalú, E.; Anticó, E.; Sanchez, J.M. Monitoring of sixteen fragrance allergens and two polycyclic musks in wastewater treatment plants by solid phase microextraction coupled to gas chromatography. Chemosphere 2015, 119, 363–370. [Google Scholar] [CrossRef]
- Peck, A.M.; Hornbuckle, K.C. Synthetic musk fragrances in Lake Michigan. Environ. Sci. Technol. 2004, 38, 367–372. [Google Scholar] [CrossRef]
- Robles-Molina, J.; Gilbert-López, B.; García-Reyes, J.F.; Molina-Díaz, A. Comparative evaluation of liquid–liquid extraction, solid-phase extraction and solid-phase microextraction for the gas chromatography–mass spectrometry determination of multiclass priority organic contaminants in wastewater. Talanta 2013, 117, 382–391. [Google Scholar] [CrossRef]
- Li, X.; Chu, Z.; Yang, J.; Li, M.; Du, M.; Zhao, X.; Zhu, Z.J.; Li, Y. Synthetic musks: A class of commercial fragrance additives in personal care products (PCPs) causing concern as emerging contaminants. In Advances in Marine Biology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 81, pp. 213–280. [Google Scholar]
- Yao, L.; Zhao, J.-L.; Liu, Y.-S.; Zhang, Q.-Q.; Jiang, Y.-X.; Liu, S.; Liu, W.-R.; Yang, Y.-Y.; Ying, G.-G. Personal care products in wild fish in two main Chinese rivers: Bioaccumulation potential and human health risks. Sci. Total Environ. 2018, 621, 1093–1102. [Google Scholar] [CrossRef]
- Ocaña-Rios, I.; Thapa, B.; Anderson, J.L. Multi-residue method to determine selected personal care products from five classes in fish based on miniaturized matrix solid-phase dispersion and solid-phase microextraction coupled to gas chromatography-mass spectrometry. Food Chem. 2023, 423, 136247. [Google Scholar] [CrossRef]
- Ahmed, I.; Jan, K.; Fatma, S.; Dawood, M.A. Muscle proximate composition of various food fish species and their nutritional significance: A review. J. Anim. Physiol. Anim. Nutr. 2022, 106, 690–719. [Google Scholar] [CrossRef]
- Molina-Ruiz, J.M.; Cieslik, E.; Cieslik, I.; Walkowska, I. Determination of pesticide residues in fish tissues by modified QuEChERS method and dual-d-SPE clean-up coupled to gas chromatography–mass spectrometry. Environ. Sci. Pollut. Res. 2015, 22, 369–378. [Google Scholar] [CrossRef]
- Yao, L.; Zhao, J.-L.; Liu, Y.-S.; Yang, Y.-Y.; Liu, W.-R.; Ying, G.-G. Simultaneous determination of 24 personal care products in fish muscle and liver tissues using QuEChERS extraction coupled with ultra pressure liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometer analyses. Anal. Bioanal.Chem. 2016, 408, 8177–8193. [Google Scholar] [CrossRef] [PubMed]
- Peña-Herrera, J.M.; Montemurro, N.; Barceló, D.; Pérez, S. Analysis of pharmaceuticals in fish using ultrasound extraction and dispersive spe clean-up on que Z-Sep/C18 followed by LC-QToF-MS detection. MethodsX 2020, 7, 101010. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Xiao, Y.; Jiang, L.; Bai, W.; Huang, W.; Yuan, L. Simultaneous determination of bisphenol A, bisphenol F, 4-nonylphenol, 4-n-nonylphenol, and octylphenol in grease-rich food by carb/PSA solid-phase extraction combined with high-performance liquid chromatography tandem mass spectrometry. Food Anal. Methods 2018, 11, 589–597. [Google Scholar] [CrossRef]
- Chen, S.; Yu, X.; He, X.; Xie, D.; Fan, Y.; Peng, J. Simplified pesticide multiresidues analysis in fish by low-temperature cleanup and solid-phase extraction coupled with gas chromatography/mass spectrometry. Food Chem. 2009, 113, 1297–1300. [Google Scholar] [CrossRef]
- Schenck, F.J.; Lehotay, S.J. Does further clean-up reduce the matrix enhancement effect in gas chromatographic analysis of pesticide residues in food? J. Chromatogr. A 2000, 868, 51–61. [Google Scholar] [CrossRef]
- Hong, J.; Kim, H.-Y.; Kim, D.-G.; Seo, J.; Kim, K.-J. Rapid determination of chlorinated pesticides in fish by freezing-lipid filtration, solid-phase extraction and gas chromatography–mass spectrometry. J. Chromatogr. A 2004, 1038, 27–35. [Google Scholar] [CrossRef]
- Williams, M.L.; Olomukoro, A.A.; Emmons, R.V.; Godage, N.H.; Gionfriddo, E. Matrix effects demystified: Strategies for resolving challenges in analytical separations of complex samples. J. Sep. Sci. 2023, 46, 2300571. [Google Scholar] [CrossRef]
- Ham, H.-J.; Sardar, S.W.; Ishag, A.E.S.A.; Choi, J.-Y.; Hur, J.-H. Optimization of an analytical method for indoxacarb residues in fourteen medicinal herbs using GC–μECD, GC–MS/MS and LC–MS/MS. Separations 2022, 9, 232. [Google Scholar] [CrossRef]
- Ferrer, C.; Lozano, A.; Agüera, A.; Girón, A.J.; Fernández-Alba, A. Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. J. Chromatogr. A 2011, 1218, 7634–7639. [Google Scholar] [CrossRef]
- Osemwengie, L.I. Determination of synthetic musk compounds in sewage biosolids by gas chromatography/mass spectrometry. J. Environ. Monit. 2006, 8, 897–903. [Google Scholar] [CrossRef]
- Katuri, G.P.; Fan, X.; Kosarac, I.; Siddique, S.; Kubwabo, C. Synthetic musk compounds in human biological matrices: Analytical methods and occurrence—A review. J. AOAC Int. 2021, 104, 368–383. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-F.; Ding, W.-H. Fast determination of synthetic polycyclic musks in sewage sludge and sediments by microwave-assisted headspace solid-phase microextraction and gas chromatography–mass spectrometry. J. Chromatogr. A 2010, 1217, 2776–2781. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Gopalan, A.-I.; Lee, K.-P. Enantioselective determination of polycyclic musks in river and wastewater by GC/MS/MS. Int. J. Environ. Res. Public Health 2016, 13, 349. [Google Scholar] [CrossRef]
- Katuri, G.P.; Fan, X.; Siddique, S.; Kubwabo, C.; Kosarac, I.; Harris, S.A.; Foster, W.G. A selective and sensitive gas chromatography-tandem mass spectrometry method for quantitation of synthetic musks in human serum. J. AOAC Int. 2020, 103, 1461–1468. [Google Scholar] [CrossRef]
- Nakata, H.; Sasaki, H.; Takemura, A.; Yoshioka, M.; Tanabe, S.; Kannan, K. Bioaccumulation, temporal trend, and geographical distribution of synthetic musks in the marine environment. Environ. Sci. Technol. 2007, 41, 2216–2222. [Google Scholar] [CrossRef]
- Luo, N.; Gao, Y.; Chen, X.; Wang, M.; Niu, X.; Li, G.; An, T. A critical review of environmental exposure, metabolic transformation, and the human health risks of synthetic musks. Crit. Rev. Environ. Sci. Technol. 2023, 53, 2132–2149. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Zhou, Q.; Zhou, Q.; Zhang, Y.; Zhu, L. Polycyclic musks in the environment: A review of their concentrations and distribution, ecological effects and behavior, current concerns and future prospects. Crit. Rev. Environ. Sci. Technol. 2021, 51, 323–377. [Google Scholar] [CrossRef]
- Xue, J.; Derks, R.J.; Webb, B.; Billings, E.M.; Aisporna, A.; Giera, M.; Siuzdak, G. Single quadrupole multiple fragment ion monitoring quantitative mass spectrometry. Anal. Chem. 2021, 93, 10879–10889. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Lv, Y.-Z.; Zhang, L.-J.; Liu, W.-R.; Zhao, J.-L.; Liu, Y.-S.; Zhang, Q.-Q.; Ying, G.-G. Determination of 24 personal care products in fish bile using hybrid solvent precipitation and dispersive solid phase extraction cleanup with ultrahigh performance liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. J. Chromatogr. A 2018, 1551, 29–40. [Google Scholar] [CrossRef]
- Trabalón, L.; Cano-Sancho, G.; Pocurull, E.; Nadal, M.; Domingo, J.L.; Borrull, F. Exposure of the population of Catalonia (Spain) to musk fragrances through seafood consumption: Risk assessment. Environ. Res. 2015, 143, 116–122. [Google Scholar] [CrossRef]
- Subedi, B.; Mottaleb, M.A.; Chambliss, C.K.; Usenko, S. Simultaneous analysis of select pharmaceuticals and personal care products in fish tissue using pressurized liquid extraction combined with silica gel cleanup. J. Chromatogr. A 2011, 1218, 6278–6284. [Google Scholar] [CrossRef]
- Hu, C.; Wang, W.; Garey, K.W. Heterogeneity and lyophilization comparison of stool processing for gastrointestinal bile acid measurement by LC-MS/MS. J. Chromatogr. B 2023, 1214, 123569. [Google Scholar] [CrossRef]
- Wang, W.; Cho, H.-S.; Kim, K.; Park, K.; Oh, J.-E. Tissue-specific distribution and bioaccumulation of cyclic and linear siloxanes in South Korean crucian carp (Carassius carassius). Environ. Pollut. 2021, 288, 117789. [Google Scholar] [CrossRef] [PubMed]
- Jeong, G.H.; Hwang, N.R.; Hwang, E.-h.; Lee, B.-c.; Yoon, J. Hexabromocyclododecanes in crucian carp and sediment from the major rivers in Korea. Sci. Total Environ. 2014, 470, 1471–1478. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-W.; Choo, G.; Cho, H.-S.; Lee, B.-C.; Park, K.; Oh, J.-E. The occurrence and distribution of polychlorinated naphthalenes (PCNs), focusing on tissue-specific bioaccumulation in crucian carp in South Korea. Sci. Total Environ. 2019, 665, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.Y.; Kim, Y.B.; Lee, S.I.; Song, H.; Choi, K.; Jeong, G.H. Distribution characteristics of polychlorinated biphenyls in crucian carp (Carassius auratus) from major rivers in Korea. Chemosphere 2006, 62, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.; Li, P.; Gong, R.; Sun, Y.; Chen, X.; Wei, H.; Xu, Y. Quantification and Distribution of Thiols in Fermented Grains of Sauce-Aroma Baijiu Production Process. Foods 2023, 12, 2658. [Google Scholar] [CrossRef]
- González-Curbelo, M.; Socas-Rodríguez, B.; Herrera-Herrera, A.; González-Sálamo, J.; Hernández-Borges, J.; Rodríguez-Delgado, M. Evolution and applications of the QuEChERS method. TrAC Trends Anal. Chem. 2015, 71, 169–185. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2. 2016. Available online: https://www.epa.gov/sites/default/files/2016-12/documents/mdl-procedure_rev2_12-13-2016.pdf (accessed on 10 November 2024).
- Gosetti, F.; Belay, M.H.; Marengo, E.; Robotti, E. Development and validation of a UHPLC-MS/MS method for the identification of irinotecan photodegradation products in water samples. Environ. Pollut. 2020, 256, 113370. [Google Scholar] [CrossRef]
- Fontanals, N.; Pocurull, E.; Montes, R.; González-Mariño, I.; Santana-Viera, S.; Miró, M.; Rico, A.; Rodríguez-Mozaz, S.; Borrull, F.; Quintana, J.B. A new analytical method to determine trace level concentrations of pharmaceuticals in influent wastewater: A tool to monitor human use patterns. Microchem. J. 2023, 193, 109131. [Google Scholar] [CrossRef]
- Mottaleb, M.A.; Usenko, S.; O’Donnell, J.G.; Ramirez, A.J.; Brooks, B.W.; Chambliss, C.K. Gas chromatography–mass spectrometry screening methods for select UV filters, synthetic musks, alkylphenols, an antimicrobial agent, and an insect repellent in fish. J. Chromatogr. A 2009, 1216, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Castro, Ó.; Trabalón, L.; Schilling, B.; Borrull, F.; Pocurull, E. Solid phase microextraction Arrow for the determination of synthetic musk fragrances in fish samples. J. Chromatogr. A 2019, 1591, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zou, H.; Li, D.; Gao, J.; Bu, Q.; Wang, Z. Global distribution and ecological risk assessment of synthetic musks in the environment. Environ. Pollut. 2023, 331, 121893. [Google Scholar] [CrossRef] [PubMed]
(a) GC-SQ/MS | ||||||||||
Analyte | Linearity | Solvent Slope | Matrix Slope | Matrix Slope /Solvent Slope | ILOD (ng/g) | ILOQ (ng/g) | MDL (ng/g) | MQL (ng/g) | ||
Range (ng/mL) | RRF * RSD (%) | R2 | ||||||||
DPMI | 10–500 | 6.1 | 0.998 | 0.405 | 0.339 | 0.837 | 0.151 | 0.504 | 1.46 | 4.37 |
OTNE | 10–500 | 10 | 0.998 | 0.161 | 0.144 | 0.895 | 0.0955 | 0.318 | 1.23 | 3.68 |
ADBI | 10–500 | 9.5 | 0.998 | 0.282 | 0.258 | 0.914 | 0.0869 | 0.290 | 1.20 | 3.59 |
AHDI | 10–500 | 11 | 0.998 | 0.435 | 0.406 | 0.933 | 0.0828 | 0.276 | 1.34 | 4.02 |
MA | 10–500 | 6.8 | 0.999 | 0.181 | 0.188 | 1.037 | 0.265 | 0.884 | 2.18 | 6.55 |
ATII | 10–500 | 7.0 | 0.999 | 0.370 | 0.356 | 0.962 | 0.0979 | 0.326 | 1.67 | 5.01 |
HHCB | 10–500 | 8.8 | 1.000 | 0.105 | 0.113 | 1.079 | 0.228 | 0.759 | 3.44 | 10.3 |
MX | 10–500 | 5.8 | 0.998 | 0.213 | 0.207 | 0.970 | 0.190 | 0.634 | 3.29 | 9.87 |
AHTN | 10–500 | 6.8 | 0.999 | 0.124 | 0.121 | 0.981 | 0.109 | 0.364 | 4.61 | 13.8 |
MM | 10–500 | 8.1 | 0.998 | 0.342 | 0.348 | 1.019 | 0.0791 | 0.264 | 1.33 | 3.98 |
MT | 10–500 | 5.6 | 0.997 | 0.289 | 0.279 | 0.965 | 0.114 | 0.381 | 1.03 | 3.10 |
MK | 10–500 | 4.1 | 0.997 | 0.211 | 0.210 | 0.998 | 0.246 | 0.820 | 6.02 | 18.1 |
(b) GC-QqQ-MS/MS | ||||||||||
Analyte | Linearity | Solvent Slope | Matrix Slope | Matrix Slope /Solvent Slope | ILOD (ng/g) | ILOQ (ng/g) | MDL (ng/g) | MQL (ng/g) | ||
Range (ng/mL) | RRF RSD (%) | R2 | ||||||||
DPMI | 1–100 | 9.0 | 1.000 | 2.536 | 2.144 | 0.846 | 0.0116 | 0.0388 | 0.087 | 0.262 |
OTNE | 2–100 | 8.8 | 0.997 | 0.701 | 0.720 | 1.027 | 0.0282 | 0.0940 | 0.552 | 1.66 |
ADBI | 1–100 | 19 | 0.999 | 0.422 | 0.402 | 0.953 | 0.0126 | 0.0421 | 0.161 | 0.483 |
AHDI | 1–100 | 12 | 0.998 | 0.411 | 0.450 | 1.094 | 0.0127 | 0.0424 | 0.175 | 0.525 |
MA | 5–100 | 8.0 | 1.000 | 0.200 | 0.226 | 1.126 | 0.0188 | 0.0627 | 0.280 | 0.841 |
ATII | 5–100 | 2.0 | 1.000 | 0.313 | 0.357 | 1.140 | 0.0315 | 0.105 | 1.02 | 3.05 |
HHCB | 1–100 | 17 | 0.999 | 3.092 | 3.452 | 1.117 | 0.0143 | 0.0478 | 0.665 | 1.99 |
MX | 8–100 | 11 | 1.000 | 0.088 | 0.094 | 1.066 | 0.166 | 0.553 | 0.944 | 2.83 |
AHTN | 1–100 | 11 | 0.999 | 5.703 | 6.496 | 1.139 | 0.00935 | 0.0312 | 0.171 | 0.512 |
MM | 5–100 | 13 | 0.999 | 0.278 | 0.315 | 1.133 | 0.046 | 0.153 | 0.350 | 1.05 |
MT | 5–100 | 9.7 | 1.000 | 1.095 | 1.208 | 1.103 | 0.0150 | 0.0499 | 0.193 | 0.579 |
MK | 5–100 | 14 | 0.999 | 0.025 | 0.023 | 0.918 | 0.106 | 0.354 | 0.183 | 0.550 |
Analyte | GC-SQ/MS (n = 3) | GC-QqQ-MS/MS (n = 3) | ||||
---|---|---|---|---|---|---|
Spking Level (ng) | Rapp (%) | RSD (%) | Spking Level (ng) | Rapp (%) | RSD (%) | |
DPMI | 4.0 | 113 | 14 | 0.40 | 83.0 | 3.4 |
OTNE | 4.0 | 114 | 4.8 | 2.0 | 108 | 9.3 |
ADBI | 4.0 | 82.1 | 1.9 | 0.40 | 102 | 17 |
AHDI | 4.0 | 97.0 | 5.4 | 0.40 | 96.1 | 7.7 |
MA | 10 | 105 | 10 | 1.0 | 100 | 5.5 |
ATII | 4.0 | 103 | 3.3 | 4.0 | 91.4 | 17 |
HHCB | 10 | 88.9 | 22 | 0.40 | 81.9 | 12 |
MX | 10 | 94.9 | 13 | 4.0 | 117 | 10 |
AHTN | 10 | 79.9 | 16 | 0.20 | 115 | 13 |
MM | 4.0 | 94.1 | 17 | 4.0 | 102 | 9.5 |
MT | 4.0 | 94.1 | 9.0 | 1.0 | 89.3 | 15 |
MK | 10 | 112 | 8.0 | 4.0 | 84.2 | 1.4 |
SMCs | 97.8 | 3.9 | 97.6 | 2.6 |
Analyte | GC-SQ/MS with SIM Mode | GC-QqQ-MS/MS with MRM Mode | |||
---|---|---|---|---|---|
Qualifier Ion (m/z) | Quantifier Ion (m/z) | Precursor Ion (m/z) | Qualifier Ion (m/z) [CE * (V)] | Quantifier Ion (m/z) [CE (V)] | |
DPMI | 206.0 | 191.0 | 206.1 | 191.1 (5) | 163.1 (5) |
OTNE | 119.0 | 191.0 | 191.1 | 109.2 (15) | 121.0 (15) |
ADBI | 244.0 | 229.0 | 244.0 | 173.1 (15) | 229.2 (15) |
AHDI | 244.0 | 229.0 | 244.1 | 187.1 (15) | 229.2 (15) |
MA | 268.0 | 253.0 | 268.1 | 91.0 (50) | 253.1 (5) |
ATII | 258.0 | 215.0 | 258.2 | 131.1 (30) | 173.1 (15) |
HHCB | 213.0 | 243.0 | 258.1 | 213.2 (15) | 243.2 (5) |
MX | 128.0 | 282.0 | 297.2 | 77.1 (50) | 282.1 (5) |
AHTN | 201.0 | 159.0 | 258.1 | 187.1 (15) | 243.2 (5) |
MM | 278.0 | 263.0 | 278.1 | 216.3 (15) | 263.2 (5) |
MT | 266.0 | 251.0 | 266.1 | 91.1 (50) | 251.1 (5) |
MK | 294.0 | 279.0 | 294.3 | 91.0 (50) | 189.1 (5) |
Fla-d10 | 106.0 | 212.0 | 106.2 | 78.0 (15) | 92.1 (15) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, J.; Lee, E.; Choi, N.R.; Lee, J.Y.; Yoo, J.W.; Ahn, D.S.; Ahn, Y.G. Comparison of Sample Preparation and Detection Methods for the Quantification of Synthetic Musk Compounds (SMCs) in Carp Fish Samples. Molecules 2024, 29, 5444. https://doi.org/10.3390/molecules29225444
Jo J, Lee E, Choi NR, Lee JY, Yoo JW, Ahn DS, Ahn YG. Comparison of Sample Preparation and Detection Methods for the Quantification of Synthetic Musk Compounds (SMCs) in Carp Fish Samples. Molecules. 2024; 29(22):5444. https://doi.org/10.3390/molecules29225444
Chicago/Turabian StyleJo, Jungmin, Eunjin Lee, Na Rae Choi, Ji Yi Lee, Jae Won Yoo, Dong Sik Ahn, and Yun Gyong Ahn. 2024. "Comparison of Sample Preparation and Detection Methods for the Quantification of Synthetic Musk Compounds (SMCs) in Carp Fish Samples" Molecules 29, no. 22: 5444. https://doi.org/10.3390/molecules29225444
APA StyleJo, J., Lee, E., Choi, N. R., Lee, J. Y., Yoo, J. W., Ahn, D. S., & Ahn, Y. G. (2024). Comparison of Sample Preparation and Detection Methods for the Quantification of Synthetic Musk Compounds (SMCs) in Carp Fish Samples. Molecules, 29(22), 5444. https://doi.org/10.3390/molecules29225444