Design, Synthesis and Crystal Structure of a Novel Fluorescence Probe for Zn2+ Based on Pyrano[3,2-c] Carbazole
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Reagent
2.2. Instruments
2.3. Synthesis of FP2
2.3.1. Synthesis of 4-(Chloromethyl) Pyrano[3,2-c] Carbazol-2(7H)-one (2)
2.3.2. Synthesis of 4-((Bis(pyridin-2-ylmethyl) amino) methyl) Pyrano[3,2-c] Carbazol-2(7H)-one (FP2)
2.4. Structure Determination
2.5. Preparation of Probe FP2 and Analytes
2.6. Preparation of Water Extract of Tea as Sample
2.7. The Influence of Metal Ion Types on Probe Fluorescence
2.8. The Procedures of Zn2+ Determination and Sample Analysis
2.9. Verification of Analytical Methods
2.10. Quantum Chemical Calculation
3. Results and Discussion
3.1. Crystal Structure of FP2
3.2. Fluorescence Spectrum Properties of FP2
3.3. Sensing Property of Probe FP2 Towards Zn2+
3.4. The Binding Mode of Zn2+ & FP2
4. Determination of Zn2+ in the Water Extract of Tea
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, J.; Yu, H.; Wang, S.; Qi, Y. Progress in research of zinc ion fluorescent probes for biological imaging. J. Lumin. 2024, 266, 120318. [Google Scholar] [CrossRef]
- Wetzel, R.; Bartzok, O.; Brauer, D.S. Influence of low amounts of zinc or magnesium substitution on ion release and apatite formation of Bioglass 45S5. J. Mater. Sci. Mater. Med. 2020, 31, 86. [Google Scholar] [CrossRef] [PubMed]
- Bangera, M.; GowdaK, G.; Sagurthi, S.R.; Murthy, M.R.N. Structural and functional insights into phosphomannose isomerase: The role of zinc and catalytic residues. Acta Crystallogr. Sect. D Struct. Biol. 2019, 75, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Haase, H.; Rink, L. Signal transduction in monocytes: The role of zinc ions. Biometals 2007, 20, 579–585. [Google Scholar] [CrossRef]
- Panzella, L.; Szewczyk, G.; Ischia, M.; Napolitano, A.; Sarna, T. Zinc-induced structural effects enhance oxygen consumption and superoxide generation in synthetic pheomelanins on UVA/visible light irradiation. Photochem. Photobiol. 2010, 86, 757–764. [Google Scholar] [CrossRef]
- Hussain, A.; Jiang, W.; Wang, X.; Shahid, S.; Saba, N.; Ahmad, M.; Dar, A.; Masood, S.U.; Imran, M.; Mustafa, A. Mechanistic Impact of Zinc Deficiency in Human Development. Front. Nutr. 2022, 9, 717064. [Google Scholar] [CrossRef]
- Jothimani, D.; Kailasam, E.; Danielraj, S.; Nallathambi, B.; Ramachandran, H.; Sekar, P.; Manoharan, S.; Ramani, V.; Narasimhan, G.; Kaliamoorthy, I.; et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int. J. Infect. Dis. 2020, 100, 343–349. [Google Scholar] [CrossRef]
- Pompano, L.M.; Boy, E. Effects of Dose and Duration of Zinc Interventions on Risk Factors for Type 2 Diabetes and Cardiovascular Disease: A Systematic Review and Meta-Analysis. Adv. Nutr. 2021, 12, 141–160. [Google Scholar] [CrossRef]
- Sauer, A.K.; Vela, H.; Vela, G.; Stark, P.; Barrera-Juarez, E.; Grabrucker, A.M. Zinc Deficiency in Men Over 50 and Its Implications in Prostate Disorders. Front. Oncol. 2020, 10, 553161. [Google Scholar] [CrossRef]
- Grüngreiff, K.; Gottstein, T.; Reinhold, D. Zinc Deficiency—An Independent Risk Factor in the Pathogenesis of Haemorrhagic Stroke? Nutrients 2020, 12, 3548. [Google Scholar] [CrossRef]
- Wessels, I.; Maywald, M.; Rink, L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017, 9, 1286. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.L. Operando Detection of Ion Insertion in Aqueous Battery Using Optical Fiber Sensor. Master’s Thesis, Jinan University, Guangzhou, China, 2021; pp. 1–56. [Google Scholar]
- Gu, B.B. Some Optical Sensors Based on Novel Structured Fibers and Their Applications. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2012; pp. 1–132. [Google Scholar]
- Yang, X.P.; Jia, Z.H.; Yang, X.C.; Luo, N.; Liao, X.J. Determination of trace zinc in water, soil and rabbit blood samples using cloud point extraction coupled with ultraviolet-visible spectrophotometry. Appl. Ecol. Environ. Res. 2017, 15, 537–548. [Google Scholar] [CrossRef]
- Lin, H.Y.; Cheng, P.Y.; Wan, C.F.; Wu, A.T. A turn-on and reversible fluorescence sensor for zinc ion. Analyst 2012, 137, 4415–4417. [Google Scholar] [CrossRef] [PubMed]
- Mulazimoglu, A.D.; Mulazimoglu, I.E.; Ozkan, E. Preconcentration with 1-nitroso-2-naphthol complexes on dowex MWC-1 resin: Determination of Cu and Zn at trace level in drinking water samples by ICP-AES. E-J. Chem. 2009, 6, 1176–1180. [Google Scholar] [CrossRef]
- Zhang, Q.Z.; Si, S.B.; Guo, H.Y.; Liu, A.Q. Determination of Zinc Oxide in Vulcanizate by Inductively Coupled Plasma Atomic Emission Spectrometry. China Rubber Ind. 2017, 64, 183–185. [Google Scholar]
- Wang, W.X.; Kale, V.S.; Cao, Z.; Kandambeth, S.; Zhang, W.L.; Ming, J.; Parvatkar, P.T.; Abou-Hamad, E.; Shekhah, O.; Cavallo, L. Phenanthroline covalent organic framework electrodes for high-performance zinc-ion supercapattery. ACS Energy Lett. 2020, 5, 2256–2264. [Google Scholar] [CrossRef]
- Jun, S.K.; Kim, H.W.; Lee, H.H.; Lee, J.H. Zirconia-incorporated zinc oxide eugenol has improved mechanical properties and cytocompatibility with human dental pulp stem cells. Dent. Mater. 2018, 34, 132–142. [Google Scholar] [CrossRef]
- Sun, T.; Hu, S.J.; Ge, X.S.; Zhang, X.Y. Simultaneous determination of calcium and zinc in calcium and zinc gluconates oral solution by ICP-MS. Drug Stand. China 2022, 23, 86–90. [Google Scholar]
- Wiqas, A.; LeSauter, J.; Taub, A.; Austin, R.N.; Silver, R. Elevated zinc transporter ZnT3 in the dentate gyrus of mast cell-deficient mice. Eur. J. Neurosci. 2020, 51, 1504–1513. [Google Scholar] [CrossRef]
- Pritts, J.D.; Hursey, M.S.; Michalek, J.L.; Batelu, S.; Stemmler, T.L.; Michel, S.L.J. Unraveling the RNA Binding Properties of the Iron–Sulfur Zinc Finger Protein CPSF30. Biochemistry 2020, 59, 970–982. [Google Scholar] [CrossRef]
- Wang, W.M.; Zhang, Y.; Wang, L.L.; Jing, Q.; Wang, X.L.; Xi, X.L.; Zhao, X.; Wang, H.F. Molecular structure of thermostable and zinc-ion-binding γ-class carbonic anhydrases. BioMetals 2019, 32, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Pooladi, A.; Bazargan-Lari, R. Simultaneous removal of copper and zinc ions by Chitosan/Hydroxyapatite/nano-Magnetite composite. J. Mater. Res. Technol. 2020, 9, 14841–14852. [Google Scholar] [CrossRef]
- Shabany, M.; Haji Shabani, A.; Dadfarnia, S.; Gorji, A.; Ahmadi, S.H. Solid phase extraction of zinc with octadecyl silica membrane disks modified by N,N’-disalicylidene-1, 2-phenylendiamine and determination by flame atomic absorption spectrometry. Eclética Química 2008, 33, 61–66. [Google Scholar] [CrossRef]
- Li, H.Y.; He, Z.Y.; Yang, Z.; Wang, Y.F. Determination of Copper and Zinc in Capacitor Oil by Complex Liquid-Liquid Extraction-Flame Atomic Absorption Spectrometry. Phys. Test. Chem. Anal. (Part B Chem. Anal.) 2017, 53, 726–728. [Google Scholar]
- Li, Y.; Song, R.; Zhao, J.; Liu, Y.; Zhao, J. Synthesis, structure, and properties of a novel naphthalene-derived fluorescent probe for the detection of Zn2+. Polyhedron 2023, 234, 116336. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Yang, X.N.; Wu, H.; Tao, Z.; Xiao, X. Construction of Supramolecular Fluorescent Probe by a Water-Soluble Pillar [5] arene and Its Recognition of Carbonate Ion. Bull. Chem. Soc. Jpn. 2022, 95, 116–120. [Google Scholar] [CrossRef]
- Tian, X.; Li, Y.; Zhang, Y.; Gao, E. A FLUORESCENT PROBE OF THE Zn (II) COMPLEX CONSTRUCTED BY TERPHENYL-3, 2 ″, 3 ″, 5, 5 ″, 5′′′-HEXACARBOXYLIC ACID AND 3, 5-BIS (1-IMIDAZOLE) PYRIDINE. J. Struct. Chem. 2021, 62, 1872–1879. [Google Scholar] [CrossRef]
- Hao, Y.Q.; Zhang, Y.T.; Sun, Q.L.; Chen, S.; Tang, Z.L.; Zeng, R.J.; Xu, M.T. Phenothiazine-coumarin-pyridine hybrid as an efficient fluorescent probe for ratiometric sensing hypochlorous acid. Microchem. J. 2021, 171, 106851. [Google Scholar] [CrossRef]
- Chen, X.Y.; Yan, L.P.; Liu, Y.H.; Yang, Y.D.; You, J.S. Switchable cascade C–H annulation to polycyclic pyryliums and pyridiniums: Discovering mitochondria-targeting fluorescent probes. Chem. Commun. 2020, 56, 15080–15083. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, M.; Zhan, H.B. Investigating the mechanism of fluorescence probe of quinoline derivatives for detecting phosgene in gas and liquid phases. Chem. Phys. Lett. 2022, 797, 139577. [Google Scholar] [CrossRef]
- Sun, F.T.; Liu, J.S.; Huang, Y.N.; Zhu, X.Y.; Liu, Y.; Zhang, L.; Yan, J.W. A quinoline derived DAD type fluorescent probe for sensing tetrameric transthyretin. Bioorganic Med. Chem. Lett. 2021, 52, 128408. [Google Scholar] [CrossRef] [PubMed]
- Velmurugan, K.; Vickram, R.; Jipsa, C.V.; Karthick, R.; Prabakaran, G.; Suresh, S.; Prabhu, J.; Velraj, G.; Tang, L.; Nandhakumar, R. Quinoline based reversible fluorescent probe for Pb2+; applications in milk, bioimaging and INHIBIT molecular logic gate. Food Chem. 2021, 348, 129098. [Google Scholar] [CrossRef]
- Mei, H.H.; Gu, X.; Wang, M.H.; Cai, Y.H.; Xu, K.X. A novel cysteine fluorescent probe based on benzothiazole and quinoline with a large stokes shift and application in living cell and mice. J. Photochem. Photobiol. A Chem. 2021, 418, 113335. [Google Scholar] [CrossRef]
- Guria, S.; Ghosh, A.; Mishra, T.; kumar Das, M.; Adhikary, A.; Adhikari, S. X-ray structurally characterized quinoline based fluorescent probes for pH sensing: Application in intracellular pH imaging; DFT calculations and fluorescent labelling. J. Photochem. Photobiol. A Chem. 2021, 407, 113074. [Google Scholar] [CrossRef]
- Du, K.; Sheng, L.; Luo, X.; Fan, G.; Shen, D.D.; Wu, C.L.; Shen, R.P. A ratiometric fluorescent probe based on quinoline for monitoring and imaging of Leucine aminopeptidase in liver tumor cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 249, 119328. [Google Scholar] [CrossRef]
- Tong, X.; Hao, L.G.; Song, X.; Wu, S.; Zhang, N.; Li, Z.T.; Chen, S.; Hou, P. A fast-responsive fluorescent probe based on a styrylcoumarin dye for visualizing hydrogen sulfide in living MCF-7 cells and zebrafish. RSC Adv. 2022, 12, 17846–17852. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhu, M.Q.; Xu, C.Y.; Fan, F.G.; Chen, P.P.; Wang, Y.; Li, D.Y. An ICT-Based Coumarin Fluorescent Probe for the Detection of Hydrazine and Its Application in Environmental Water Samples and Organisms. Front. Bioeng. Biotechnol. 2022, 10, 937489. [Google Scholar] [CrossRef]
- Chen, X.G.; Mei, Y.; Song, Q.H. A 3-(2′-nitro vinyl)-4-phenylselenyl coumarin as a fluorescent probe for distinguishing detection of Cys/Hcy and GSH. Dye. Pigment. 2022, 203, 110312. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.B.; Huo, F.J.; Chao, J.B.; Shuang, S.M. A two-site fluorescent probe for Cys/Hcy and SO2 detection and its application in cells and zebrafish. J. Photochem. Photobiol. A Chem. 2022, 430, 113959. [Google Scholar] [CrossRef]
- Gao, G.; Li, X.J.; Lü, C.W.; An, Y. Accurately selected 1, 3, 4-thiadiazole and coumarin unit to construct fluorescent probes that effectively detect 2, 4, 6-trinitrophenol. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 270, 120784. [Google Scholar] [CrossRef]
- Chen, X.G.; Mei, Y.; Li, H.; Song, Q.H. Rapid and sensitive detection of H2S by a 4-phenylselenium coumarin as a dual-active-site fluorescent probe. Sens. Actuators B Chem. 2022, 354, 131202. [Google Scholar] [CrossRef]
- Lu, G.W.; Dong, J.N.; Fan, C.B.; Tu, Y.; Pu, S.Z. A coumarin-based fluorescent probe for specific detection of cysteine in the lysosome of living cells. Bioorganic Chem. 2022, 119, 105558. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.F.; Wang, P.P.; Niu, L.F.; Liu, C.H.; Xiao, Y.Z.; Tang, Y.; Chen, Y. Carbazole-thiophene based fluorescent probe for selective detection of Cu2+ and its live cell imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 278, 121257. [Google Scholar] [CrossRef]
- Leslee, D.B.C.; Karuppannan, S. Unique carbazole–N, N-dimethylanline linked chalcone a colorimetric and fluorescent probe for picric acid explosive and its test strip analysis. J. Photochem. Photobiol. A Chem. 2022, 429, 113937. [Google Scholar] [CrossRef]
- Kang, Y.Q.; Wei, C.Y. Crescent-Shaped Carbazole Derivatives as Light-Up Fluorescence Probes for G-Quadruplex DNA and Live Cell Imaging. Chem. Biodivers. 2022, 19, e202101030. [Google Scholar] [CrossRef] [PubMed]
- Han, L.X.; Meng, C.; Zhang, D.W.; Liu, H.L.; Sun, B.G. Fabrication of a fluorescence probe via molecularly imprinted polymers on carbazole-based covalent organic frameworks for optosensing of ethyl carbamate in fermented alcoholic beverages. Anal. Chim. Acta 2022, 1192, 339381. [Google Scholar] [CrossRef]
- Liu, L.; Guo, C.Q.; Zhang, Q.S.; Xu, P.P.; Cui, Y.Y.; Zhu, W.J.; Fang, M.; Li, C. A hydrazone dual-functional fluorescent probe based on carbazole and coumarin groups for the detection of Cu2+ and ClO−: Application in live cell imaging and actual water samples. J. Photochem. Photobiol. A Chem. 2022, 423, 113593. [Google Scholar] [CrossRef]
- Wang, W.Y. Design, Synthesis of Fluorescent Probe Derived from Quinoline, Carbazole and Its Application in Food Inspection. Master’s Thesis, Jiangxi Agricultural University, Nanchang, China, 2016. [Google Scholar]
- Ahmad, T.; Waheed, A.; Abdel-Azeim, S.; Khan, S.; Ullah, N. Three new turn-on fluorescent sensors for the selective detection of Zn2+: Synthesis, properties and DFT studies. Arab. J. Chem. 2022, 15, 104002. [Google Scholar] [CrossRef]
- Chang, M.J.; Lee, M.H. A highly selective dual-channel fluorescent probe for the detection of Zn2+ ion and pyrophosphate in micelle. Dye. Pigment. 2018, 149, 915–920. [Google Scholar] [CrossRef]
- Lee, N.; Ly, N.H.; Kim, J.S.; Jung, H.S.; Joo, S.-W. A selective triarylmethine-based spectroscopic probe for Zn2+ ion monitoring. Dye. Pigment. 2019, 171, 107721. [Google Scholar] [CrossRef]
- Apra, E.; Bylaska, E.J.; De Jong, W.A.; Govind, N.; Kowalski, K.; Straatsma, T.P.; Valiev, M.; van Dam, H.J.J.; Alexeev, Y.; Anchell, J.; et al. NWChem: Past, present, and future. J. Chem. Phys. 2020, 152, 18. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.P.; Uvdal, P. New Scale Factors for Harmonic Vibrational Frequencies Using the B3LYP Density Functional Method with the Triple-ζ Basis Set 6-311+G(d,p). J. Phys. Chem. A 2005, 109, 2937–2941. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. Role Exact. Exch. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. Model. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F.W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Fukagawa, T.; Kitamura, N.; Kohtani, S.; Kitoh, S.; Kunimoto, K.K.; Nakagaki, R. Crystal Structure of an Angular Carbazole-Coumarin Hybrid Dye. Anal. Sci. X-ray Struct. Anal. Online 2006, 22, 219–220. [Google Scholar] [CrossRef]
- Hou, Q.F.; Wu, J.J.; Liang, J.M.; Liu, H.F.; He, Y.Q.; Zhang, R.; Cheng, H.; Chen, C.; Peng, D.Y. Synthesis and Photoluminescence Behavior of π-Conjugated 3-Substituted Isoquinoline Derivatives. Curr. Org. Chem. 2020, 24, 1517–1526. [Google Scholar] [CrossRef]
- Kolcu, F.; Kaya, İ. Carbazole-based Schiff base: A sensitive fluorescent ‘turn-on’chemosensor for recognition of Al (III) ions in aqueous-alcohol media. Arab. J. Chem. 2022, 15, 103935. [Google Scholar] [CrossRef]
- Yu, S.B. Cu~(2+),Hg~(2+) and Zn~(2+)Fluorescent Sensors Based on Interactions of Metal Lons and Peptides. Master’s Thesis, Liaocheng University, Liaocheng, China, 2021; pp. 1–89. [Google Scholar]
- Chen, W. Design, Synthesis and Application of Purine Schiff Base Fluorescent Probe. Master’s Thesis, Jiangsu University of Science and Technology, Zhenjiang, China, 2021; pp. 1–111. [Google Scholar]
- Wang, Y.L. Synthesis and Properties of Metal Ion Fluorescent Probe Molecules Basedon Rhodamine B. Master’s Thesis, Zhengzhou University, Zhengzhou, China, 2021; pp. 1–75. [Google Scholar]
- Lai, N.; Zhang, S.T.; Zou, F.; Li, Z.Y.; Yuan, L. Synthesis and properties of Zn~(2+) fluorescent probe based on glycine Schiff-base. Mod. Chem. Ind. 2023, 43, 242–245. [Google Scholar] [CrossRef]
- He, W.; Gong, L.; Deng, S.W.; Li, Z.Y.; Yuan, L. Synthesis and performance of four Zn~(2+) fluorescent probes based on Schiff bases. Chin. J. Inorg. Chem. 2023, 39, 1914–1922. [Google Scholar]
- Li, Z.Y.; Li, Y.D.; Yang, Q.Z.; Zhang, S.T.; Yuan, L. Fluorescent probes for Zn~(2+) ions synthesized based on salicylaldehyde Schiff-bases. Chem. Res. Appl. 2022, 34, 2552–2557. [Google Scholar]
- Xiao, Y.Q.; Shang, P.; Pu, X.Q.; Jiang, K.W.; Jiang, Z.H.; Sun, R.; Jiang, X.F. Multi-component self-assembled heteroleptic Cu (I) complex with defective coordination site as a fluorescent probe to detect Zn~(2+). J. Mol. Struct. 2022, 1263, 133120. [Google Scholar] [CrossRef]
- Yousefi, S.; Makarem, S.; Alahmad, W.; Zare, F.D.; Tabani, H. Evaluation of complexing agents in the gel electro-membrane extraction: An efficient approach for the quantification of zinc (II) ions in water samples. Talanta 2022, 238, 123031. [Google Scholar] [CrossRef] [PubMed]
- Guan, C.X.; Guo, Y.P. Photoelectric colorimetry for determination of zinc in water. Clean. World 2020, 36, 38–39. (In Chinese) [Google Scholar]
Empirical Formula | C28H24N4O3 | V (Å3) | 2388.0(8) |
---|---|---|---|
Formula weight | 464.51 | Z | 4 |
Temperature (K) | 296(2) | Dc (g/cm3) | 1.292 |
Wavelength (Å) | 0.71073 | Absorption coefficient (mm−1) | 0.086 |
Crystal system | Monoclinic | F(000) | 976 |
Space group | P21/c | Crystal size (mm) | 0.220 × 0.200 × 0.160 |
a (Å) | 16.762(3) | Θ range for data collection (°) | 2.520–25.496 |
b (Å) | 8.8948(18) | Reflections collected | 16,936 |
c (Å) | 16.606(3) | Independent reflection | 4440 [R(int) = 0.0450] |
α (°) | 90 | Goodness-of-fit on F2 | 1.014 |
β (°) | 105.301(3) | Final R indices [I > 2σ(I)] | R1 = 0.0523, wR2 = 0.1455 |
γ (°) | 90 | R indices (all data) | R1 = 0.0945, wR2 = 0.1812 |
Bond | [Å] | Bond | [Å] | Bond | [Å] |
---|---|---|---|---|---|
C(1)-C(6) | 1.390(4) | C(10)-C(11) | 1.408(3) | C(18)-C(19) | 1.365(4) |
C(1)-C(2) | 1.394(4) | C(11)-C(12) | 1.398(3) | C(19)-C(20) | 1.381(4) |
C(1)-N(1) | 1.396(4) | C(11)-C(15) | 1.451(3) | C(20)-C(21) | 1.351(4) |
C(2)-C(3) | 1.370(5) | C(12)-O(1) | 1.366(3) | C(21)-C(22) | 1.343(5) |
C(3)-C(4) | 1.361(5) | C(13)-O(2) | 1.208(3) | C(22)-N(3) | 1.336(4) |
C(4)-C(5) | 1.378(4) | C(13)-O(1) | 1.358(3) | C(23)-N(2) | 1.464(3) |
C(5)-C(6) | 1.392(4) | C(13)-C(14) | 1.432(4) | C(23)-C(24) | 1.500(3) |
C(6)-C(7) | 1.458(4) | C(14)-C(15) | 1.338(3) | C(24)-N(4) | 1.336(3) |
C(7)-C(12) | 1.379(3) | C(15)-C(16) | 1.509(3) | C(24)-C(25) | 1.377(4) |
C(7)-C(8) | 1.391(4) | C(16)-N(2) | 1.457(3) | C(25)-C(26) | 1.374(4) |
C(8)-N(1) | 1.389(4) | C(17)-N(2) | 1.459(3) | C(26)-C(27) | 1.362(4) |
C(8)-C(9) | 1.391(4) | C(17)-C(18) | 1.510(4) | C(27)-C(28) | 1.366(5) |
C(9)-C(10) | 1.382(4) | C(18)-N(3) | 1.328(3) | C(28)-N(4) | 1.343(4) |
Angles | [°] | Angles | [°] | Angles | [°] |
C(6)-C(1)-C(2) | 122.3(3) | C(12)-C(11)-C(15) | 116.9(2) | C(21)-C(20)-C(19) | 118.8(3) |
C(6)-C(1)-N(1) | 109.4(3) | C(10)-C(11)-C(15) | 124.6(2) | C(22)-C(21)-C(20) | 118.4(3) |
C(2)-C(1)-N(1) | 128.3(3) | O(1)-C(12)-C(7) | 116.4(2) | N(3)-C(22)-C(21) | 124.2(3) |
C(3)-C(2)-C(1) | 115.9(3) | O(1)-C(12)-C(11) | 122.3(2) | N(2)-C(23)-C(24) | 112.7(2) |
C(4)-C(3)-C(2) | 123.2(3) | C(7)-C(12)-C(11) | 121.3(2) | N(4)-C(24)-C(25) | 121.2(2) |
C(3)-C(4)-C(5) | 121.1(3) | O(2)-C(13)-O(1) | 116.5(2) | N(4)-C(24)-C(23) | 115.2(2) |
C(4)-C(5)-C(6) | 118.1(3) | O(2)-C(13)-C(14) | 126.8(3) | C(25)-C(24)-C(23) | 123.5(2) |
C(1)-C(6)-C(5) | 119.5(3) | O(1)-C(13)-C(14) | 116.8(2) | C(26)-C(25)-C(24) | 120.4(3) |
C(1)-C(6)-C(7) | 106.2(3) | C(15)-C(14)-C(13) | 123.7(3) | C(27)-C(26)-C(25) | 118.7(3) |
C(5)-C(6)-C(7) | 134.3(3) | C(14)-C(15)-C(11) | 118.5(2) | C(26)-C(27)-C(28) | 118.2(3) |
C(12)-C(7)-C(8) | 118.5(3) | C(14)-C(15)-C(16) | 121.0(2) | N(4)-C(28)-C(27) | 124.1(3) |
C(12)-C(7)-C(6) | 134.1(2) | C(11)-C(15)-C(16) | 120.4(2) | C(8)-N(1)-C(1) | 108.3(2) |
C(8)-C(7)-C(6) | 107.3(2) | N(2)-C(16)-C(15) | 113.4(2) | C(16)-N(2)-C(17) | 111.2(2) |
N(1)-C(8)-C(9) | 128.8(3) | N(2)-C(17)-C(18) | 113.4(2) | C(16)-N(2)-C(23) | 110.93(19) |
N(1)-C(8)-C(7) | 108.9(3) | N(3)-C(18)-C(19) | 121.2(2) | C(17)-N(2)-C(23) | 110.79(19) |
C(9)-C(8)-C(7) | 122.3(3) | N(3)-C(18)-C(17) | 114.8(2) | C(18)-N(3)-C(22) | 117.7(3) |
C(10)-C(9)-C(8) | 118.0(2) | C(19)-C(18)-C(17) | 123.9(2) | C(24)-N(4)-C(28) | 117.4(2) |
C(9)-C(10)-C(11) | 121.5(3) | C(18)-C(19)-C(20) | 119.7(3) | C(13)-O(1)-C(12) | 121.7(2) |
C(12)-C(11)-C(10) | 118.4(2) |
Analytical Method | LOD (μmol/L) | Ref. |
---|---|---|
fluorescence probe technology | 0.0137 | [67] |
fluorescence probe technology | 0.0922 | [68] |
fluorescence probe technology | 0.066 | [69] |
fluorescence probe technology | 0.298 | [70] |
flame atomic absorption spectrometry | 0.0765 | [71] |
Photoelectric colorimetry | 1.2236 | [72] |
fluorescence probe technology | 0.0065 | Our work |
Method | The Concentration of Zn2+ in the Water Extract of Tea | Standard Sample | The Concentration of Zn2+ After Added Standard Sample | Recovery (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | Average | 1 + Ions | 2 + Ions | 3 + Ions | Average | |||
FAAS | 42.5 | 42.7 | 39.5 | 41.6 ± 1.8 | 10 (Zn2+) | 52.9 | 51.9 | 51.0 | 51.9 ± 1.0 | 98~104.8 |
FP2 | 42.6 | 41.9 | 44.8 | 43.1 ± 1.5 | 10 (Zn2+) | 51.0 | 50.3 | 52.7 | 51.3 ± 1.2 | 97~101 |
Method | Range (μg/mL) | RSD (%) | CV (%) | |
---|---|---|---|---|
FP2 | 41.9~44.8 | 43.1 | 1.51 | 3.5 |
FAAS | 39.5~42.7 | 41.6 | 1.79 | 4.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.; Fang, Q.; Xiao, S.; Wang, J.; Lin, P.; Guo, C.; Cao, H.; Yin, Z.; Dong, L.; Peng, D. Design, Synthesis and Crystal Structure of a Novel Fluorescence Probe for Zn2+ Based on Pyrano[3,2-c] Carbazole. Molecules 2024, 29, 5454. https://doi.org/10.3390/molecules29225454
Xie Z, Fang Q, Xiao S, Wang J, Lin P, Guo C, Cao H, Yin Z, Dong L, Peng D. Design, Synthesis and Crystal Structure of a Novel Fluorescence Probe for Zn2+ Based on Pyrano[3,2-c] Carbazole. Molecules. 2024; 29(22):5454. https://doi.org/10.3390/molecules29225454
Chicago/Turabian StyleXie, Ziyin, Qingwen Fang, Shuzhen Xiao, Jie Wang, Ping Lin, Chunmei Guo, Huihua Cao, Zhongping Yin, Lihong Dong, and Dayong Peng. 2024. "Design, Synthesis and Crystal Structure of a Novel Fluorescence Probe for Zn2+ Based on Pyrano[3,2-c] Carbazole" Molecules 29, no. 22: 5454. https://doi.org/10.3390/molecules29225454
APA StyleXie, Z., Fang, Q., Xiao, S., Wang, J., Lin, P., Guo, C., Cao, H., Yin, Z., Dong, L., & Peng, D. (2024). Design, Synthesis and Crystal Structure of a Novel Fluorescence Probe for Zn2+ Based on Pyrano[3,2-c] Carbazole. Molecules, 29(22), 5454. https://doi.org/10.3390/molecules29225454