Matrix Solid-Phase Dispersion Procedure for Determination of Antibiotics and Metabolites in Mussels: Application in Exposure Bioassays
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Optimisation
2.1.1. Optimisation of the Extraction Solvent
2.1.2. Optimisation of d-SPE Sorbents and Their Amount
2.1.3. Optimisation of Extraction Cycles
2.2. Method Validation
2.3. Method Comparison
2.4. Method Application
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Sample Collection and Exposure Assay
3.3. Sample Treatment
3.4. Liquid Chromatography–Tandem Mass Spectrometry
3.5. Method Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Centre for Disease Prevention and Control (ECDC); European Food Safety Authority (EFSA); European Medicines Agency (EMA). Antimicrobial consumption and resistance in bacteria from humans and food-producing animals. Fourth joint inter-agency report on integrated analysis of antimicrobial agent consumption and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals in the EU/EEA. JIACRA IV 2019–2021. EFSA J. 2024, 22, e8589. [Google Scholar] [CrossRef]
- Jiang, J.J.; Lee, C.L.; Fand, M.D. Emerging organic contaminants in coastal waters: Anthropogenic impact, environmental release and ecological risk. Mar. Pollut. Bull. 2014, 85, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Alygizakis, N.A.; Slobodnik, J.; Thomaidis, N.S. Sources and occurrence of pharmaceutical residues in offshore seawater. In Pharmaceuticals in Marine and Coastal Environments. Occurrence, Effects and Challenges in a Changing World; Durán-Álvarez, J.C., Jiménez-Cisneros, B., Eds.; Estuarine and Coastal Sciences Series; Elsevier: Amsterdam, The Netherlands, 2021; Volume 1, pp. 329–350. [Google Scholar] [CrossRef]
- Alygizakis, N.A.; Gago-Ferrero, P.; Borova, V.L.; Pavlidou, A.; Hatzianestis, I.; Thomaidis, N.S. Occurrence and spatial distribution of 158 pharmaceuticals, drugs of abuse and related metabolites in offshore seawater. Sci. Total Environ. 2016, 541, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Borecka, M.; Siedlewicz, G.; Halinski, L.P.; Sikora, K.; Pazdro, K.; Stepnowski, P.; Bialk-Bielinska, A. Contamination of the southern Baltic Sea waters by the residues of selected pharmaceuticals: Method development and field studies. Mar. Pollut. Bull. 2015, 94, 62–71. [Google Scholar] [CrossRef]
- Benotti, M.J.; Brownawell, B.J. Distributions of pharmaceuticals in an urban estuary during both dry and wet-weather conditions. Environ. Sci. Technol. 2007, 41, 5795–5802. [Google Scholar] [CrossRef]
- World Health Organization. Fact Sheet: Antibiotic Resistance. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 5 October 2024).
- McEneff, G.; Barron, L.; Kelleher, B.; Paull, B.; Quinn, B. A year-long study of the spatial occurrence and relative distribution of pharmaceutical residues in sewage effluent, receiving marine waters and marine bivalves. Sci. Total Environ. 2014, 476–477, 317–326. [Google Scholar] [CrossRef]
- Serra-Compte, A.; Álvarez-Muñoz, D.; Rodríguez-Mozaz, S.; Barceló, D. Multi-residue for the determination of antibiotics and some of their metabolites in seafood. Food Chem. Toxicol. 2017, 104, 3–13. [Google Scholar] [CrossRef]
- Omar, T.F.T.; Aris, A.Z.; Yusoff, F.M.; Mustafa, S. Occurrence and level of emerging organic contaminant in fish and mollusk from Klang River estuary, Malaysia and assessment on human health risk. Environ. Pollut. 2019, 248, 763–773. [Google Scholar] [CrossRef]
- Van Hamelsveld, S.; Kurenbach, B.; Paull, D.J.; Godsoe, W.A.; Ferguson, G.C.; Heinemann, J.A. Indigenous food sources as vectors of Escherichia coli and antibiotic resistance. Environ. Pollut. 2023, 334, 122155. [Google Scholar] [CrossRef]
- Digka, N.; Patsiou, D.; Hatzonikolakis, Y.; Raitsos, D.E.; Skia, G.; Koutsoubas, D.; Dimitriadis, C.; Tsangaris, C. Microplastic ingestion in mussels from the East Mediterranean Sea: Exploring its impacts in nature and controlled conditions. Sci. Total Environ. 2024, 946, 174268. [Google Scholar] [CrossRef]
- Gonçalves, C.; Martins, M.; Sobral, P.; Costa, P.M.; Costa, M.H. An assessment of the ability to ingest and excrete microplastics by filter-feeders: A case study with the Mediterranean mussel. Environ. Pollut. 2019, 245, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Cruz, P.; Cuccaro, A.; Pretti, C.; He, Y.; Soares, A.M.V.M.; Freitas, R. Comparative subcellular responses to pharmaceutical exposures in the mussel Mytilus galloprovincialis: An in vitro study. Environ. Toxicol. Pharmacol. 2023, 104, 104314. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Muñoz, D.; Huerta, B.; Fernández-Tejedor, M.; Rodríguez-Mozaz, S.; Barceló, D. Multi-residue method for the analysis of pharmaceuticals and some of their metabolites in bivalves. Talanta 2015, 136, 174–182. [Google Scholar] [CrossRef] [PubMed]
- McEneff, G.; Barron, L.; Kelleher, B.; Paull, B.; Quinn, B. The determination of pharmaceutical residues in cooked and uncooked marine bivalves using pressurised liquid extraction, solid-phase extraction and liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 9509–9521. [Google Scholar] [CrossRef]
- Fernández-Torres, R.; Bello-López, M.A.; Olias-Consentino, M.; Callejón-Mochón, M.; Pérez-Bernal, J.L. Application of enzymatic probe sonication extraction for the determination of selected veterinary antibiotics and their main metabolites in fish and mussel samples. Anal. Chim. Acta 2010, 675, 156–164. [Google Scholar] [CrossRef]
- Fernández-Torres, R.; Bello-López, M.A.; Olias-Consentino, M.; Callejón-Monchón, M.; Ramos-Payán, M. Enzymatic-microwave assisted extraction and high-performance liquid chromatography-mass spectrometry for the determination of selected veterinary antibiotics in fish and mussel samples. J. Pharm. Biomed. Anal. 2011, 54, 1146–1156. [Google Scholar] [CrossRef]
- Barker, S.A. Matrix solid phase dispersion (MSPD). J. Biochem. Biophys. Methods 2007, 70, 151–162. [Google Scholar] [CrossRef]
- Carro, N.; Fernández, R.; Cobas, J.; García, I.; Ignacio, M.; Mouteira, A. Optimization of a modified Captiva EMR-lipid method based on micro-matrix solid-phase dispersion coupled with gas chromatography-mass spectrometry for the determination of nine bisphenols in mussel samples. Anal. Methods 2024, 16, 3957–3967. [Google Scholar] [CrossRef]
- Carro, N.; Fernández, R.; García, I.; Ignacio, M.; Mouteira, A. Optimization of an analytical method based on miniaturized matrix solid-phase dispersion combined with gas chromatography-mass spectrometry for the determination of bisphenols in mussel samples. Food Chem. 2024, 4, 100714. [Google Scholar] [CrossRef]
- Castellani, F.; Vitali, M.; Antonucci, A.; Del Morrone, G.; Cofone, L.; D’Ancona, G.; Pindinello, I.; Mattiucci, S.; Protano, C. Optimization of a fast and sensitive method based on matrix solid-phase dispersion-LC-MS/MS for simultaneous determination of phthalates and bisphenols in mussel simples. Food Addit. Contam. Part A 2024, 41, 537–549. [Google Scholar] [CrossRef]
- Carro, N.; Mouteira, A.; García, I.; Ignacio, M.; Cobas, J. Fast determination of phthalates in mussel samples by micro-matrix solid-phase dispersion (micro-MSPD) coupled with GC–MS/MS. J. Anal. Sci. Technol. 2021, 12, 51. [Google Scholar] [CrossRef]
- Carro, N.; López, A.; Cobas, J.; García, I.; Ignacio, M.; Mouteira, A. Development and Optimization of a Method for Organochlorine Pesticides Determination in Mussels Based on Miniaturized Matrix Solid-Phase Dispersion Combined with Gas Chromatography–Tandem Mass Spectrometry. J. Anal. Chem. 2021, 76, 603–612. [Google Scholar] [CrossRef]
- Villaverde-de-Sáa, E.; Rodil, R.; Quintana, J.B.; Cela, R. Matrix solid-phase dispersion combined to liquid chromatography–tandem mass spectrometry for the determination of paraben preservatives in mollusks. J. Chromatogr. A 2016, 1459, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Carro, N.; Vilas, L.; García, I.; Ignacio, M.; Mouteira, A.M. Optimization of a method based on micro-matrix solid-phase dispersion (micro-MSPD) for the determination of PCBs in mussel samples. Anal. Chem. Res. 2017, 11, 1–8. [Google Scholar] [CrossRef]
- Rodríguez-González, N.; Gónzalez-Castro, M.J.; Beceiro-González, E.; Muniategui-Lorenzo, S. Development of a Matrix Solid Phase Dispersion methodology for the determination of triazine herbicides in mussels. Food Chem. 2015, 173, 391–396. [Google Scholar] [CrossRef]
- Negreira, N.; Rodríguez, I.; Rodil, R.; Rubí, E.; Cela, R. Optimization of matrix solid-phase dispersion conditions for UV filters determination in biota samples. Int. J. Environ. Anal. Chem. 2013, 93, 11. [Google Scholar] [CrossRef]
- Villaverde-de-Sáa, E.; Quintana, J.B.; Rodil, R.; Ferrero-Refojos, R.; Rubí, E.; Cela, R. Determination of perfluorinated compounds in mollusks by matrix solid-phase dispersion and liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2012, 402, 509–518. [Google Scholar] [CrossRef]
- Castro, V.; Montes, R.; Quintana, J.B.; Rodil, R.; Cela, R. Determination of 18 organophosphorus flame retardants/plasticizers in mussel samples by matrix solid-phase dispersion combined to liquid chromatography-tandem mass spectrometry. Talanta 2020, 208, 120470. [Google Scholar] [CrossRef]
- Villaverde-de-Sáa, E.; Valls-Cantenys, C.; Quintana, J.B.; Rodil, R.; Cela, R. Matrix solid-phase dispersion combined with gas chromatography–mass spectrometry for the determination of fifteen halogenated flame retardants in mollusks. J. Chromatogr. A 2013, 1300, 85–94. [Google Scholar] [CrossRef]
- Sun, W.; Hu, X.; Xiang, Y.; Zhang, L.; Ye, N. Rapid fabrication of magnetic covalent organic frameworks for the effective extraction and determination of sulfonamides in shrimp samples. Talanta Open 2023, 8, 100255. [Google Scholar] [CrossRef]
- Mu, S.; Teng, T.; Zhou, R.; Liu, H.; Sun, H.; Li, J. Development and evaluation of a semi-automatic single-step clean-up apparatus for rapid analysis of 18 antibiotics in fish samples. J. Food Comp. Anal. 2022, 113, 104718. [Google Scholar] [CrossRef]
- Bitas, D.; Kabir, A.; Locatelli, M.; Samanidou, V. Food sample preparation for the determination of sulfonamides by high-performance liquid chromatography: State-of-the-art. Separations 2018, 5, 31. [Google Scholar] [CrossRef]
- AOAC International. Method Validation Programs (OMA/PVM Department), Including Appendix D: Guidelines for Collaborative Study Procedures to Validate Characteristics of a Method of Analysis. 2000. Available online: https://www.aoac.org/ (accessed on 8 November 2024).
- Serra-Compte, A.; Álvarez-Muñoz, D.; Solé, M.; Cáceres, N.; Barceló, D.; Rodríguez-Mozaz, S. Comprehensive study of sulfamethoxazole effects in marine mussels: Bioconcentration, enzymatic activities and metabolomics. Environ. Res. 2019, 173, 12–22. [Google Scholar] [CrossRef] [PubMed]
- DrugBank Online. Database for Drug and Drug Target Info. Available online: https://go.drugbank.com/ (accessed on 5 October 2024).
- Chemical BooK. Sourcing and Integrating Center of Chemicals Materials in China. Available online: https://www.chemicalbook.com/ (accessed on 5 October 2024).
- Li, S.; Shi, W.; Liu, W.; Li, H.; Zhang, W.; Hu, J.; Ke, Y.; Sun, W.; Ni, J. A duodecennial national synthesis of antibiotics in China’s major rivers and seas (2005–2016). Sci. Total Environ. 2018, 615, 906–917. [Google Scholar] [CrossRef] [PubMed]
- Malvar, J.L.; Santos, J.L.; Martín, J.; Aparicio, I.; Alonso, E. Routine analytical method for monitoring the main metabolites for a recurrent group of parabens and pharmaceuticals in wastewater and tap water. Anal. Bioanal. Chem. 2019, 411, 6625–6635. [Google Scholar] [CrossRef]
- Scudi, J.V.; Plekss, O.J. Chemotherapeutic Activity of Some Sulfapyridine-1-Oxides. Proc. Soc. Exp. Biol. Med. 1958, 97, 639–641. [Google Scholar] [CrossRef]
- Yuan, S.; Liu, Z.; Yin, H.; Dang, Z.; Wu, P.; Zhu, N.; Lin, Z. Trace determination of sulfonamide antibiotics and their acetylated metabolites via SPE-LC-MS/MS in wastewater and insights from their occurrence in a municipal wastewater treatment plant. Sci. Total Environ. 2019, 653, 815–821. [Google Scholar] [CrossRef]
- Mejías, C.; Martín, J.; Santos, J.L.; Aparicio, I.; Sánchez, M.I.; Alonso, E. Development and validation of a highly effective analytical method for the evaluation of exposure of migratory birds to antibiotics and their metabolites by faeces analysis. Anal. Bioanal. Chem. 2022, 414, 3373–3386. [Google Scholar] [CrossRef]
Compound | Mussels | ||
---|---|---|---|
MDL (ng g−1 dm) | MQL (ng g−1 dm) | R2 | |
TMP | 0.30 | 1.00 | 0.997 |
4-OH-TMP | 1.50 | 5.00 | 0.990 |
DM-TMP | 0.30 | 1.00 | 0.997 |
SMX | 0.03 | 0.10 | 0.998 |
AcSMX | 0.30 | 1.00 | 0.994 |
SMX-GL | 1.50 | 5.00 | 0.990 |
SDZ | 0.15 | 0.50 | 0.996 |
AcSDZ | 1.50 | 5.00 | 0.993 |
SMZ | 0.03 | 0.10 | 0.999 |
AcSMZ | 0.03 | 0.10 | 0.995 |
Compound | Mussels | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.25 (ng g−1, dm) | 12.5 (ng g−1, dm) | 125 (ng g−1, dm) | ||||||||||
R (%) | A (%) | ME (%) | RSD (%) | R (%) | A (%) | ME (%) | RSD (%) | R (%) | A (%) | ME (%) | RSD (%) | |
TMP | 28.1 | 102 | −14.6 | 9.34 | 27.2 | 92.6 | −26.8 | 17.7 | 33.1 | 118 | −28.0 | 6.04 |
4-OH-TMP * | 55.8 | 80.8 | −12.2 | 11.6 | 45.0 | 98.4 | −12.1 | 15.2 | 49.8 | 94.6 | −20.1 | 5.14 |
DM-TMP | 27.0 | 120 | −54.2 | 7.41 | 27.5 | 97.5 | −50.0 | 14.8 | 30.3 | 101 | −44.6 | 12.3 |
SMX | 57.5 | 98.0 | −31.8 | 2.13 | 58.6 | 95.6 | −26.0 | 2.52 | 54.7 | 96.6 | −32.3 | 5.46 |
AcSMX | 63.3 | 118 | −20.7 | 13.8 | 63.3 | 89.4 | −21.1 | 13.9 | 67.3 | 98.9 | −3.42 | 7.20 |
SMX-GL * | 53.2 | 101 | −10.7 | 14.0 | 64.2 | 111 | −56.4 | 17.4 | 53.7 | 93.5 | −24.1 | 9.18 |
SDZ | 28.5 | 109 | −45.3 | 9.42 | 33.0 | 95.2 | −45.3 | 3.80 | 29.4 | 100 | −50.7 | 3.65 |
AcSDZ * | 54.4 | 93.1 | −2.14 | 13.2 | 54.3 | 102 | −4.50 | 17.7 | 53.1 | 84.1 | −6.51 | 17.3 |
SMZ | 37.8 | 117 | −12.3 | 6.53 | 36.3 | 88.0 | −16.8 | 12.5 | 36.4 | 97.5 | −17.6 | 6.32 |
AcSMZ | 71.6 | 98.5 | −4.12 | 14.9 | 71.4 | 86.4 | −4.59 | 2.29 | 70.0 | 103 | −14.8 | 7.80 |
Compounds | Sample | Sample Amount (g) | Extraction | Solvent Volume (min) | Clean Up | Determination | Recovery | MQL (ng g−1, dm) | Reference |
---|---|---|---|---|---|---|---|---|---|
6 macrolides, 7 sulphonamides, metronidazole, TMP, 3 metabolites | Mussels and clams | 0.5 | QuEChERS | 10 | - | LC-MS/MS | 28–60 | 0.05–1.03 | [9] |
3 nitroimidazoles, 1 sulphonamide, 2 macrolides, 1 metabolite | Mussels, oysters and clams | 0.5 | PLE | 200 | SPE | LC-MS/MS | 30.2–115.7 | 0.02–2.66 | [15] |
2 b-lactams, 2 tetracyclines, 2 amphenicols, 5 sulphonamides, TMP and 5 metabolites | Mussels | 2.0 | UAE | 15 | LLE | HPLC-DAD-FLD | 60.1–83.3 | 50–580 | [17] |
2 b-lactams, 2 tetracyclines, 2 amphenicols, 5 sulphonamides, TMP and 5 metabolites | Mussels | 2.0 | MAE | 10 | - | LC-MS/MS | 63–97 | 5–55 | [18] |
TMP | Mussels | 1.0 | PLE | - | SPE | LC-MS/MS | 91 | 4 | [16] |
3 sulphonamides, TMP and 6 metabolites | Mussels | 0.2 | MSPD | 7 | - | LC-MS/MS | 27.0–71.6 | 0.1–5 | Proposed methodology |
Compound | Molecular Weight (g mol−1) | pKa | Log Kow | Chemical Structure |
---|---|---|---|---|
TMP | 290.3 | 7.16, 17.3 [37] | 1.26 [37] | |
4-OH-TMP | 306.3 | 8.18 [38] | - | |
DM-TMP | 276.3 | 9.40 [38] | - | |
SMX | 253.3 | 1.97, 6.16 [39] | 0.79 [37] | |
AcSMX | 295.3 | 5.54 [40] | 1.18 [40] | |
SMX-GL | 415.4 | - | - | |
SDZ | 250.3 | 2.01, 6.99 [37] | 0.25 [37] | |
AcSDZ | 292.3 | 6.10 [41] | 0.39 [39] | |
SMZ | 278.3 | 2.04, 6.99 [37] | 0.43 [37] | |
AcSMZ | 320.4 | 7.16 [42] | 1.48 [39] |
Compound | Precursor Ion (m/z) | Product Ions (Quantifier/Qualifier) (m/z) | CE (eV) | Retention Time (min) | Ratio |
---|---|---|---|---|---|
TMP | 291.2 | 261.1/229.8 | 28/24 | 7.79 | 98.2 |
4-OH-TMP | 279.2 | 93.0/121.1 | 40/40 | 8.27 | 1.10 |
DM-TMP | 277.3 | 261.4/123.0 | 28/44 | 6.80 | 63.1 |
SMX | 254.3 | 92.1/108.0 | 28/28 | 8.96 | 76.1 |
AcSMX | 296.3 | 134.0/108.1 | 24/28 | 10.74 | 49.8 |
SMX-GL | 416.4 | 254.0/108.0 | 8/44 | 7.59 | 9.50 |
SDZ | 251.3 | 92.1/156.0 | 28/12 | 6.45 | 98.0 |
AcSDZ | 293.3 | 134.1/198.0 | 24/16 | 7.71 | 74.9 |
SMZ | 279.3 | 186.0/92.0 | 16/36 | 8.28 | 76.4 |
AcSMZ | 321.4 | 186.0/134.0 | 20/28 | 9.08 | 81.3 |
SMX-13CIS | 260.2 | 98.1/162.0 | 32/16 | 8.95 | 94.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejías, C.; Fonseca, T.G.; García-Criado, N.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Matrix Solid-Phase Dispersion Procedure for Determination of Antibiotics and Metabolites in Mussels: Application in Exposure Bioassays. Molecules 2024, 29, 5478. https://doi.org/10.3390/molecules29225478
Mejías C, Fonseca TG, García-Criado N, Martín J, Santos JL, Aparicio I, Alonso E. Matrix Solid-Phase Dispersion Procedure for Determination of Antibiotics and Metabolites in Mussels: Application in Exposure Bioassays. Molecules. 2024; 29(22):5478. https://doi.org/10.3390/molecules29225478
Chicago/Turabian StyleMejías, Carmen, Tainá G. Fonseca, Noelia García-Criado, Julia Martín, Juan Luis Santos, Irene Aparicio, and Esteban Alonso. 2024. "Matrix Solid-Phase Dispersion Procedure for Determination of Antibiotics and Metabolites in Mussels: Application in Exposure Bioassays" Molecules 29, no. 22: 5478. https://doi.org/10.3390/molecules29225478
APA StyleMejías, C., Fonseca, T. G., García-Criado, N., Martín, J., Santos, J. L., Aparicio, I., & Alonso, E. (2024). Matrix Solid-Phase Dispersion Procedure for Determination of Antibiotics and Metabolites in Mussels: Application in Exposure Bioassays. Molecules, 29(22), 5478. https://doi.org/10.3390/molecules29225478