Facile Preparation of High-Performance Polythiophene Derivative and Effect of Torsion Angle Between Thiophene Rings on Electrochromic Color Change
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electrochemical Property of PDMeBTh
2.2. Morphology and Thermal Analysis
2.3. Electrochromic Properties of PDMeBTh Film
2.4. Electrochromic Properties of ECD Constructed with PDMeBTh
2.5. Color Memory and Stability of the Device
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Orimolade, B.O.; Draper, E.R. Application of quasi solid electrolytes in organic based electrochromic devices: A mini review. Chem.-Eur. J. 2024, 30, e202303880. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, L.; Cui, J.; Lv, X.; Feng, M.; Ouyang, M.; Chen, Z.; Wright, D.; Zhang, C. Hydrogen-bonding induced crosslinked polymer network for highly stable electrochromic device and a construction strategy for black-bilayer electrochromic film. Small 2023, 19, 2303359. [Google Scholar] [CrossRef] [PubMed]
- Zydlewski, B.Z.; Milliron, D.J. Dual-band electrochromic devices utilizing niobium oxide nanocrystals. ACS Appl. Mater. Interfaces 2024, 16, 24920–24928. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Song, G.; Cong, S.; Zhao, Z. Resonant-cavity-enhanced electrochromic materials and devices. Adv. Mater. 2023, 35, 202300179. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Jiang, X.; Cui, P.; Sheng, M.; Gong, X.; Zhang, L.; Fu, S. Multicolor and multistage response electrochromic color-memory wearable smart textile and flexible display. ACS Appl. Mater. Interfaces 2021, 13, 12313–12321. [Google Scholar] [CrossRef]
- Nguyen, T.; Le, Q.; Peng, S.; Dai, Z.; Ahn, S.; Kim, S. Exploring conducting polymers as a promising alternative for electrochromic devices. Adv. Mater. Technol. 2023, 8, 2300474. [Google Scholar] [CrossRef]
- Park, C.; Kim, J.M.; Kim, Y.; Bae, S.; Do, M.; Im, S.; Yoo, S.; Kim, J.H. High-coloration efficiency and low-power consumption electrochromic film based on multifunctional conducting polymer for large scale smart windows. ACS Appl. Electron. Mater. 2021, 3, 4781–4792. [Google Scholar] [CrossRef]
- Maity, N.; Ghosh, R.; Nandi, A.K. Optoelectronic properties of self-assembled nanostructures of polymer functionalized polythiophene and graphene. Langmuir 2018, 34, 7585–7597. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, C.; Liu, J.; Wang, X.; Zhu, S. Fabrication of nanostructured polythiophene derivative films and their applications in large-size electrochromic devices. Sol. Energy Mater. Sol. Cells 2023, 251, 112146. [Google Scholar] [CrossRef]
- Vinodhini, S.P.; Xavier, J.R. Electrochemical evaluation and structural characterization of polythiophene surfaces modified with PbO/PbS for energy storage applications. Mater. Chem. Phys. 2024, 318, 129233. [Google Scholar] [CrossRef]
- Cánovas, S.A.; Colom, E.; Padilla, J.; Urbina, A.; Maser, W.K.; Benito, A.M. Nanoparticles of poly(3-hexylthiophene): Toward a solvent-independent performance of electrochromic films. Synth. Met. 2023, 300, 117494. [Google Scholar] [CrossRef]
- Zhang, B.; Luo, J.; Chen, Z.; Liu, S.L.; Tian, Y.Y. Color combination of polythiophene films doped with three dye molecules for electrochromism. Opt. Mater. 2022, 127, 112292. [Google Scholar] [CrossRef]
- Lin, J.; Ni, X. Synthesis, structures, and electrochromic behaviors of poly(triarylamine)s based on 3-substituted thiophene derivatives. RSC Adv. 2015, 5, 14879–14886. [Google Scholar] [CrossRef]
- Huang, S.W.; Ho, K.C. An all-thiophene electrochromic device fabricated with poly(3-methylthiophene) and poly(3,4-ethylenedioxythiophene). Sol. Energy Mater. Sol. Cells 2006, 90, 491–505. [Google Scholar] [CrossRef]
- Zeng, H.; Wu, R.; Li, Y.; Jiang, H.; Wang, X.; Zhang, W.; Li, Z.; Zhang, J.; Yan, Z. Multi-color electrochromic copolymer films based on 2,2’-thiophene and 3, 4-ethylenedioxythiophen. Synth. Met. 2024, 304, 117577. [Google Scholar] [CrossRef]
- Bongini, A.; Bottoni, A. A theoretical investigation of the torsional potential in 3,3′-dimethyl-2,2′-bithiophene and 3,4’-dimethyl-2,2’-bithiophene: A comparison between HF, MP2, and DFT theory. J. Phys. Chem. A 1999, 103, 6800–6804. [Google Scholar] [CrossRef]
- Das, S.; Senanayak, S.P.; Bedi, A.; Narayan, K.S.; Zade, S.S. Synthesis and charge carrier mobility of a solution-processable conjugated copolymer based on cyclopenta[c]thiophene. Polymer 2011, 52, 5780–5787. [Google Scholar] [CrossRef]
- Zhou, T.; Cao, Z.; Tai, X.; Yu, L.; Ouyang, J.; Li, Y.; Lu, J. Hierarchical Co(OH)2 dendrite enriched with oxygen vacancies for promoted electrocatalytic oxygen evolution reaction. Polymers 2022, 14, 1510. [Google Scholar] [CrossRef]
- Zhu, X.; Zong, H.; Viasus Pérez, C.J.; Miao, H.; Sun, W.; Yuan, Z.; Wang, S.; Zeng, G.; Xu, H.; Jiang, Z.; et al. Supercharged CO2 photothermal catalytic methanation: High conversion, rate, and selectivity. Angew. Chem. Int. Ed. 2023, 135, e202218694. [Google Scholar] [CrossRef]
- Wang, Q.; Li, F.; Yang, H.; Wang, Y.; Ding, W.; Dai, F.; Wei, L.; Cao, S.; Song, W. Simultaneous self-supply of H2O2 and GSH-depleted intracellular oxidative stress for enhanced photodynamic/photothermal/chemodynamic therapy. Chem. Commun. 2022, 58, 8536–8539. [Google Scholar] [CrossRef]
- Zhou, W.; Kang, H.; Chao, S.; Xu, J. Electrochemical synthesis and characterization of self-supporting flexible poly(5-indolylboronic acid) film. Acta Polym. Sin. 2022, 53, 273–278. [Google Scholar]
- Nie, G.; Yang, H.; Wang, S.; Li, X. High-quality inherently organic conducting polymers electrosynthesized from fused-ring compounds in a new electrolytic system based on boron trifluoride diethyl etherate. Crit. Rev. Solid. State 2011, 36, 209–228. [Google Scholar] [CrossRef]
- Nie, G.; Xu, J.; Zhang, S.; Cai, T.; Han, X. Electrochemical copolymerization of carbazole and 3-methylthiophene. J. Appl. Polym. Sci. 2006, 102, 1877–1885. [Google Scholar] [CrossRef]
- Priya, L.; Kar, P. Influence of preparation method on the structure, morphology, and conducting property of poly(m-aminophenol)/silver nanocomposite. Polym. Compos. 2024, 45, 3798–3808. [Google Scholar] [CrossRef]
- Zou, H.; Deng, X.; Zheng, L.; Guo, Q.; Nie, G. Facile synthesis of novel poly (1H-benzoindole)/WO3 nanocomposites with enhanced energy storage capability and its application in high-performance supercapacitor. J. Electroanal. Chem. 2022, 923, 116812. [Google Scholar] [CrossRef]
- Zhu, Y.R.; Iroh, J.O.; Rajagopolan, R.; Aykanat, A.; Vaia, R. Optimizing the synthesis and thermal properties of conducting polymer-montmorillonite clay nanocomposites. Energies 2022, 15, 1291. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, X.; Li, Z.; Wang, D.; Nie, G. A novel solid-state electrochromic supercapacitor with high energy storage capacity and cycle stability based on poly(5-formylindole)/WO3 honeycombed porous nanocomposites. Chem. Eng. J. 2020, 384, 123370. [Google Scholar] [CrossRef]
- Ming, S.; Zhang, H.; Zhen, S.; Zhang, Y.; Lu, B.; Zhao, J.; Nie, G.; Xu, J. Influence of fluorine substitution position on electrochromic and capacitive properties of hybrid conjugated polymer. Dyes Pigment. 2022, 208, 110819. [Google Scholar] [CrossRef]
- Li, H.; Cao, J.; Liu, F.; Zhou, W.; Chen, X.; Deng, Y.; Wu, Z.; Lu, B.; Mo, D.; Xu, J.; et al. Stable three-dimensional PEDOT network construction for electrochromic supercapacitor dual functional application. ACS Appl. Energy Mater. 2022, 5, 12315–12323. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Liu, Y.; Zhu, S. Exploring the influence of benzene ring incorporation in the backbone on electrochromic performance of polythiophene. Mater. Res. Bull. 2022, 149, 111722. [Google Scholar] [CrossRef]
- Li, J.; Guo, Q.; Lu, Y.; Nie, G. Polyindole vertical nanowire array based electrochromic-supercapacitor difunctional device for energy storage and utilization. Eur. Polym. J. 2019, 113, 29–35. [Google Scholar] [CrossRef]
- Guo, Q.; Du, C.; Deng, X.; Cheng, Y.; Tai, X.; Nie, G. High performance polythiophene derivative with good electrochromic and energy storage properties electrochemical synthesized in boron trifluoride diethyl etherate. Dyes Pigment. 2023, 220, 111709. [Google Scholar] [CrossRef]
- Tai, X.; Yan, X.; Wang, L. Synthesis, structural characterization, hirschfeld surface analysis, density functional theory, and photocatalytic CO2 reduction activity of a new Ca(II) complex with a bis-schiff base ligand. Molecules 2024, 29, 1047. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, B.; Zou, H.; Guo, Q.; Nie, G. High performance multi-color prussian blue/poly(indole-5-carboxylic acid) nanocomposites with multiple layer nanosphere structure for electrochromic supercapacitor application. J. Alloys Compd. 2022, 921, 166140. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Sun, C.; Li, Y.; Li, K.; Tai, X. Facile Preparation of High-Performance Polythiophene Derivative and Effect of Torsion Angle Between Thiophene Rings on Electrochromic Color Change. Molecules 2024, 29, 5477. https://doi.org/10.3390/molecules29225477
Guo Q, Sun C, Li Y, Li K, Tai X. Facile Preparation of High-Performance Polythiophene Derivative and Effect of Torsion Angle Between Thiophene Rings on Electrochromic Color Change. Molecules. 2024; 29(22):5477. https://doi.org/10.3390/molecules29225477
Chicago/Turabian StyleGuo, Qingfu, Chao Sun, Yiran Li, Kaoxue Li, and Xishi Tai. 2024. "Facile Preparation of High-Performance Polythiophene Derivative and Effect of Torsion Angle Between Thiophene Rings on Electrochromic Color Change" Molecules 29, no. 22: 5477. https://doi.org/10.3390/molecules29225477
APA StyleGuo, Q., Sun, C., Li, Y., Li, K., & Tai, X. (2024). Facile Preparation of High-Performance Polythiophene Derivative and Effect of Torsion Angle Between Thiophene Rings on Electrochromic Color Change. Molecules, 29(22), 5477. https://doi.org/10.3390/molecules29225477