A Pre-Column Derivatization Method for the HPLC-FLD Determination of Dimethyl and Diethyl Amine in Pharmaceuticals
Abstract
:1. Introduction
2. Results and Discussion
2.1. Derivatization Procedure
2.1.1. Chemical Reaction
2.1.2. Temperature
2.1.3. Diluents
2.1.4. Borate Buffer Incorporation
2.1.5. pH of Borate Buffer Solution
2.1.6. Concentration of Borate Buffer Solution
2.1.7. Concentration of NBD-Cl
2.1.8. Crossed D-Optimal Experimental Design Methodology
2.1.9. Stability Control of the Derivatized Product
2.2. Mobile Phase Composition
2.3. Method Validation
2.3.1. Specificity
2.3.2. Linearity, Limit of Detection (LOD), and Limit of Quantitation (LOQ)
2.3.3. Accuracy
2.3.4. Intra- and Inter-Day Precision
2.3.5. Robustness
2.4. Sample Extraction Procedure
2.4.1. Liquid Extraction (LE)
2.4.2. Solid-Phase Extraction (SPE)
3. Materials and Methods
3.1. Chemicals and Solutions
3.2. Standards Solutions
3.3. Instrumentation and Chromatographic Conditions
3.4. Derivatization Procedure
3.5. Solid Phase Extraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jireš, J.; Douša, M.; Gibala, P.; Kubelka, T. N-Nitrosation in the absence of nitrosating agents in pharmaceuticals? J. Pharm. Biomed. Anal. 2022, 218, 114872. [Google Scholar] [CrossRef] [PubMed]
- Fulga, I.; Fulga, C. The Use of Diethylamine as Analgesic in Pharmaceutical Preparations. Patent Application No. RO-2007000002-W, 25 June 2008. International Application Published under the Patent Cooperation Treaty (PCT), 2007. [Google Scholar]
- FDA. Control of Nitrosamine Impurities in Human Drugs, Guidance for Industry; Food and Drug Administration: Rockville, MA, USA, 2021. [Google Scholar]
- Hao, G.; Hu, R.; Wang, X.; Gao, P.; Wang, L.; Jiang, M.; Xin, L.; Tan, G.; Zhao, Y.; Sun, F.; et al. N-Nitrosodimethylamine formation in metformin hydrochloride sustained-release tablets: Effects of metformin and hypromellose used in drug product formulation. J. Pharm. Biomed. Anal. 2022, 222, 115066. [Google Scholar] [CrossRef] [PubMed]
- Douša, M.; Jireš, J. HILIC-MS determination of dimethylamine in the active pharmaceutical ingredients and in the dosage forms of metformin. J. Pharm. Biomed. Anal. 2020, 191, 113573. [Google Scholar] [CrossRef] [PubMed]
- European Pharmacopoeia, Metformin Hydrochloride, 9.0, 01/2017:0931. Available online: https://pheur.edqm.eu/home (accessed on 22 November 2024).
- Choi, N.R.; Lee, J.Y.; Ahn, Y.G.; Kim, Y.P. Determination of atmospheric amines at Seoul, South Korea via gas chromatography/tandem mass spectrometry. Chemosphere 2020, 258, 127367. [Google Scholar] [CrossRef] [PubMed]
- David, V.; Moldoveanu, S.C.; Galaon, T. Derivatization procedures and their analytical performances for HPLC determination in bioanalysis. Biomed. Chromatogr. 2020, 35, e5008. [Google Scholar] [CrossRef] [PubMed]
- Pawliszyn, J.; Bayona, J.M.; Lord, H.L.; Le, X.C.; Mondello, L. Comprehensive Sampling and Sample Preparation: Analytical Techniques for Scientists; Elsevier: Amsterdam, The Netherlands, 2012; Volume 1. [Google Scholar]
- Lingeman, H.; Underberg, W.J.M.; Takadate, A.; Hulshoff, A. Fluorescence Detection in High Performance Liquid Chromatography. J. Liq. Chromatogr. 1985, 8, 789–874. [Google Scholar] [CrossRef]
- Danielson, N.D.; Gallagher, P.A.; Bao, J.J. Chemical Reagents and Derivatization Procedures in Drug Analysis. In Encyclopedia of Analytical Chemistry; Wiley: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Elbashir, A.A.; Suliman, F.E.O.; Aboul-Enein, H.Y. The Application of 7-Chloro-4-nitrobenzoxadiazole (NBD-Cl) for the Analysis of Pharmaceutical-Bearing Amine Group Using Spectrophotometry and Spectrofluorimetry Techniques. Appl. Spectrosc. Rev. 2011, 46, 222–241. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, H.; Fu, C. Sensitive fluorescence detection of some nitrosamines by precolumn derivatization with dansyl chloride and high-performance liquid chromatography. J. Chromatogr. A 1992, 589, 349–352. [Google Scholar] [CrossRef]
- Hu, J.; Christison, T.; Rohrer, J. Determination of dimethylamine and nitrite in pharmaceuticals by ion chromatography to assess the likelihood of nitrosamine formation. Heliyon 2021, 7, e06179. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.-F.; Zhang, Z.-X.; Guo, X.-F.; Wang, H.; Zhang, H.-S. Determination of primary and secondary aliphatic amines with high performance liquid chromatography based on the derivatization using 1,3,5,7-tetramethyl-8-(N-hydroxysuccinimidyl butyric ester)-difluoroboradiaza-s-indacene. Talanta 2011, 84, 1093–1098. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.F.; Zheng, J.S.; Zhang, S.M.; Wen, X.J. Fluorescence detection of Trace Dimethylamine and Diethylamine in Natural Water by HPLC with O-phthalaldehyde and 7-chlore-4nitrobenzo-2-oax-1, 3-diazole. IOP Conf. Ser. Earth Environ. Sci. 2019, 223, 012056. [Google Scholar] [CrossRef]
- Bayona, J.M.; Pawliszyn, J.; Dugo, P.; Le, X.C.; Lee, H.K.; Li, X.-F. (Eds.) Comprehensive Sampling and Sample Preparation, 1st ed.; Heather Lord Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Khorolskiy, M.; Ramenskaya, G.; Vlasov, A.; Perederyaev, O.; Maslennikova, N. Development and Validation of four Nitrosamine Impurities Determination Method in Medicines of Valsartan, Losartan, and Irbesartan with HPLC-MS/MS (APCI). Iran. J. Pharm. Res. 2021, 20, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Cardinael, P.; Casabianca, H.; Peulon-Agasse, V.; Berthod, A. Sample Derivatization in Separation Science. In Analytical Separation Science; Wiley: New York, NY, USA, 2015; Volume 5, p. 063. [Google Scholar] [CrossRef]
- Johnson, L.; Lagerkvist, S.; Lindroth, P.; Ahnoff, M.; Martinsson, K. Derivatization of secondary amino acids with 7-nitro-4-benzofurazanyl ethers. Anal. Chem. 1982, 54, 939–942. [Google Scholar] [CrossRef]
- Aly, H.; El-Shafie, A.S.; El-Azazy, M. Utilization of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) for spectrochemical determination of l-ornithine: A multivariate optimization-assisted approach. RSC Adv. 2019, 9, 22106–22115. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.B.; Kavala, V.; Samal, A.K.; Patel, B.K. Aqueous-Mediated N-Alkylation of Amines. Eur. J. Org. Chem. 2007, 2007, 1369–1377. [Google Scholar] [CrossRef]
- Kamaris, G.; Dalavitsou, A.; Markopoulou, C.K. Development and Validation of an HPLC-DAD Method for the Determination of Seven Antioxidants in a Nano-Emulsion: Formulation and Stability Study. Separations 2024, 11, 43. [Google Scholar] [CrossRef]
- Lupo, S.; Kahler, T. New advice on an old topic: Buffers in reversed-phase HPLC. LC-GC N. Am. 2017, 35, 424–433. [Google Scholar]
- Sankar, R. Fundamental Chromatographic Parameters. Int. J. Pharm. Sci. Rev. Res. 2020, 55, 46–50. [Google Scholar]
- ICH. ICH Q2(R2) Guideline on Validation of Analytical Procedures, December 2023. Available online: www.ema.europa.eu/contact (accessed on 25 October 2024).
Study Type | Combined | Runs | 18 | |||
Design Type | D-optimal | Blocks | No Blocks | |||
Design Model | Quadratic × Quadratic | |||||
Mixture | Components | A | Vof NBD-Cl (μL) | Mixture | 50 | 150 |
B | V of water/DMA-DEA (μL) | Mixture | 150 | 250 | ||
A + B = | 400 | |||||
Process Factors | C | Volume of borate buffer (μL) | Numeric | 50 | 200 | |
D | Time (min) | Numeric | 10.0 | 80.0 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
Model | 1.21 | 4 | 3.044 | 51.8 | <0.0001 |
(1)Linear Mixture | 3.005 | 1 | 3.005 | 51.13 | <0.0001 |
AD | 5.05 | 1 | 5.05 | 85.93 | <0.0001 |
BC | 9.512 | 1 | 9.512 | 16.19 | 0.0014 |
BD | 1.339 | 1 | 1.339 | 22.79 | 0.0004 |
Residual | 7.64 | 13 | 5.887 | ||
Cor Total | 1.294 | 17 | |||
Standard Deviation | 7.666 | R2 | 0.941 | ||
Mean | 4.304 | Adjusted R2 | 0.9228 | ||
Fit Statistics | C.V.% | 17.81 | Predicted R2 | 0.8743 | |
Adequate Precision | 24.0773 | ||||
(a) | |||||
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
Model | 8.86 | 6 | 1.477 | 65.78 | <0.0001 |
(1)Linear Mixture | 6.339 | 1 | 6.339 | 282.41 | <0.0001 |
AC | 9.905 | 1 | 9.905 | 44.13 | <0.0001 |
AD | 3.564 | 1 | 3.564 | 15.88 | 0.0021 |
BC | 1.1 | 1 | 1.1 | 4.9 | 0.0489 |
ACD | 1.845 | 1 | 1.845 | 8.22 | 0.0153 |
AD2 | 8.338 | 1 | 8.338 | 37.15 | <0.0001 |
Residual | 2.469 | 11 | 2.245 | ||
Cor Total | 9.107 | 17 | |||
Standard Deviation | 47,377.83 | R2 | 0.9729 | ||
Mean | 3.116 | Adjusted R2 | 0.9581 | ||
Fit Statistics | C.V.% | 15.2 | Predicted R2 | 0.9181 | |
Adequate Precision | 25.4447 | ||||
(b) |
Agents | Concentration Range (ng/mL) | Calibration Curve | Correlation Coefficient | Limit of Detection (ng/mL) | Limit of Quantitation (ng/mL) |
DMA | 0.5–10 | y = 49,530x + 12,828 | 0.998 | 0.1 | 0.4 |
DEA | 5–100 | y = 3213.2x − 5063 | 0.999 | 0.9 | 3 |
Agents | Concentration Range (ng/mL) | Reference Calibration Curve (After SPE) | Correlation Coefficient | Limit of Detection (ng/mL) | Limit of Quantitation (ng/mL) |
DMA | 1.7–20 | y = 28,322x + 41,357 | 0.997 | 0.3 | 1.3 |
DEA | 16.7–200 | y = 3162.8x – 18,137 | 0.998 | 3.0 | 10.0 |
Concentration DMA (ng/mL) | Found Concentration DMA (ng/mL) | Recovery (%) | Concentration DΕA (ng/mL) | Found Concentration DΕA (ng/mL) | Recovery (%) |
---|---|---|---|---|---|
0.5 | 0.51 | 102 | 5 | 4.91 | 98.2 |
2.5 | 2.54 | 101.6 | 25 | 25.4 | 101.6 |
4.38 | 4.385 | 99.8 | 43.75 | 43.70 | 99.9 |
6 | 5.94 | 99 | 60 | 60.6 | 101 |
10 | 10.01 | 100.1 | 100 | 99.8 | 99.8 |
Agents | Repeatability | Intermediate Precision | |||||
---|---|---|---|---|---|---|---|
Concentration (ng/mL) | %RSD | Concentration (ng/mL) | %RSD | ||||
1st Day | 2nd Day | 3rd Day | Total | ||||
DΜA | 0.5 (n = 5) | 2.7 | 0.5 (n = 5) | 2.7 | 1.1 | 2.8 | 1.7 |
5 (n = 3) | 0.2 | 5 (n = 3) | 0.2 | 0.1 | 0.6 | 1.9 | |
10 (n = 3) | 0.3 | 10 (n = 3) | 0.3 | 0.8 | 0.4 | 0.5 | |
DΕA | 5 (n = 5) | 2.4 | 5 (n = 5) | 2.4 | 0.3 | 2.3 | 2.5 |
50 (n = 3) | 2.2 | 50 (n = 3) | 2.2 | 0.6 | 0.5 | 2.9 | |
100 (n = 3) | 0.3 | 100 (n = 3) | 0.3 | 1. 9 | 0.4 | 1.9 |
Liquid Extraction | ||||
% Recovery DMA | %RSD | % Recovery DEA | %RSD | |
Ref. Standard | 77.1 | 2.0 | 68.9 | 2.0 |
Uniphyllin | 107.8 | 4.8 | 65.7 | 9.1 |
Xylosan | 65.3 | 3.0 | 95.6 | 3.3 |
Solid Phase Extraction | ||||
Standard | 83.31 | 0.57 | 95.8 | 0.7 |
Uniphyllin | 88.83 | 2.98 | 81.1 | 4.9 |
Xylosan | 81.58 | 0.42 | 82.1 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamaris, G.; Tsami, M.; Lotca, G.-R.; Almpani, S.; Markopoulou, C.K. A Pre-Column Derivatization Method for the HPLC-FLD Determination of Dimethyl and Diethyl Amine in Pharmaceuticals. Molecules 2024, 29, 5535. https://doi.org/10.3390/molecules29235535
Kamaris G, Tsami M, Lotca G-R, Almpani S, Markopoulou CK. A Pre-Column Derivatization Method for the HPLC-FLD Determination of Dimethyl and Diethyl Amine in Pharmaceuticals. Molecules. 2024; 29(23):5535. https://doi.org/10.3390/molecules29235535
Chicago/Turabian StyleKamaris, Georgios, Maria Tsami, Georgiana-Roxana Lotca, Sofia Almpani, and Catherine K. Markopoulou. 2024. "A Pre-Column Derivatization Method for the HPLC-FLD Determination of Dimethyl and Diethyl Amine in Pharmaceuticals" Molecules 29, no. 23: 5535. https://doi.org/10.3390/molecules29235535
APA StyleKamaris, G., Tsami, M., Lotca, G. -R., Almpani, S., & Markopoulou, C. K. (2024). A Pre-Column Derivatization Method for the HPLC-FLD Determination of Dimethyl and Diethyl Amine in Pharmaceuticals. Molecules, 29(23), 5535. https://doi.org/10.3390/molecules29235535