The Influence of Fermentation Technology on the Functional and Sensory Properties of Hemp Bread
Abstract
:1. Introduction
2. Results and Discussion
2.1. Basic Physicochemical Characteristics
2.2. Amino Acid Composition
2.3. SDS-PAGE Electrophoresis
2.4. Fatty Acid Profile
2.5. Consumer Acceptance
2.6. Quantitative Descriptive Analysis
2.7. Clustering of Sensory and Instrumental Data
3. Materials and Methods
3.1. Preparation of the Sourdough
3.2. Bread Production
3.2.1. Standard Bread
3.2.2. Sourdough Breads
3.3. Analysis of Basic Features
3.4. Color Analysis
3.5. Amino Acid Composition
3.6. The Protein Nutritional Quality
3.7. SDS-PAGE Electrophoresis
3.8. Determination of Fatty Acid Profile
3.9. Analysis of Volatile Compounds Using the Electronic Nose
3.10. Analysis of Chemical Compounds Using Electronic Tongue
3.11. Texture Analysis
3.12. Quantitative Descriptive Analysis
3.13. Consumer Acceptance Analysis
3.14. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crini, G.; Lichtfouse, E.; Chanet, G.; Morin-Crini, N. Traditional and New Applications of Hemp. In Sustainable Agriculture Reviews 42: Hemp Production and Applications; Crini, G., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 37–87. ISBN 978-3-030-41384-2. [Google Scholar]
- FAO; WHO. Sustainable Healthy Diets—Guiding Principles; World Health Organization: Rome, Italy, 2019. [Google Scholar]
- Burton, R.A.; Andres, M.; Cole, M.; Cowley, J.M.; Augustin, M.A. Industrial Hemp Seed: From the Field to Value-Added Food Ingredients. J. Cannabis Res. 2022, 4, 45. [Google Scholar] [CrossRef] [PubMed]
- Rusu, I.E.; Marc, R.A.; Mureşan, C.C.; Mureşan, A.E.; Mureşan, V.; Pop, C.R.; Chiş, M.S.; Man, S.M.; Filip, M.R.; Onica, B.-M.; et al. Hemp (Cannabis sativa L.) Flour-Based Wheat Bread as Fortified Bakery Product. Plants 2021, 10, 1558. [Google Scholar] [CrossRef] [PubMed]
- Siano, F.; Moccia, S.; Picariello, G.; Russo, G.L.; Sorrentino, G.; Di Stasio, M.; La Cara, F.; Volpe, M.G. Comparative Study of Chemical, Biochemical Characteristic and ATR-FTIR Analysis of Seeds, Oil and Flour of the Edible Fedora Cultivar Hemp (Cannabis sativa L.). Molecules 2018, 24, 83. [Google Scholar] [CrossRef] [PubMed]
- Teh, S.-S.; Birch, J. Physicochemical and Quality Characteristics of Cold-Pressed Hemp, Flax and Canola Seed Oils. J. Food Compos. Anal. 2013, 30, 26–31. [Google Scholar] [CrossRef]
- Mamone, G.; Picariello, G.; Ramondo, A.; Nicolai, M.A.; Ferranti, P. Production, Digestibility and Allergenicity of Hemp (Cannabis sativa L.) Protein Isolates. Food Res. Int. 2019, 115, 562–571. [Google Scholar] [CrossRef]
- Vonapartis, E.; Aubin, M.-P.; Seguin, P.; Mustafa, A.F.; Charron, J.-B. Seed Composition of Ten Industrial Hemp Cultivars Approved for Production in Canada. J. Food Compos. Anal. 2015, 39, 8–12. [Google Scholar] [CrossRef]
- Callaway, J.C. Hempseed as a Nutritional Resource: An Overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Trovato, E.; Arena, K.; La Tella, R.; Rigano, F.; Laganà Vinci, R.; Dugo, P.; Mondello, L.; Guarnaccia, P. Hemp Seed-Based Food Products as Functional Foods: A Comprehensive Characterization of Secondary Metabolites Using Liquid and Gas Chromatography Methods. J. Food Compos. Anal. 2023, 117, 105151. [Google Scholar] [CrossRef]
- Mikulec, A.; Kowalski, S.; Sabat, R.; Skoczylas, Ł.; Tabaszewska, M.; Wywrocka-Gurgul, A. Hemp Flour as a Valuable Component for Enriching Physicochemical and Antioxidant Properties of Wheat Bread. LWT 2019, 102, 164–172. [Google Scholar] [CrossRef]
- Irakli, M.; Tsaliki, E.; Kalivas, A.; Kleisiaris, F.; Sarrou, E.; Cook, C.M. Effect of Genotype and Growing Year on the Nutritional, Phytochemical, and Antioxidant Properties of Industrial Hemp (Cannabis Sativa L.) Seeds. Antioxidants 2019, 8, 491. [Google Scholar] [CrossRef] [PubMed]
- Russo, R.; Reggiani, R. Evaluation of Protein Concentration, Amino Acid Profile and Antinutritional Compounds in Hempseed Meal from Dioecious and Monoecious Varieties. Am. J. Plant Sci. 2015, 6, 14–22. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Acamovic, T.; Bedford, M.R. The Effects of Phytase and Phytic Acid on the Loss of Endogenous Amino Acids and Minerals from Broiler Chickens. Br. Poult. Sci. 2004, 45, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Hassan, I.a.G.; Elzubeir, E.A.; El Tinay, A.H. Growth and Apparent Absorption of Minerals in Broiler Chicks Fed Diets with Low or High Tannin Contents. Trop. Anim. Health Prod. 2003, 35, 189–196. [Google Scholar] [CrossRef]
- Francis, G.; Kerem, Z.; Makkar, H.P.S.; Becker, K. The Biological Action of Saponins in Animal Systems: A Review. Br. J. Nutr. 2002, 88, 587–605. [Google Scholar] [CrossRef]
- Sarwar, G. The Protein Digestibility-Corrected Amino Acid Score Method Overestimates Quality of Proteins Containing Antinutritional Factors and of Poorly Digestible Proteins Supplemented with Limiting Amino Acids in Rats. J. Nutr. 1997, 127, 758–764. [Google Scholar] [CrossRef]
- Islam, M.A.; Islam, S. Sourdough Bread Quality: Facts and Factors. Foods 2024, 13, 2132. [Google Scholar] [CrossRef]
- Casado, A.; Álvarez, A.; González, L.; Fernández, D.; Marcos, J.L.; Tornadijo, M.E. Effect of Fermentation on Microbiological, Physicochemical and Physical Characteristics of Sourdough and Impact of Its Use on Bread Quality. Czech J. Food Sci. 2017, 35, 496–506. [Google Scholar] [CrossRef]
- Absi, Y.; Revilla, I.; Vivar-Quintana, A.M. Commercial Hemp (Cannabis sativa Subsp. Sativa) Proteins and Flours: Nutritional and Techno-Functional Properties. Appl. Sci. 2023, 13, 10130. [Google Scholar] [CrossRef]
- Mennah-Govela, Y.A.; Bornhorst, G.M. Food Buffering Capacity: Quantification Methods and Its Importance in Digestion and Health. Food Funct. 2021, 12, 543–563. [Google Scholar] [CrossRef]
- Arendt, E.K.; Ryan, L.A.M.; Dal Bello, F. Impact of Sourdough on the Texture of Bread. Food Microbiol. 2007, 24, 165–174. [Google Scholar] [CrossRef]
- Ma, S.; Wang, Z.; Guo, X.; Wang, F.; Huang, J.; Sun, B.; Wang, X. Sourdough Improves the Quality of Whole-Wheat Flour Products: Mechanisms and Challenges-A Review. Food Chem. 2021, 360, 130038. [Google Scholar] [CrossRef]
- Bibi, A.; Xiong, Y.; Rajoka, M.S.R.; Mehwish, H.M.; Radicetti, E.; Umair, M.; Shoukat, M.; Khan, M.K.I.; Aadil, R.M. Recent Advances in the Production of Exopolysaccharide (EPS) from Lactobacillus Spp. and Its Application in the Food Industry: A Review. Sustainability 2021, 13, 12429. [Google Scholar] [CrossRef]
- Komlenić, D.K.; Slačanac, V.; Hasenay, D.; Ugarčić-Hardi, Ž.; Jukić, M.; Tosenberger, M.; Krstanović, V. Effect of Sourdough Fermentation Processing Parameters on pH Values Changes during Bread Dough Fermentation. In Proceedings of the 5th International Congress Flour-Bread ’09 and 7th Croatian Congress of Cereal Technologists, Opatija, Croatia, 21–23 October 2009; Faculty of Food Technology, Osijek, University of Josip Juraj Strossmayer: Opatija, Croatia, 2009; pp. 385–393. [Google Scholar]
- Young, L.S. Applications of Texture Analysis to Dough and Bread. In Breadmaking, 2nd ed.; Cauvain, S.P., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2012; pp. 562–579. ISBN 978-0-85709-060-7. [Google Scholar]
- van de Noort, M. Chapter 11—Lupin: An Important Protein and Nutrient Source. In Sustainable Protein Sources, 2nd ed.; Nadathur, S., Wanasundara, J.P.D., Scanlin, L., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 219–239. ISBN 978-0-323-91652-3. [Google Scholar]
- Goulding, D.A.; Fox, P.F.; O’Mahony, J.A. Chapter 2—Milk Proteins: An Overview. In Milk Proteins, 3rd ed.; Boland, M., Singh, H., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 21–98. ISBN 978-0-12-815251-5. [Google Scholar]
- Horstman, A.M.H.; Huppertz, T. Milk Proteins: Processing, Gastric Coagulation, Amino Acid Availability and Muscle Protein Synthesis. Crit. Rev. Food Sci. Nutr. 2023, 63, 10267–10282. [Google Scholar] [CrossRef]
- Lonnie, M.; Laurie, I.; Myers, M.; Horgan, G.; Russell, W.R.; Johnstone, A.M. Exploring Health-Promoting Attributes of Plant Proteins as a Functional Ingredient for the Food Sector: A Systematic Review of Human Interventional Studies. Nutrients 2020, 12, 2291. [Google Scholar] [CrossRef]
- Shen, P.; Gao, Z.; Fang, B.; Rao, J.; Chen, B. Ferreting out the Secrets of Industrial Hemp Protein as Emerging Functional Food Ingredients. Trends Food Sci. Technol. 2021, 112, 1–15. [Google Scholar] [CrossRef]
- Yano, H.; Fu, W. Hemp: A Sustainable Plant with High Industrial Value in Food Processing. Foods 2023, 12, 651. [Google Scholar] [CrossRef]
- Morifuji, M.; Ishizaka, M.; Baba, S.; Fukuda, K.; Matsumoto, H.; Koga, J.; Kanegae, M.; Higuchi, M. Comparison of Different Sources and Degrees of Hydrolysis of Dietary Protein: Effect on Plasma Amino Acids, Dipeptides, and Insulin Responses in Human Subjects. J. Agric. Food Chem. 2010, 58, 8788–8797. [Google Scholar] [CrossRef]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Bartkiene, E.; Klupsaite, D.; Starkute, V.; Mockus, E.; Bartkevics, V.; Ruibys, R.; Batkeviciute, G.; Özogul, F.; Khalid, M.U.; Rocha, J.M. Characteristics of Lacto-Fermented Whey, Milk, Hemp and Lupine Proteins. LWT 2024, 201, 116259. [Google Scholar] [CrossRef]
- Kowalski, S.; Mikulec, A.; Mickowska, B.; Skotnicka, M.; Mazurek, A. Wheat Bread Supplementation with Various Edible Insect Flours. Influence of Chemical Composition on Nutritional and Technological Aspects. LWT 2022, 159, 113220. [Google Scholar] [CrossRef]
- Koehler, P.; Wieser, H. Chemistry of Cereal Grains. In Handbook on Sourdough Biotechnology; Gobbetti, M., Gänzle, M., Eds.; Springer: New York, NY, USA, 2013; pp. 11–45. ISBN 978-1-4614-5425-0. [Google Scholar]
- Geisslitz, S.; Shewry, P.; Brouns, F.; America, A.H.P.; Caio, G.P.I.; Daly, M.; D’Amico, S.; De Giorgio, R.; Gilissen, L.; Grausgruber, H.; et al. Wheat ATIs: Characteristics and Role in Human Disease. Front. Nutr. 2021, 8, 667370. [Google Scholar] [CrossRef]
- Wieser, H. Chemistry of Gluten Proteins. Food Microbiol. 2007, 24, 115–119. [Google Scholar] [CrossRef]
- Wang, Q.; Xiong, Y.L. Processing, Nutrition, and Functionality of Hempseed Protein: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 936–952. [Google Scholar] [CrossRef]
- Liu, M.; Toth, J.A.; Childs, M.; Smart, L.B.; Abbaspourrad, A. Composition and Functional Properties of Hemp Seed Protein Isolates from Various Hemp Cultivars. J. Food Sci. 2023, 88, 942–951. [Google Scholar] [CrossRef]
- Martynowicz, H.; Jodkowska, A.; Nowacki, D.; Mazur, G. A Closer Look at Polyunsaturated Fatty Acids and Hypertension. Postępy Hig. I Med. Doświadczalnej 2019, 73, 102–108. [Google Scholar] [CrossRef]
- Kowalski, S.; Mikulec, A.; Skotnicka, M.; Mickowska, B.; Makarewicz, M.; Sabat, R.; Wywrocka-Gurgul, A.; Mazurek, A. Effect of the Addition of Edible Insect Flour from Yellow Mealworm (Tenebrio molitor) on the Sensory Acceptance, and the Physicochemical and Textural Properties of Sponge Cake. Pol. J. Food Nutr. Sci. 2022, 72, 393–405. [Google Scholar] [CrossRef]
- Kowalski, S.; Mikulec, A.; Pustkowiak, H. Sensory Assessment and Physicochemical Properties of Wheat Bread Supplemented with Chia Seeds. Pol. J. Food Nutr. Sci. 2020, 70, 387–397. [Google Scholar] [CrossRef]
- Torres-Castillo, N.; Campos-Perez, W.; Gonzalez-Becerra, K.; Hernandez-Cañaveral, I.; Vizmanos, B.; Muñoz-Valle, J.; Martinez-Lopez, E. Waist Circumference Is an Anthropometric Parameter That Identifies Women with Metabolically Unhealthy Phenotypes. Nutrients 2018, 10, 447. [Google Scholar] [CrossRef]
- Albracht-Schulte, K.; Kalupahana, N.S.; Ramalingam, L.; Wang, S.; Rahman, S.M.; Robert-McComb, J.; Moustaid-Moussa, N. Omega-3 Fatty Acids in Obesity and Metabolic Syndrome: A Mechanistic Update. J. Nutr. Biochem. 2018, 58, 1–16. [Google Scholar] [CrossRef]
- Švec, I.; Hrušková, M.; Jurinová, I. Technological and Nutritional Aspect of Different Hemp Types Addition: Comparison of Flour and Wholemeal Effect. Croat. J. Food Sci. Technol. 2015, 7, 68–75. [Google Scholar] [CrossRef]
- Capcanari, T.; Covaliov, E.; Negoița, C.; Siminiuc, R.; Chirsanova, A.; Reșitca, V.; Țurcanu, D. Hemp Seed Cake Flour as a Source of Proteins, Minerals and Polyphenols and Its Impact on the Nutritional, Sensorial and Technological Quality of Bread. Foods 2023, 12, 4327. [Google Scholar] [CrossRef]
- Aloo, S.O.; Mwiti, G.; Ngugi, L.W.; Oh, D.-H. Uncovering the Secrets of Industrial Hemp in Food and Nutrition: The Trends, Challenges, and New-Age Perspectives. Crit. Rev. Food Sci. Nutr. 2024, 64, 5093–5112. [Google Scholar] [CrossRef]
- Lukin, A.; Bitiutskikh, K. On Potential Use of Hemp Flour in Bread Production. Bulletin of the Transilvania University of Brasov. Forestry, Wood Industry. Agric. Food Eng. 2017, 10, 113–118. [Google Scholar]
- Merlino, M.; Tripodi, G.; Cincotta, F.; Prestia, O.; Miller, A.; Gattuso, A.; Verzera, A.; Condurso, C. Technological, Nutritional, and Sensory Characteristics of Gnocchi Enriched with Hemp Seed Flour. Foods 2022, 11, 2783. [Google Scholar] [CrossRef]
- Skrajda-Brdak, M.; Konopka, I.; Tańska, M.; Czaplicki, S. Changes in the Content of Free Phenolic Acids and Antioxidative Capacity of Wholemeal Bread in Relation to Cereal Species and Fermentation Type. Eur. Food Res. Technol. 2019, 245, 2247–2256. [Google Scholar] [CrossRef]
- Majzoobi, M.; Farahnaky, A.; Agah, S. Properties and Shelf-Life of Part-and Full-Baked Flat Bread (Barbari) at Ambient and Frozen Storage. J. Agric. Sci. Technol. 2011, 13, 1077–1090. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC—Association of Analytical Chemists International: Gainthersburg, MD, USA, 2006. [Google Scholar]
- Carbohydrates in Human Nutrition. Report of a Joint FAO/WHO Expert Consultation. FAO Food and Nutrition Paper-66. 1998. pp. 1–140. Available online: https://www.fao.org/4/w8079e/w8079e00.htm (accessed on 19 July 2024).
- Moore, S.; Stein, W.H. Chromatography of Amino Acids on Sulfonated Polystyrene Resins. J. Biol. Chem. 1951, 192, 663–681. [Google Scholar] [CrossRef]
- Davidson, I. Hydrolysis of Samples for Amino Acid Analysis. In Protein Sequencing Protocols; Smith, B.J., Ed.; Methods in Molecular BiologyTM; Humana Press: Totowa, NJ, USA, 2003; pp. 111–122. ISBN 978-1-59259-342-2. [Google Scholar]
- Smith, A.J. Post Column Amino Acid Analysis. In Protein Sequencing Protocols; Smith, B.J., Ed.; Methods in Molecular Biology TM; Humana Press: Totowa, NJ, USA, 2003; pp. 133–141. ISBN 978-1-59259-342-2. [Google Scholar]
- FAO. Dietary Protein Quality Evaluation in Human Nutrition. Report of an FAQ Expert Consultation. FAO Food and Nutrition Paper-92. 2013. pp. 1–66. Available online: https://openknowledge.fao.org/items/53cf3d0a-1db2-4667-823a-e9d73278efe9 (accessed on 19 July 2024).
- Żyżelewicz, D.; Oracz, J.; Bilicka, M.; Kulbat-Warycha, K.; Klewicka, E. Influence of Freeze-Dried Phenolic-Rich Plant Powders on the Bioactive Compounds Profile, Antioxidant Activity and Aroma of Different Types of Chocolates. Molecules 2021, 26, 7058. [Google Scholar] [CrossRef] [PubMed]
- Raithore, S.; Bai, J.; Plotto, A.; Manthey, J.; Irey, M.; Baldwin, E. Electronic Tongue Response to Chemicals in Orange Juice That Change Concentration in Relation to Harvest Maturity and Citrus Greening or Huanglongbing (HLB) Disease. Sensors 2015, 15, 30062–30075. [Google Scholar] [CrossRef] [PubMed]
- ISO 13299:2016; Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile. Available online: https://www.iso.org/standard/58042.html (accessed on 9 February 2023).
- ISO 8586:2023; Sensory Analysis—Selection and Training of Sensory Assessors. Available online: https://www.iso.org/standard/76667.html (accessed on 8 October 2024).
Sample | Water Content | Protein | Fat | Ash | Insoluble Fiber | Soluble Fiber | Total Fiber | Carbohydrate |
---|---|---|---|---|---|---|---|---|
[g/100 g d.m.] | ||||||||
WF | 13.34 b ± 0.16 | 13.18 a ± 0.13 | 1.47 a ± 0.00 | 0.67 a ± 0.02 | 1.59 a ± 0.02 | 1.31 a ± 0.04 | 2.90 a ± 0.07 | 81.78 b ± 0.04 |
HF | 8.08 a ± 0.04 | 28.01 b ± 0.98 | 12.71 b ± 0.08 | 6.86 b ± 0.02 | 42.70 b ± 0.15 | 8.21 b ± 0.12 | 50.91 b ± 0.03 | 1.49 a ± 0.13 |
HB1 | 7.40 ab ± 0.01 | 16.10 a ± 0.25 | 2.87 a ± 0.10 | 3.41 a ± 0.02 | 6.54 a ± 0.03 | 2.42 a ± 0.02 | 8.97 b ± 0.05 | 68.65 a ± 0.13 |
HB2 | 7.32 a ± 0.08 | 15.72 a ± 0.20 | 2.76 a ± 0.08 | 3.36 a ± 0.05 | 6.44 a ± 0.11 | 2.44 a ± 0.05 | 8.87 ab ± 0.07 | 69.19 a ± 0.19 |
HB3 | 7.37 ab ± 0.03 | 15.85 a ± 0.27 | 2.94 a ± 0.11 | 3.36 a ± 0.03 | 6.33 a ± 0.11 | 2.37 a ± 0.05 | 8.70 a ± 0.05 | 69.15 a ± 0.19 |
HB4 | 7.48 b ± 0.06 | 15.80 a ± 0.22 | 2.75 a ± 0.10 | 3.35 a ± 0.01 | 6.45 a ± 0.03 | 2.40 a ± 0.16 | 8.86 ab ± 0.13 | 69.25 a ± 0.02 |
Bread Sample | Volume (mL) | Weight (g) | Specific Volume (mL/g) | Volume-Yield (mL/100 g Flour) |
---|---|---|---|---|
HB1 | 672 b ± 12 | 213 a ± 3 | 3.16 c ± 0.08 | 457 b ± 8 |
HB2 | 614 a ± 11 | 215 ab ± 2 | 2.86 a ± 0.06 | 418 a ± 7 |
HB3 | 629 a ± 6 | 214 a ± 3 | 2.95 b ± 0.05 | 428 a ± 4 |
HB4 | 618 a ± 18 | 217 b ± 2 | 2.85 a ± 0.07 | 420 a ± 12 |
Bread Sample | L* (D65) | a* (D65) | b* (D65) | ΔE |
---|---|---|---|---|
HB1 | 42.70 b ± 0.92 | 3.02 a ± 0.20 | 14.46 a ± 0.63 | - |
HB2 | 40.76 a ± 0.42 | 4.09 d ± 0.06 | 18.31 bc ± 0.26 | 4.46 b ± 0.25 |
HB3 | 43.71 b ± 1.73 | 3.59 c ± 0.15 | 18.69 c ± 0.23 | 4.64 b ± 0.61 |
HB4 | 42.19 b ± 1.16 | 3.33 b ± 0.06 | 18.02 b ± 0.31 | 3.76 a ± 0.34 |
Bread Sample | Day of Analysis | Hardness [N] | Cohesiveness [-] | Chewiness [N] | Resilience [-] | Moisture Content [%] |
---|---|---|---|---|---|---|
HB1 | 0 | 15.38 ab ± 2.14 | 0.765 e ± 0.070 | 11.1 a ± 1.3 | 0.424 d ± 0.051 | 42.45 a ± 0.25 |
HB2 | 0 | 16.23 abc ± 1.89 | 0.708 d ± 0.021 | 11.0 a ± 1.4 | 0.397 d ± 0.019 | 44.28 bcde ± 0.66 |
HB3 | 0 | 15.20 ab ± 2.70 | 0.748 de ± 0.009 | 10.8 a ± 2.0 | 0.425 d ± 0.010 | 44.17 bcde ± 0.93 |
HB4 | 0 | 13.63 a ± 2.57 | 0.736 de ± 0.010 | 9.6 a ± 1.6 | 0.418 d ± 0.012 | 45.01 e ± 0.53 |
HB1 | 1 | 22.70 abcd ± 5.41 | 0.609 c ± 0.031 | 13.0 ab ± 3.1 | 0.297 c ± 0.026 | 44.99 e ± 0.47 |
HB2 | 1 | 22.07 abcd ± 4.60 | 0.628 c ± 0.021 | 12.9 ab ± 2.6 | 0.311 c ± 0.017 | 44.56 de ± 0.40 |
HB3 | 1 | 26.17 bcde ± 2.70 | 0.637 c ± 0.030 | 15.6 ab ± 1.6 | 0.321 c ± 0.027 | 43.95 bcde ± 0.69 |
HB4 | 1 | 22.55 abcd ± 2.38 | 0.632 c ± 0.030 | 13.4 ab ± 1.7 | 0.316 c ± 0.022 | 44.74 de ± 0.77 |
HB1 | 2 | 27.09 cde ± 5.85 | 0.551 ab ± 0.017 | 13.9 ab ± 3.4 | 0.248 b ± 0.016 | 44.46 cde ± 0.32 |
HB2 | 2 | 28.29 de ± 8.35 | 0.521 ab ± 0.020 | 13.8 ab ± 4.4 | 0.225 ab ± 0.014 | 43.23 ab ± 0.13 |
HB3 | 2 | 31.52 de ± 9.16 | 0.550 ab ± 0.031 | 16.5 ab ± 5.2 | 0.247 b ± 0.025 | 43.74 bcd ± 0.21 |
HB4 | 2 | 34.74 e ± 14.78 | 0.560 b ± 0.032 | 18.2 b ± 8.4 | 0.251 b ± 0.023 | 44.49 cde ± 0.05 |
HB1 | 3 | 27.37 cde ± 8.10 | 0.525 ab ± 0.017 | 13.4 ab ± 4.4 | 0.224 ab ± 0.018 | 44.66 de ± 0.20 |
HB2 | 3 | 33.13 de ± 10.66 | 0.505 a ± 0.030 | 16.0 ab ± 6.0 | 0.204 a ± 0.019 | 43.36 abc ± 0.13 |
HB3 | 3 | 30.50 de ± 6.39 | 0.522 ab ± 0.043 | 15.1 ab ± 4.2 | 0.223 ab ± 0.032 | 44.60 de ± 0.10 |
HB4 | 3 | 27.97 cde ± 10.73 | 0.554 ab ± 0.027 | 14.7 ab ± 6.3 | 0.250 b ± 0.016 | 45.04 e ± 0.55 |
WF | HF | HB1 | HB2 | HB3 | HB4 | |
---|---|---|---|---|---|---|
Amino acid | Essential amino acids (EAA) | |||||
Histidine | 22.67 a ± 0.23 | 22.74 a ± 0.63 | 24.45 a ± 0.23 | 24.55 a ± 0.25 | 24.24 a ± 0.21 | 24.18 a ± 0.21 |
Isoleucine | 33.86 a ± 0.42 | 36.28 b ± 0.40 | 36.20 a ± 0.50 | 36.34 a ± 0.47 | 35.65 a ± 0.62 | 35.42 a ± 0.66 |
Leucine | 65.72 b ± 0.89 | 60.79 a ± 0.61 | 66.73 b ± 0.96 | 66.73 b ± 0.76 | 65.57 ab ± 1.09 | 64.81 a ± 0.99 |
Lysine | 21.99 a ± 0.20 | 35.01 b ± 0.43 | 27.52 a ± 0.86 | 27.66 a ± 0.28 | 26.99 a ± 0.43 | 27.08 a ± 0.55 |
Methionine | 18.50 a ± 0.93 | 25.24 b ± 1.19 | 18.49 b ± 0.26 | 16.94 a ± 0.37 | 18.27 b ± 1.13 | 18.13 b ± 0.16 |
Phenylalanine | 47.00 b ± 0.55 | 42.60 a ± 0.53 | 48.02 a ± 1.01 | 48.28 a ± 0.55 | 47.48 a ± 0.83 | 47.29 a ± 0.73 |
Threonine | 25.63 a ± 0.21 | 31.62 b ± 0.38 | 29.13 b ± 0.52 | 29.22 b ± 0.29 | 28.80 ab ± 0.44 | 28.26 a ± 0.37 |
Valine | 38.91 a ± 0.44 | 45.23 b ± 0.55 | 42.97 b ± 0.65 | 43.12 b ± 0.54 | 42.33 ab ± 0.67 | 41.95 a ± 0.45 |
Total EAA | 274.28 a ± 3.13 | 299.51 b ± 2.42 | 293.51 b ± 4.43 | 292.84 b ± 3.32 | 289.31 ab ± 4.54 | 287.11 a ± 3.81 |
Non-essential amino acids (non-EAA) | ||||||
Alanine | 29.24 a ± 0.21 | 39.50 b ± 0.45 | 34.85 a ± 0.57 | 35.05 a ± 0.34 | 34.65 a ± 0.59 | 34.51 a ± 0.40 |
Arginine | 37.26 a ± 0.63 | 108.89 b ± 1.84 | 61.60 b ± 1.31 | 61.11 ba ± 1.14 | 60.55 ba ± 1.16 | 59.23 a ± 1.37 |
Aspartic acid | 41.52 a ± 0.82 | 96.20 b ± 1.84 | 60.90 a ± 0.89 | 61.10 a ± 0.83 | 60.85 a ± 1.08 | 60.80 a ± 0.90 |
Cysteine | 22.90 b ± 0.18 | 16.68 a ± 0.72 | 21.07 c ± 0.26 | 19.44 a ± 0.29 | 19.81 ab ± 0.69 | 20.34 b ± 0.06 |
Glutamic acid | 356.05 b ± 3.96 | 166.61 a ± 1.96 | 301.31 b ± 4.73 | 303.15 b ± 3.30 | 295.12 ab ± 4.96 | 291.45 a ± 4.02 |
Glycine | 35.07 a ± 0.26 | 40.72 b ± 0.46 | 38.60 a ± 0.65 | 38.71 a ± 0.43 | 38.01 ab ± 0.56 | 37.80 a ± 0.46 |
Proline | 113.04 b ± 1.15 | 33.40 a ± 0.43 | 89.62 b ± 1.25 | 90.41 b ± 1.09 | 88.65 ab ± 1.83 | 86.72 a ± 1.34 |
Serine | 46.66 b ± 0.43 | 45.60 a ± 0.60 | 48.31 a ± 0.82 | 48.28 a ± 0.41 | 47.23 a ± 0.71 | 46.45 a ± 0.64 |
Tyrosine | 24.37 a ± 0.95 | 28.28 b ± 0.38 | 27.68 a ± 1.42 | 26.19 a ± 0.41 | 26.84 a ± 0.91 | 26.33 a ± 0.49 |
Total non-EAA | 706.11 b ± 7.30 | 575.88 a ± 6.49 | 683.94 b ± 11.31 | 683.44 b ± 7.86 | 671.72 ab ± 11.72 | 663.63 a ± 9.44 |
AAS [%] | |||||||
---|---|---|---|---|---|---|---|
EAA | FAO 2011 Reference | WF | HF | HB1 | HB2 | HB3 | HB4 |
Val | 40.00 | 97.28 a | 113.08 b | 107.44 b | 107.79 b | 105.81 a | 104.88 a |
Thr | 25.00 | 102.50 a | 126.48 b | 116.52 b | 116.89 b | 115.20 b | 113.05 a |
Ile | 30.00 | 112.86 a | 120.93 b | 120.67 b | 121.12 b | 118.82 a | 118.07 a |
His | 16.00 | 141.68 a | 142.13 a | 152.84 a | 153.42 a | 151.48 a | 151.10 a |
Leu | 61.00 | 107.74 b | 99.65 a | 109.39 b | 109.40 b | 107.49 a | 106.24 a |
Lys | 48.00 | 45.82 a | 72.93 b | 57.34 a | 57.63 a | 56.22 a | 56.42 a |
AAA | 41.00 | 174.08 b | 172.88 a | 184.63 b | 181.65 a | 181.27 b | 179.55 a |
SAA | 23.00 | 179.98 a | 182.25 b | 171.96 c | 158.18 a | 165.55 b | 167.23 b |
Fatty Acid | WF * | HF | HB1 | HB2 | HB3 | HB4 |
---|---|---|---|---|---|---|
C14:0 | 0.09 ± 0.00 | n.d. | n.d. | n.d. | 0.12 ± 0.00 | n.d. |
C16:0 | 17.62 B** ± 0.00 | 7.02 A ± 0.06 | 7.74 a ± 0.02 | 8.64 b ± 0.18 | 10.72 c ± 0.04 | 8.74 b ± 0.02 |
C16:1 | 0.12 A ± 0.00 | 0.13 B ± 0.00 | 0.36 a ± 0.00 | 0.37 b ± 0.01 | 0.39 c ± 0.00 | 0.37 b ± 0.00 |
C18:0 | 0.69 A ± 0.00 | 2.50 B ± 0.03 | 2.34 a ± 0.01 | 2.58 c ± 0.02 | 3.18 d ± 0.00 | 2.48 b ± 0.00 |
C18:1 cis | 9.18 A ± 0.00 | 10.05 B ± 0.00 | 31.47 d ± 0.21 | 24.60 c ± 0.11 | 17.89 a ± 0.05 | 21.17 b ± 0.02 |
C18:1 trans | n.d. | 1.00 ± 0.00 | 1.88 d ± 0.01 | 1.60 c ± 0.01 | 1.24 a ± 0.01 | 1.45 b ± 0.02 |
C18:2 cis | n.d. | 55.33 ± 0.05 | 40.29 a ± 0.14 | 45.16 b ± 0.24 | 49.33 d ± 0.15 | 48.26 c ± 0.09 |
C18:2 trans | n.d. | 0.08 ± 0.05 | 0.09 a ± 0.02 | 0.06 a ± 0.01 | 0.12 a ± 0.02 | 0.13 a ± 0.04 |
C18:3 n-6 | 67.25 B ± 0.00 | 4.36 A ± 0.01 | 2.34 a ± 0.01 | 2.82 b ± 0.01 | 3.11 c ± 0.00 | 3.10 c ± 0.00 |
C18:3 n-3 | 4.16 A ± 0.00 | 17.17 B ± 0.09 | 10.54 a ± 0.04 | 10.95 b ± 0.07 | 11.11 c ± 0.05 | 11.53 d ± 0.02 |
C20:0 | 0.07 A ± 0.00 | 1.01 B ± 0.01 | 0.97 a ± 0.17 | 1.07 a ± 0.14 | 0.96 a ± 0.04 | 0.92 a ± 0.01 |
C22:6 | n.d. | 0.55 ± 0.01 | 0.97 c ± 0.14 | 0.89 c ± 0.10 | 0.67 a ± 0.05 | 0.75 b ± 0.00 |
C20:2 | n.d. | 0.11 ± 0.00 | 0.22 a ± 0.11 | 0.24 a ± 0.09 | 0.21 a ± 0.06 | 0.18 a ± 0.02 |
C22:0 | n.d. | 0.48 ± 0.00 | 0.53 a ± 0.01 | 0.62 c ± 0.00 | 0.60 c ± 0.01 | 0.59 b ± 0.00 |
C24:0 | n.d. | 0.23 ± 0.01 | 0.26 a ± 0.01 | 0.28 a ± 0.03 | 0.27 a ± 0.00 | 0.34 b ± 0.04 |
SFA | 18.65 B ± 0.00 | 11.23 A ± 0.11 | 11.83 a ± 0.12 | 13.20 b ± 0.27 | 15.85 c ± 0.02 | 13.06 b ± 0.07 |
MUFA | 9.93 A ± 0.00 | 11.17 B ± 0.08 | 33.71 d ± 0.20 | 26.56 c ± 0.12 | 19.53 a ± 0.04 | 23.00 b ± 0.05 |
PUFA | 71.42 A ± 0.00 | 77.60 B ± 0.19 | 54.46 a ± 0.08 | 60.11 b ± 0.13 | 64.55 c ± 0.08 | 63.95 c ± 0.12 |
PUFA/SFA | 3.83 A ± 0.07 | 6.91 B ± 0.08 | 4.60 b ± 0.04 | 4.56 b ± 0.10 | 4.07 a ± 0.01 | 4.90 c ± 0.04 |
n-6 | 67.25 B ± 0.00 a | 59.88 A ± 0.11 | 42.94 a ± 0.02 | 48.27 b ± 0.17 | 52.77 d ± 0.07 | 51.66 c ± 0.13 |
n-3 | 4.16 A ± 0.00 c | 17.71 B ± 0.08 | 11.51 a ± 0.10 | 11.84 b ± 0.03 | 11.78 b ± 0.01 | 12.28 c ± 0.02 |
n-6/n-3 | 16.15 B ± 0.09 | 3.38 A ± 0.01 | 3.73 a ± 0.03 | 4.08 b ± 0.03 | 4.48 d ± 0.00 | 4.21 c ± 0.02 |
Quality Features | Definition | Boundary Terms (0–10 c.u.) |
---|---|---|
Smell | ||
sour | aroma associated with sour substances | imperceptible—very intense |
nutty | aroma characteristic of a nut mixture | |
mill | aroma characteristic of the mill | |
earthy | an aroma typical of wet earth | |
maritime | aroma typical of the sea | |
Crust features | ||
brownness | combination of green and red in different proportions; e.g., RGB (120, 67, 21) | imperceptible—very intense |
greyness | combination of white and black in different proportions; e.g., RGB (161, 161, 161) | |
hardness | the force required to deform the product, felt when squeezing the product between the teeth | imperceptible—very intense |
crispness | when biting or breaking the product, a dry, crackling sound is heard | |
Crumb features | ||
brownness | combination of green and red in different proportions; e.g., RGB (120, 67, 21) | imperceptible—very intense |
greyness | combination of white and black in different proportions; e.g., RGB (161, 161, 161) | |
greenness | combination of yellow and blue in various proportions; e.g., RGB (70, 158, 43) | |
porosity | determines the amount of empty space inside the product, visible in the cross-section | imperceptible—very intense |
graininess | the amount of fine particles in the chewed mass | imperceptible—very intense |
Taste | ||
bitter | the degree of perception of bitter taste as a basic taste | imperceptible—very intense |
sour | degree of perception of sour taste as a basic taste | |
malty | the degree of perceived aromatic flavor associated with malt | |
cereal | the degree of perceived flavor aromaticity associated with cereal flakes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalski, S.; Mikulec, A.; Litwinek, D.; Mickowska, B.; Skotnicka, M.; Oracz, J.; Karwowska, K.; Wywrocka-Gurgul, A.; Sabat, R.; Platta, A. The Influence of Fermentation Technology on the Functional and Sensory Properties of Hemp Bread. Molecules 2024, 29, 5455. https://doi.org/10.3390/molecules29225455
Kowalski S, Mikulec A, Litwinek D, Mickowska B, Skotnicka M, Oracz J, Karwowska K, Wywrocka-Gurgul A, Sabat R, Platta A. The Influence of Fermentation Technology on the Functional and Sensory Properties of Hemp Bread. Molecules. 2024; 29(22):5455. https://doi.org/10.3390/molecules29225455
Chicago/Turabian StyleKowalski, Stanisław, Anna Mikulec, Dorota Litwinek, Barbara Mickowska, Magdalena Skotnicka, Joanna Oracz, Kaja Karwowska, Anna Wywrocka-Gurgul, Renata Sabat, and Anna Platta. 2024. "The Influence of Fermentation Technology on the Functional and Sensory Properties of Hemp Bread" Molecules 29, no. 22: 5455. https://doi.org/10.3390/molecules29225455
APA StyleKowalski, S., Mikulec, A., Litwinek, D., Mickowska, B., Skotnicka, M., Oracz, J., Karwowska, K., Wywrocka-Gurgul, A., Sabat, R., & Platta, A. (2024). The Influence of Fermentation Technology on the Functional and Sensory Properties of Hemp Bread. Molecules, 29(22), 5455. https://doi.org/10.3390/molecules29225455