Toxicological Analysis of the Arylnaphthalene Lignan Justicidin B Using a Caenorhabditis elegans Model
Abstract
:1. Introduction
2. Results
2.1. Justicidin B Toxicity Evaluation in Short-Term and Chronic Administration
2.2. Justicidin B Uptake and Bioaccumulation in Short-Term and Chronic Administration
2.3. Justicidin B’s Effect on C. elegans Healthspan Parameters
2.4. Justicidin B’s Effect on C. elegans Fertility and Development
3. Discussion
4. Materials and Methods
4.1. Justicidin B Production and Purification
4.2. C. elegans Maintenance and Synchronization
4.3. Justicidin B Treatments
4.4. Confocal Imaging
4.5. HPLC Analysis of Justicidin B Amount from C. elegans Cultures
4.6. C. elegans Healthspan Parameter Evaluation After Short-Term Treatment
4.6.1. Body Bend Assay
4.6.2. Pumping Rate Assay
4.6.3. ROS Measurement
4.7. Developmental and Reproductive Toxicity (DART) Assays
4.7.1. Fertility Assay
4.7.2. Lifespan Assay on Progeny Obtained from Nematodes Treated with Justicidin B
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balunas, M.J.; Kinghorn, A.D. Drug Discovery from Medicinal Plants. Life Sci. 2005, 78, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Elshafie, H.S.; Camele, I.; Mohamed, A.A. A Comprehensive Review on the Biological, Agricultural and Pharmaceutical Properties of Secondary Metabolites Based-Plant Origin. Int. J. Mol. Sci. 2023, 24, 3266. [Google Scholar] [CrossRef] [PubMed]
- Savithramma, N.; Rao, M.L.; Ankanna, S. Screening of Traditional Medicinal Plants for Secondary Metabolites. Int. J. Res. Pharm. Sci. 2011, 8, 579–584. [Google Scholar]
- Ionkova, I. Anticancer Lignans--from Discovery to Biotechnology. Mini Rev. Med. Chem. 2011, 11, 843–856. [Google Scholar] [CrossRef]
- DellaGreca, M. Isolation of Lignans as Seed Germination and Plant Growth Inhibitors from Mediterranean Plants and Chemical Synthesis of Some Analogues. Phytochem. Rev. 2013, 12, 717–731. [Google Scholar] [CrossRef]
- Gertsch, J.; Tobler, R.T.; Brun, R.; Sticher, O.; Heilmann, J. Antifungal, Antiprotozoal, Cytotoxic and Piscicidal Properties of Justicidin B and a New Arylnaphthalide Lignan from Phyllanthus piscatorum. Planta Med. 2003, 69, 420–424. [Google Scholar] [CrossRef]
- Hemmati, S.; Seradj, H. Justicidin B: A Promising Bioactive Lignan. Molecules 2016, 21, 820. [Google Scholar] [CrossRef]
- Lievens, D.; von Hundelshausen, P. Platelets in Atherosclerosis. Thromb. Haemost. 2011, 106, 827–838. [Google Scholar] [CrossRef]
- Rao, Y.K.; Fang, S.-H.; Tzeng, Y.-M. Anti-Inflammatory Activities of Constituents Isolated from Phyllanthus polyphyllus. J. Ethnopharmacol. 2006, 103, 181–186. [Google Scholar] [CrossRef]
- Momekov, G.; Yossifov, D.; Guenova, M.; Michova, A.; Stoyanov, N.; Konstantinov, S.; Ionkov, T.; Sacheva, P.; Ionkova, I. Apoptotic Mechanisms of the Biotechnologically Produced Arylnaphtalene Lignan Justicidin B in the Acute Myeloid Leukemia-Derived Cell Line HL-60. Pharmacol. Rep. 2014, 66, 1073–1076. [Google Scholar] [CrossRef]
- Momekov, G.; Konstantinov, S.; Dineva, I.; Ionkova, I. Effect of Justicidin B—A Potent Cytotoxic and pro-Apoptotic Arylnaphtalene Lignan on Human Breast Cancer-Derived Cell Lines. Neoplasma 2011, 58, 320–325. [Google Scholar] [CrossRef]
- Jin, H.; Yin, H.-L.; Liu, S.-J.; Chen, L.; Tian, Y.; Li, B.; Wang, Q.; Dong, J.-X. Cytotoxic Activity of Lignans from Justicia procumbens. Fitoterapia 2014, 94, 70–76. [Google Scholar] [CrossRef]
- Tajuddeen, N.; Muyisa, S.; Maneenet, J.; Nguyen, H.H.; Naidoo-Maharaj, D.; Maharaj, V.; Awale, S.; Bringmann, G. Justicidin B and Related Lignans from Two South African Monsonia Species with Potent Activity against HeLa Cervical Cancer Cells. Phytochem. Lett. 2024, 60, 234–238. [Google Scholar] [CrossRef]
- Ilieva, Y.; Zhelezova, I.; Atanasova, T.; Zaharieva, M.M.; Sasheva, P.; Ionkova, I.; Konstantinov, S. Cytotoxic Effect of the Biotechnologically-Derived Justicidin B on Human Lymphoma Cells. Biotechnol. Lett. 2014, 36, 2177–2183. [Google Scholar] [CrossRef]
- Al-Qathama, A.; Gibbons, S.; Prieto, J.M. Differential Modulation of Bax/Bcl-2 Ratio and Onset of Caspase-3/7 Activation Induced by Derivatives of Justicidin B in Human Melanoma Cells A375. Oncotarget 2017, 8, 95999–96012. [Google Scholar] [CrossRef] [PubMed]
- Girard, L.R.; Fiedler, T.J.; Harris, T.W.; Carvalho, F.; Antoshechkin, I.; Han, M.; Sternberg, P.W.; Stein, L.D.; Chalfie, M. WormBook: The Online Review of Caenorhabditis elegans Biology. Nucleic Acids Res. 2007, 35, D472–D475. [Google Scholar] [CrossRef] [PubMed]
- Hunt, P.R. The C. Elegans Model in Toxicity Testing. J. Appl. Toxicol. 2017, 37, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Pears, C.; Woollard, A. An Enhanced C. Elegans Based Platform for Toxicity Assessment. Sci. Rep. 2017, 7, 9839. [Google Scholar] [CrossRef]
- Harlow, P.H.; Perry, S.J.; Widdison, S.; Daniels, S.; Bondo, E.; Lamberth, C.; Currie, R.A.; Flemming, A.J. The Nematode Caenorhabditis elegans as a Tool to Predict Chemical Activity on Mammalian Development and Identify Mechanisms Influencing Toxicological Outcome. Sci. Rep. 2016, 6, 22965. [Google Scholar] [CrossRef]
- Boyd, W.A.; Smith, M.V.; Co, C.A.; Pirone, J.R.; Rice, J.R.; Shockley, K.R.; Freedman, J.H. Developmental Effects of the ToxCastTM Phase I and Phase II Chemicals in Caenorhabditis elegans and Corresponding Responses in Zebrafish, Rats, and Rabbits. Environ. Health Perspect. 2016, 124, 586–593. [Google Scholar] [CrossRef]
- Dougué Kentsop, R.A.; Consonni, R.; Alfieri, M.; Laura, M.; Ottolina, G.; Mascheretti, I.; Mattana, M. Linum lewisii Adventitious and Hairy-Roots Cultures as Lignan Plant Factories. Antioxidants 2022, 11, 1526. [Google Scholar] [CrossRef] [PubMed]
- Mascheretti, I.; Alfieri, M.; Lauria, M.; Locatelli, F.; Consonni, R.; Cusano, E.; Dougué Kentsop, R.A.; Laura, M.; Ottolina, G.; Faoro, F.; et al. New Insight into Justicidin B Pathway and Production in Linum austriacum. Int. J. Mol. Sci. 2021, 22, 2507. [Google Scholar] [CrossRef]
- Pincus, Z.; Mazer, T.C.; Slack, F.J. Autofluorescence as a Measure of Senescence in C. elegans: Look to Red, Not Blue or Green. Aging 2016, 8, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Corsi, A.K.; Wightman, B.; Chalfie, M. A Transparent Window into Biology: A Primer on Caenorhabditis elegans. WormBook 2015, 200, 387–407. [Google Scholar] [CrossRef]
- Boyd, W.A.; McBride, S.J.; Freedman, J.H. Effects of Genetic Mutations and Chemical Exposures on Caenorhabditis elegans Feeding: Evaluation of a Novel, High-Throughput Screening Assay. PLoS ONE 2007, 2, e1259. [Google Scholar] [CrossRef] [PubMed]
- Yoon, D.S.; Lee, M.-H.; Cha, D.S. Measurement of Intracellular ROS in Caenorhabditis elegans Using 2′,7′-Dichlorodihydrofluorescein Diacetate. Bio Protoc. 2018, 8, e2774. [Google Scholar] [CrossRef]
- Espinosa-Leal, C.A.; Puente-Garza, C.A.; García-Lara, S. In Vitro Plant Tissue Culture: Means for Production of Biological Active Compounds. Planta 2018, 248, 1–18. [Google Scholar] [CrossRef]
- Chandran, H.; Meena, M.; Barupal, T.; Sharma, K. Plant Tissue Culture as a Perpetual Source for Production of Industrially Important Bioactive Compounds. Biotechnol. Rep. 2020, 26, e00450. [Google Scholar] [CrossRef]
- Dehelean, C.A.; Marcovici, I.; Soica, C.; Mioc, M.; Coricovac, D.; Iurciuc, S.; Cretu, O.M.; Pinzaru, I. Plant-Derived Anticancer Compounds as New Perspectives in Drug Discovery and Alternative Therapy. Molecules 2021, 26, 1109. [Google Scholar] [CrossRef]
- Tralau, T.; Riebeling, C.; Pirow, R.; Oelgeschläger, M.; Seiler, A.; Liebsch, M.; Luch, A. Wind of Change Challenges Toxicological Regulators. Environ. Health Perspect. 2012, 120, 1489–1494. [Google Scholar] [CrossRef]
- Olson, H.; Betton, G.; Robinson, D.; Thomas, K.; Monro, A.; Kolaja, G.; Lilly, P.; Sanders, J.; Sipes, G.; Bracken, W.; et al. Concordance of the Toxicity of Pharmaceuticals in Humans and in Animals. Regul. Toxicol. Pharmacol. 2000, 32, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, M.; Boyer, M.; Sprando, R. A Method for Ranking Compounds Based on Their Relative Toxicity Using Neural Networking, C. elegans, Axenic Liquid Culture, and the COPAS Parameters TOF and EXT. Open Access Bioinform. 2010, 2, 139–144. [Google Scholar] [CrossRef]
- Papaevgeniou, N.; Hoehn, A.; Grune, T.; Chondrogianni, N. Lipofuscin Effects in Caenorhabditis elegans Ageing Model. Free Radic. Biol. Med. 2017, 108, S48. [Google Scholar] [CrossRef]
- Markovic, M.; Ben-Shabat, S.; Aponick, A.; Zimmermann, E.M.; Dahan, A. Lipids and Lipid-Processing Pathways in Drug Delivery and Therapeutics. Int. J. Mol. Sci. 2020, 21, 3248. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.K.; Geethangili, M.; Fang, S.-H.; Tzeng, Y.-M. Antioxidant and Cytotoxic Activities of Naturally Occurring Phenolic and Related Compounds: A Comparative Study. Food Chem. Toxicol. 2007, 45, 1770–1776. [Google Scholar] [CrossRef]
- Luo, J.; Hu, Y.; Kong, W.; Yang, M. Evaluation and Structure-Activity Relationship Analysis of a New Series of Arylnaphthalene lignans as Potential Anti-Tumor Agents. PLoS ONE 2014, 9, e93516. [Google Scholar] [CrossRef]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative Stress in Cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef]
- Liao, V.H.-C.; Yu, C.-W.; Chu, Y.-J.; Li, W.-H.; Hsieh, Y.-C.; Wang, T.-T. Curcumin-Mediated Lifespan Extension in Caenorhabditis elegans. Mech. Ageing Dev. 2011, 132, 480–487. [Google Scholar] [CrossRef]
Median Lifespan (days) 1 | Maximum Lifespan (days) 2 | p-Value 3 | |
---|---|---|---|
DMSO 100 | 14.00 ± 0.00 | 19.50 ± 2.12 | n.s |
Justicidin B 100 | 14.25 ± 0.50 | 20.25 ± 1.50 | |
DMSO 200 | 14.00 ± 0.00 | 22.00 ± 1.41 | n.s |
Justicidin B 200 | 13.25 ± 1.15 | 21.50 ± 1.15 |
Median Lifespan (days) 1 | Maximum Lifespan (days) 2 | p-Value 3 | |
---|---|---|---|
DMSO | 15.00 ± 1.41 | 23.00 ± 0.00 | n.s. |
Justicidin B 100 | 15.33 ± 1.15 | 21.67 ± 1.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sciandrone, B.; Kentsop, R.A.D.; Pensotti, R.; Ottolina, G.; Mascheretti, I.; Mattana, M.; Regonesi, M.E. Toxicological Analysis of the Arylnaphthalene Lignan Justicidin B Using a Caenorhabditis elegans Model. Molecules 2024, 29, 5516. https://doi.org/10.3390/molecules29235516
Sciandrone B, Kentsop RAD, Pensotti R, Ottolina G, Mascheretti I, Mattana M, Regonesi ME. Toxicological Analysis of the Arylnaphthalene Lignan Justicidin B Using a Caenorhabditis elegans Model. Molecules. 2024; 29(23):5516. https://doi.org/10.3390/molecules29235516
Chicago/Turabian StyleSciandrone, Barbara, Roméo Arago Dougué Kentsop, Roberta Pensotti, Gianluca Ottolina, Iride Mascheretti, Monica Mattana, and Maria Elena Regonesi. 2024. "Toxicological Analysis of the Arylnaphthalene Lignan Justicidin B Using a Caenorhabditis elegans Model" Molecules 29, no. 23: 5516. https://doi.org/10.3390/molecules29235516
APA StyleSciandrone, B., Kentsop, R. A. D., Pensotti, R., Ottolina, G., Mascheretti, I., Mattana, M., & Regonesi, M. E. (2024). Toxicological Analysis of the Arylnaphthalene Lignan Justicidin B Using a Caenorhabditis elegans Model. Molecules, 29(23), 5516. https://doi.org/10.3390/molecules29235516