A Dual-Functional and Efficient MOF-5@MWCNTs Electrochemical Sensing Device for the Measurement of Trace-Level Acetaminophenol and Dopamine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of MOF-5, MWCNTs and MOF-5@MWCNTs
2.2. Characterization of Electrochemical Properties of MOF-5, MWCNTs and MOF-5@MWCNTs
2.3. The Electrochemical Detection of AP and DA on MOF-5@MWCNTs
- (1)
- MWCNTs + AP(DA)→MWCNTs-AP(DA).
- (2)
- MWCNTs-AP(DA) − e−→MWCNTs-Ox-AP(DA).
- (3)
- MWCNTs-Ox-AP(DA) + MOF-5→MOF-5-Ox-AP(DA) + MWCNTs
- (4)
- MOF-5-Ox-AP(DA)→MOF-5 + Ox-AP(DA).
2.3.1. Effect of pH on AP and DA Response on the MOF-5@MWCNTs/GCE
2.3.2. Kinetic Study of AP and DA on the MOF-5@MWCNTs/GCE
2.3.3. Quantitative Detection of AP and DA on MOF-5@MWCNTs/GCE
2.3.4. Reproducibility, Stability, and Anti-Interference
2.3.5. Analysis for Real Samples
3. Experimental Section
3.1. Materials and Reagents
3.2. Synthesis of MOF-5
3.3. Preparation of MOF-5@MWCNTs
3.4. Preparation of Electrochemical Sensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, A.; Cao, L.; Shen, T.; Zhou, Y.; Wang, H.; Luo, S. Electrochemical sensor based on ZIF-8/67 derived ZnCo2O4@Fe3O4/MWCNTs with core–shell structure for simultaneous detection of paraminophen and paracetamol. Microchem. J. 2024, 204, 111101. [Google Scholar] [CrossRef]
- Achache, M.; Elouilali Idrissi, G.; Ben Seddik, N.; El Boumlasy, S.; Kouda, I.; Raissouni, I.; Chaouket, F.; Draoui, K.; Bouchta, D.; Choukairi, M. Innovative use of shrimp shell powder in carbon paste electrode for the electrochemical detection of dopamine and paracetamol: Valorization, characterization and application. Microchem. J. 2024, 202, 110754. [Google Scholar] [CrossRef]
- Gopi, P.K.; Subburaj, S.; Chen, T.-W.; Chen, S.-M.; Al-Shaalan, N.H.; Ouladsmane, M.; Ali, M.A.; Liu, X. An expedition of WBiVO4 blended f-MWCNTs nanocomposite for enhanced electrochemical detection of non-steroidal anti-inflammatory drug acetaminophenol. Colloids Surf. A Physicochem. Eng. Aspects 2021, 618, 126454. [Google Scholar] [CrossRef]
- Ma, C.; Wen, Y.; Qiao, Y.; Shen, K.Z.; Yuan, H. A Dopamine Detection Sensor Based on Au-Decorated NiS2 and Its Medical Application. Molecules 2024, 29, 2925. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Wang, C.; Zeng, X.; Lei, J.; Hou, J.; Huo, D.; Hou, C. Co Single-Atom Nanozymes for the Simultaneous Electrochemical Detection of Uric Acid and Dopamine in Biofluids. ACS Appl. Nano Mater. 2024, 7, 6273–6283. [Google Scholar] [CrossRef]
- Chou, C.M.; Dai, Y.D.; Yuan, C.; Shen, Y.H. Preparation of an electrochemical sensor utilizing graphene-like biochar for the detection of tetracycline. Environ. Res. 2023, 236, 116785. [Google Scholar] [CrossRef]
- Jin, C.; Li, M.; Duan, S.; Zhang, Q.; Zhang, G.; Liu, Q.; Zhang, R.; Bai, H. An electrochemical sensor for direct and sensitive detection of ketamine. Biosens. Bioelectron. 2023, 226, 115134. [Google Scholar] [CrossRef]
- Li, B.; Meng, T.; Xie, X.; Guo, X.; Li, Q.; Du, W.; Zhang, X.; Meng, X.; Pang, H. Fe-based Composites-enabled electrochemical sensors for nitrite detection: A review. Mater. Today Chem. 2023, 33, 101747. [Google Scholar] [CrossRef]
- Daglar, H.; Gulbalkan, H.C.; Avci, G.; Aksu, G.O.; Altundal, O.F.; Altintas, C.; Erucar, I.; Keskin, S. Effect of Metal-Organic Framework (MOF) Database Selection on the Assessment of Gas Storage and Separation Potentials of MOFs. Angew. Chem. Int. Ed. 2021, 60, 7828–7837. [Google Scholar] [CrossRef]
- Gu, J.; Wei, Y.; Li, Y.; Wei, T.; Jin, Z. Ultrasensitive determination of quercetin using electrochemical sensor based on nickel doping zinc-based zeolite imidazole frame with a four-point star morphology. J. Appl. Electrochem. 2024. [Google Scholar] [CrossRef]
- Gu, J.; Jia, Y.; Jin, Z.; Wei, T.; Li, Y. An efficient electrochemical sensor based on the Ce-MOF/g-C3N5 composite for the detection of nitrofurazone. Anal. Methods 2024, 16, 2661–2668. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Yin, X.; Bo, X.; Guo, L. High Performance Electrocatalyst Based on MIL-101(Cr)/Reduced Graphene Oxide Composite: Facile Synthesis and Electrochemical Detections. ChemElectroChem 2018, 5, 2893–2901. [Google Scholar] [CrossRef]
- Li, X.; Sun, X.; Li, M. Detection of Sudan I in Foods by a MOF-5/MWCNT Modified Electrode. ChemistrySelect 2020, 5, 12777–12784. [Google Scholar] [CrossRef]
- Cheng, G.; Zhao, J.; Tu, Y.; He, P.; Fang, Y. A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in polypyrrole. Anal. Chim. Acta 2005, 533, 11–16. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Z.; Lin, Y.S. Adsorption and Diffusion of Carbon Dioxide on Metal-Organic Framework (MOF-5). Ind. Eng. Chem. Res. 2009, 48, 10015–10020. [Google Scholar] [CrossRef]
- Yuan, S.; Bo, X.; Guo, L. In-situ insertion of multi-walled carbon nanotubes in the Fe3O4/N/C composite derived from iron-based metal-organic frameworks as a catalyst for effective sensing acetaminophen and metronidazole. Talanta 2019, 193, 100–109. [Google Scholar] [CrossRef]
- Cao, E.; Guo, Z.; Song, G.; Zhang, Y.; Hao, W.; Sun, L.; Nie, Z. MOF-derived ZnFe2O4/(Fe-ZnO) nanocomposites with enhanced acetone sensing performance. Sens. Actuators B Chem. 2020, 325, 128783. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, J.; He, F.; Li, X.; Tang, T.; Cheng, H.; Li, L.; Hu, G. Glycosyl/MOF-5-based carbon nanofibers for highly sensitive detection of anti-bacterial drug quercetin. Surf. Interfaces 2021, 27, 101488. [Google Scholar] [CrossRef]
- Arjmandi, M.; Altaee, A.; Arjmandi, A.; Pourafshari Chenar, M.; Peyravi, M.; Jahanshahi, M. A facile and efficient approach to increase the magnetic property of MOF-5. Solid State Sci. 2020, 106, 106292. [Google Scholar] [CrossRef]
- Gao, S.; Zhao, N.; Shu, M.; Che, S. Palladium nanoparticles supported on MOF-5: A highly active catalyst for a ligand- and copper-free Sonogashira coupling reaction. Appl. Catal. A Gen. 2010, 388, 196–201. [Google Scholar] [CrossRef]
- Yang, R.; Peng, Q.; Yu, B.; Shen, Y.; Cong, H. Yolk-shell Fe3O4@MOF-5 nanocomposites as a heterogeneous Fenton-like catalyst for organic dye removal. Sep. Purif. Technol. 2021, 267, 118620. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Pei, W.Y.; Yang, J.; Ma, J.F. Quantitative detection of luteolin and quercetin in natural samples with the composite of reduced graphene oxide and cyclotriveratrylene-based metal-organic framework. Sens. Actuators B Chem. 2024, 404, 135268. [Google Scholar] [CrossRef]
- Zhao, T.; Niu, X.; Pei, W.Y.; Ma, J.F. Thiacalix[4]arene-based metal-organic framework/reduced graphene oxide composite for electrochemical detection of chlorogenic acid. Anal. Chim. Acta 2023, 1276, 341653. [Google Scholar] [CrossRef]
- Wu, B.; Xiao, L.; Zhang, M.; Yang, C.; Li, Q.; Li, G.; He, Q.; Liu, J. Facile synthesis of dendritic-like CeO2/rGO composite and application for detection of uric acid and tryptophan simultaneously. J. Solid State Chem. 2021, 296, 122023. [Google Scholar] [CrossRef]
- Bas, S.Z.; Yuncu, N.; Atacan, K.; Ozmen, M. A comparison study of MFe2O4 (M: Ni, Cu, Zn)-reduced graphene oxide nanocomposite for electrochemical detection of bisphenol A. Electrochim. Acta 2021, 386, 138519. [Google Scholar] [CrossRef]
- Li, Y.Y.; Guo, F.; Yang, J.; Ma, J.F. Efficient detection of metronidazole by a glassy carbon electrode modified with a composite of a cyclotriveratrylene-based metal–organic framework and multi-walled carbon nanotubes. Food Chem. 2023, 425, 136482. [Google Scholar] [CrossRef]
- Jiang, L.L.; Niu, X.; Pei, W.Y.; Ma, J.F. Electrochemical Detection of Flutamide by the Composite of Complex Based on Thiacalix[4]arene Derivatives and Reduced Graphene Oxide. Inorg. Chem. 2023, 62, 12803–12813. [Google Scholar] [CrossRef]
- Li, M.Y.; Niu, X.; Pei, W.Y.; Xu, H.L.; Ma, J.F. Synthesis of sulfonylcalix[4]arene complexes and research on electrochemical detection of rutin by the composites of the complexes with multi-walled carbon nanotubes. Chem. Eng. J. 2023, 470, 144060. [Google Scholar] [CrossRef]
- Xie, A.; Wang, H.; Lin, J.; Pan, J.; Li, M.; Wang, J.; Jiang, S.; Luo, S. 3D RGO/MWCNTs-loaded bimetallic-organic gel derived ZrFeOx as an electrochemical sensor for simultaneous detection of dopamine and paracetamol. J. Alloys Compd. 2023, 938, 168647. [Google Scholar] [CrossRef]
- Arvand, M.; Farahpour, M.; Ardaki, M.S. Electrochemical characterization of in situ functionalized gold organosulfur self-assembled monolayer with conducting polymer and carbon nanotubes for determination of rutin. Talanta 2018, 176, 92–101. [Google Scholar] [CrossRef]
- Venkatesan, M.; Shanmugam, G.; Arumugam, J. Spindle shaped Fe-Ni metal organic frameworks wrapped with f-MWCNTs for the efficacious sensing of tartrazine. Food Chem. 2024, 453, 139634. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, K.; Han, F.; Jin, Y.; Zhang, H.; Gao, H. Simultaneous and sensitive detection of dopamine and acetaminophen at a glassy carbon electrode modified with a carbonized-ZIF-67/Super P nanocomposite. New J. Chem. 2024, 48, 3294–3303. [Google Scholar] [CrossRef]
- Li, Y.; Shen, Y.; Zhang, Y.; Zeng, T.; Wan, Q.; Lai, G.; Yang, N. A UiO-66-NH2/carbon nanotube nanocomposite for simultaneous sensing of dopamine and acetaminophen. Anal. Chim. Acta 2021, 1158, 338419. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.A.; Li, Y.L.; Luo, Y.H.; Yang, J.; Jia, X.M.; Zhang, D.E. One-pot synthesis of cerium-organic framework@carbon black composites for simultaneous detection of dopamine, uric acid, and acetaminophen. Solid State Sci. 2024, 151, 107505. [Google Scholar] [CrossRef]
- Hussaini, A.A.; Sarilmaz, A.; Ozel, F.; Erdal, M.O.; Yıldırım, M. CeO2:BaMoO4 nanocomposite based 3D-printed electrodes for electrochemical detection of the dopamine. Mater. Sci. Semicond. Proc. 2024, 180, 108587. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Ma, C.; Zhao, F.; Chen, K. Morphology Effect of Bismuth Vanadate on Electrochemical Sensing for the Detection of Paracetamol. Nanomaterials 2022, 12, 1173. [Google Scholar] [CrossRef]
- Xing, Y.; Lv, C.; Fu, Y.; Luo, L.; Liu, J.; Xie, X.; Chen, F. Sensitive sensing platform based on Co, Mo doped electrospun nanofibers for simultaneous electrochemical detection of dopamine and uric acid. Talanta 2024, 271, 125674. [Google Scholar] [CrossRef]
- Xu, H.; Hang, Y.; Lei, X.; Deng, J.; Yang, J. Synthesis of cobalt phosphide hybrid for simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid. RSC Adv. 2024, 14, 14665–14671. [Google Scholar] [CrossRef]
- Zhao, Z.; Zheng, L. Ultrasound assisted synthesis of CoFe-LDH for the simultaneous electrochemical detection of dopamine and acetaminophen. Inorg. Chem. Commun. 2024, 164, 112435. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Liu, Y.; Zeng, X.; Jin, C.; Huo, D.; Hou, J.; Hou, C. A wearable flexible electrochemical biosensor with CuNi-MOF@rGO modification for simultaneous detection of uric acid and dopamine in sweat. Anal. Chim. Acta 2024, 1299, 342441. [Google Scholar] [CrossRef]
- Salova, A.; Mahmud, S.F.; Almasoudie, N.K.A.; Mohammed, N.; Albeer, A.A.; Amer, R.F. CuO-Cu2O nanostructures as a sensitive sensing platform for electrochemical sensing of dopamine, serotonin, acetaminophen, and caffeine substances. Inorg. Chem. Commun. 2024, 161, 112065. [Google Scholar] [CrossRef]
- Doan, T.L.L.; Tran, M.X.; Nguyen, D.L.T.; Nguyen, D.C. Urchin-like CoP3/Cu3P heterostructured nanorods supported on a 3D porous copper foam for high-performance non-enzymatic electrochemical dopamine sensors. Phys. Chem. Chem. Phys. 2024, 26, 18449–18458. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Maurya, K.K.; Malviya, M. Electrochemical determination of dopamine using Ni Pd bimetallic nanoparticles decorated on MWCNT: An amperometric sensor. J. Nanopart. Res. 2024, 26, 63. [Google Scholar] [CrossRef]
- Gu, H.; Shui, X.; Zhang, Y.; Zeng, T.; Yang, J.; Wu, Z.; Zhang, X.; Yang, N. Porous carbon scaffolded Fe-based alloy nanoparticles for electrochemical quantification of acetaminophen and rutin. Carbon 2024, 221, 118954. [Google Scholar] [CrossRef]
- Zhao, Z.; Zheng, L. Cobalt-generated reactive oxygen species promoted FeS2/CoS2 for electrochemical detection of acetaminophen with the widest linear range and simultaneous detection of dopamine. J. Electroanal. Chem. 2024, 956, 118101. [Google Scholar] [CrossRef]
- Yu, A.X.; Liang, X.H.; Hao, C.D.; Hu, X.Z.; Li, J.J.; Bo, X.J.; Du, D.Y.; Su, Z.M. Heterometallic MIL-125(Ti–Al) frameworks for electrochemical determination of ascorbic acid, dopamine and uric acid. Dalton Trans. 2024, 53, 6275–6281. [Google Scholar] [CrossRef]
- Xin, Y.Y.; Liu, L.H.; Liu, Y.; Deng, Z.P.; Cheng, X.L.; Zhang, X.F.; Xu, Y.M.; Huo, L.H.; Gao, S. Nanoflower MoS2/rGO composite rich in edge defects for enhanced electrochemical sensing of nM-level dopamine. Microchem. J. 2024, 197, 109878. [Google Scholar] [CrossRef]
- Chen, S.; Wang, C.; Wang, M.; Pan, L.; Xu, D.; Li, J. Au nanoparticle-functionalized HKUST-1 sensor for electrochemical determination of sulfanilamide and acetaminophen. J. Environ. Chem. Eng. 2024, 12, 113448. [Google Scholar] [CrossRef]
- Supritha, K.M.; Pandurangappa, M. Nanosheet like Ni-MOFs/MWCNTs Composite Synthesis: Application to Trace Level Dopamine Measurement. J. Electrochem. Soc. 2024, 171, 017511. [Google Scholar] [CrossRef]
- Chougule, G.K.; Tawade, A.K.; Kamble, J.V.; Sharma, K.K.K.; Mali, S.S.; Hong, C.K.; Powar, A.A.; Gaikwad, K.V.; Tayade, S.N. Electrochemical detection of dopamine using van der waals-interacted NiO–ZnO-functionalized reduced graphene oxide nanocomposite. J. Mater. Sci. Mater. Electron. 2024, 35, 301. [Google Scholar] [CrossRef]
- Chen, C.; Wang, C.; Zhao, P.; Zhang, J.; Hu, Y.; Fei, J. A novel temperature-responsive electrochemical sensing platform for reversible switch-sensitive detection of acetamidophenol. Anal. Methods 2022, 14, 4730–4738. [Google Scholar] [CrossRef] [PubMed]
- Amiri, M.; Golmohammadi, F.; Safari, M.; Sadeq, T.W. Electrochemical synthesis of polypyrrole composite with modified gold nanoparticles for electrochemical detection of ascorbic acid, dopamine and acetaminophen in different pharmaceutical samples. Polym. Bull. 2024, 81, 9775–9793. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, W.; Wang, Q.; Qu, J. A Novel Ti3C2/CoNP-NCNTHP Electrochemical Sensor for the Detection of Paracetamol and 4-Aminophenol Simultaneously. J. Electrochem. Soc. 2023, 170, 077512. [Google Scholar] [CrossRef]
- Jia, D.; Yang, T.; Wang, K.; Wang, H.; Wang, E.; Chou, K.C.; Hou, X. Ti3C2Tx Coated with TiO2 Nanosheets for the Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. Molecules 2024, 29, 2915. [Google Scholar] [CrossRef]
- Jaryal, V.B.; Kumar, S.; Singh, D.; Gupta, N. Thiourea-Modified Multiwalled Carbon Nanotubes as Electrochemical Biosensor for Ultra-Precise Detection of Dopamine. ChemNanoMat 2024, 10, e202300637. [Google Scholar] [CrossRef]
- Chowdhury, S.; Nugraha, A.S.; O’May, R.; Wang, X.; Cheng, P.; Xin, R.; Osman, S.M.; Hossain, M.S.; Yamauchi, Y.; Masud, M.K.; et al. Bimetallic metal-organic framework-derived porous one-dimensional carbon materials for electrochemical sensing of dopamine. Chem. Eng. J. 2024, 492, 152124. [Google Scholar] [CrossRef]
- Zhou, Y.; Tian, M.; Li, R.; Zhang, Y.; Zhang, G.; Zhang, C.; Shuang, S. Ultrasensitive Electrochemical Platform for Dopamine Detection Based on CoNi-MOF@ERGO Composite. ACS Biomater. Sci. Eng. 2023, 9, 5599–5609. [Google Scholar] [CrossRef]
Electrode Material | Linear Range (µM) | LOD (µM) | Refs. | ||
---|---|---|---|---|---|
AP | DA | AP | DA | ||
C-ZIF-67/SP/GCE | 0.5–100 | 1–100 | 0.27 | 0.58 | [32] |
3D RGO/MWCNTs@ZrFeOx | 1–14 14–190 | 1–12, 12–180 | 0.230 | 0.212 | [29] |
UiO-66-NH2/CNTs/GCE | 0.03–2 | 0.03–2 | 0.009 | 0.015 | [33] |
Ce-MOF-COOH/CB0.4 | 2.5–617 | 2.5–310 | 0.057 | 0.03 | [34] |
CeO2:BaMoO4/3DPE electrode | - | 5–1000 μM | - | 2.77 | [35] |
The clavate-shaped BiVO4 | 0.5–100 | - | 0.2 | - | [36] |
Co, Mo@CNFs | - | 0.01–1000 | - | 0.00235 | [37] |
Co2P hybrid | - | 0.2–10, 10–50 | - | 0.018 | [38] |
CoFe-LDH/GCE | 2–900 | 2–900 | 0.37 | 0.08 | [39] |
CuNi-MOF@rGO | - | 1–500 | - | 9.41 | [40] |
CuO-Cu2O | 5–100 | 2–100 | 0.06 | 0.1 | [41] |
CoP3/Cu3P NRs/CF | - | 0.2–2000 | - | 0.51 | [42] |
Fcmc/Ni-Pd/f-MWCNT | - | 2–400 | - | 0.05 | [43] |
FeCo@C | 0.001–0.8 | - | 0.59 | - | [44] |
FeS2/CoS2NHs/GCE | 1–27,000 | 1–24,000 | 0.8 | 1.1 | [45] |
MIL-125(Ti–Al)-75%NH2 | - | 5–100 | - | 0.0876 | [46] |
MoS2/rGO/GCE | - | 0.1–110.0 | - | 0.013 | [47] |
N-HKUST-1/Au composite | 1–4448.4 | - | 0.16 | - | [48] |
Ni-MOFs/MWCNTs | - | 2–200 | - | 0.017 | [49] |
NiO–ZnO/rGO | - | 0.0041–0.054 | - | 0.0076 | [50] |
PS-PDEA-PS/MWCNT–COOH | 1.5–85.1 85.1–235.1 | - | 0.57 | - | [51] |
Pt/Ppy | 4–150 | 0.1–8 | 0.9 | 0.078 | [52] |
Ti3C2/CoNP-NCNTHP | 0.5–350 | - | 0.05 | - | [53] |
Ti3C2Tx@TiO2 NSs | - | 40–300 | - | 0.19 | [54] |
TM-CNT600 | - | 10.7–24.2 | - | 1.42 | [55] |
ZnCo2O4@Fe3O4/MWCNTs | 1.0–150.0 | - | 0.018 | - | [1] |
Zn-rich Zn-Co BTC MOF | - | 0.1–500 | - | 0.04 | [56] |
WBiVO4/f-MWCNTs/SPCE | 0.5–36.5 48.5–158.5 | - | 0.082 | - | [3] |
CoNi-MOF@ERGO/GCE | - | 0.1−400 | - | 0.086 | [57] |
MOF-5@MWCNTs | 0.005–150, 150–600 | 0.1–10, 10–60 | 0.061 | 0.0075 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, J.; Lang, S.; Jin, Z.; Wei, T. A Dual-Functional and Efficient MOF-5@MWCNTs Electrochemical Sensing Device for the Measurement of Trace-Level Acetaminophenol and Dopamine. Molecules 2024, 29, 5534. https://doi.org/10.3390/molecules29235534
Gu J, Lang S, Jin Z, Wei T. A Dual-Functional and Efficient MOF-5@MWCNTs Electrochemical Sensing Device for the Measurement of Trace-Level Acetaminophenol and Dopamine. Molecules. 2024; 29(23):5534. https://doi.org/10.3390/molecules29235534
Chicago/Turabian StyleGu, Jianxia, Shuting Lang, Zhanbin Jin, and Tingting Wei. 2024. "A Dual-Functional and Efficient MOF-5@MWCNTs Electrochemical Sensing Device for the Measurement of Trace-Level Acetaminophenol and Dopamine" Molecules 29, no. 23: 5534. https://doi.org/10.3390/molecules29235534
APA StyleGu, J., Lang, S., Jin, Z., & Wei, T. (2024). A Dual-Functional and Efficient MOF-5@MWCNTs Electrochemical Sensing Device for the Measurement of Trace-Level Acetaminophenol and Dopamine. Molecules, 29(23), 5534. https://doi.org/10.3390/molecules29235534