Three New Depsipeptides, Homiamides A–C, Isolated from Streptomyces sp., ROA-065
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Strain Isolation
3.3. Fermentation, Extraction, and Purification
3.4. Homiamides A–C (1–3) Hydrolysis and Marfey’s Analysis
3.5. Preparation of Standards for GC-MS Analysis
3.6. Diastereomeric (S)-(+)-3-Methyl-2-Butylation and O-Trifluoroacetylation
3.7. Sample Preparation for Chiral Separation of Lac and Hiv in Homiamides A and C
3.8. Gas Chromatography-Mass Spectrometry
3.9. Antibacterial Activity Assay
3.10. Quorum Sensing Inhibition Assay
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fenical, W.; Jensen, P.R. Developing a new resource for drug discovery: Marine actinomycete bacteria. Nat. Chem. Biol. 2006, 2, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.S. Discovery of novel metabolites from marine actinomycetes. Curr. Opin. Microbiol. 2006, 9, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, L.; Zhou, Y.; Han, B. Natural products from actinomycetes associated with marine organisms. Mar. Drugs 2021, 19, 629. [Google Scholar] [CrossRef] [PubMed]
- Subramani, R.; Aalbersberg, W. Marine actinomycetes: An ongoing source of novel bioactive metabolites. Microbiol. Res. 2012, 167, 571–580. [Google Scholar] [CrossRef]
- Elmaidomy, A.H.; Shady, N.H.; Abdeljawad, K.M.; Elzamkan, M.B.; Helmy, H.H.; Tarshan, E.A.; Adly, A.N.; Hussien, Y.H.; Sayed, N.G.; Zayed, A. Antimicrobial potentials of natural products against multidrug resistance pathogens: A comprehensive review. RSC Adv. 2022, 12, 29078–29102. [Google Scholar] [CrossRef]
- Alam, K.; Mazumder, A.; Sikdar, S.; Zhao, Y.-M.; Hao, J.; Song, C.; Wang, Y.; Sarkar, R.; Islam, S.; Zhang, Y. Streptomyces: The biofactory of secondary metabolites. Front. Microbiol. 2022, 13, 968053. [Google Scholar] [CrossRef]
- Lacey, H.J.; Rutledge, P.J. Recently discovered secondary metabolites from Streptomyces species. Molecules 2022, 27, 887. [Google Scholar] [CrossRef]
- Dharmaraj, S. Marine Streptomyces as a novel source of bioactive substances. World J. Microbiol. Biotechnol. 2010, 26, 2123–2139. [Google Scholar] [CrossRef]
- Lee, H.-S.; Shin, H.J.; Jang, K.H.; Kim, T.S.; Oh, K.-B.; Shin, J. Cyclic peptides of the nocardamine class from a marine-derived bacterium of the genus Streptomyces. J. Nat. Prod. 2005, 68, 623–625. [Google Scholar] [CrossRef]
- Kim, D.E.; Lee, E.Y.; Kim, H.S. Cloning and characterization of alginate lyase from a marine bacterium Streptomyces sp. ALG-5. Mar. Biotechnol. 2009, 11, 10–16. [Google Scholar] [CrossRef]
- Woo, J.-H.; Kitamura, E.; Myouga, H.; Kamei, Y. An antifungal protein from the marine bacterium Streptomyces sp. strain AP77 is specific for Pythium porphyrae, a causative agent of red rot disease in Porphyra spp. Appl. Environ. Microbiol. 2002, 68, 2666–2675. [Google Scholar] [CrossRef] [PubMed]
- Alonzo, D.A.; Schmeing, T.M. Biosynthesis of depsipeptides, or depsi: The peptides with varied generations. Protein Sci. 2020, 29, 2316–2347. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Acharya, D.; Adholeya, A.; Barrow, C.J.; Deshmukh, S.K. Nonribosomal peptides from marine microbes and their antimicrobial and anticancer potential. Front. Pharmacol. 2017, 8, 828. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Phat, C.; Hong, S.-C. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides 2017, 95, 94–105. [Google Scholar] [CrossRef]
- Makarieva, T.N.; Romanenko, L.A.; Mineev, K.S.; Shubina, L.K.; Guglya, E.B.; Kalinovskaya, N.I.; Ivanchina, N.V.; Guzii, A.G.; Belozerova, O.A.; Kovalchuk, S.I. Streptocinnamides A and B, depsipeptides from Streptomyces sp. KMM 9044. Org. Lett. 2022, 24, 4892–4895. [Google Scholar] [CrossRef]
- Wang, W.; Lee, J.; Roh, E.; Shetye, G.; Cao, J.; McAlpine, J.; Pauli, G.; Franzblau, S.; Vu, T.H.N.; Quach, N.T. Cavomycins A–C, linear oligomer depsipeptides from an annelid-associated Streptomyces cavourensis. J. Nat. Prod. 2024, 87, 976–983. [Google Scholar] [CrossRef]
- Huang, S.; Liu, Y.; Liu, W.-Q.; Neubauer, P.; Li, J. The nonribosomal peptide valinomycin: From discovery to bioactivity and biosynthesis. Microorganisms 2021, 9, 780. [Google Scholar] [CrossRef]
- Kim, K.-R.; Lee, J.; Ha, D.; Jeon, J.; Park, H.-G.; Kim, J.H. Enantiomeric separation and discrimination of 2-hydroxy acids as O-trifluoroacetylated (S)-(+)-3-methyl-2-butyl esters by achiral dual-capillary column gas chromatography. J. Chromatogr. A 2000, 874, 91–100. [Google Scholar] [CrossRef]
- Bai, J.; Liu, D.; Yu, S.; Proksch, P.; Lin, W. Amicoumacins from the marine-derived bacterium Bacillus sp. with the inhibition of NO production. Tetrahedron Lett. 2014, 55, 6286–6291. [Google Scholar] [CrossRef]
- Shimojima, Y.; Hayashi, H.; Ooka, T.; Shibukawa, M.; Iitaka, Y. Studies on AI-77s, microbial products with gastroprotective activity. Structures and the chemical nature of AI-77s. Tetrahedron 1984, 40, 2519–2527. [Google Scholar] [CrossRef]
- Huguenin-Dezot, N.; Alonzo, D.A.; Heberlig, G.W.; Mahesh, M.; Nguyen, D.P.; Dornan, M.H.; Boddy, C.N.; Schmeing, T.M.; Chin, J.W. Trapping biosynthetic acyl-enzyme intermediates with encoded 2, 3-diaminopropionic acid. Nature 2019, 565, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Kohli, R.M.; Takagi, J.; Walsh, C.T. The thioesterase domain from a nonribosomal peptide synthetase as a cyclization catalyst for integrin binding peptides. Proc. Natl. Acad. Sci. USA 2002, 99, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.-J.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Isolation and characterization of actinoramides A–C, highly modified peptides from a marine Streptomyces sp. Tetrahedron 2011, 67, 6707–6712. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.; Kim, K.R.; Lee, G.; Paik, M.J. Chiral separation of N-methyl-DL-aspartic acid in rat brain tissue as N-ethoxycarbonylated (S)-(+)-2-octyl ester derivatives by GC-MS. Biomed. Chromatogr. 2012, 26, 1353–1356. [Google Scholar] [CrossRef] [PubMed]
Unit | No. | Homiamide A (1) a | Homiamide B (2) a | Homiamide C (3) a | |||||
---|---|---|---|---|---|---|---|---|---|
δC, Type | δH, (J in Hz) b | COSY | HMBC | δC, Type | δH, (J in Hz) b | δC, Type | δH, (J in Hz) b | ||
Hiv-1 | 1 | 16.2, CH3 | 0.88, d (6.9) | 16.8, CH3 | 0.90, d (6.8) | 16.7, CH3 | 1.01, d (6.9) c | ||
2 | 31.5, CH | 2.11, m | 1, 3 | 31.9, CH | 2.04, m | 30.2, CH | 2.35, m | ||
3 | 18.9 c, CH3 | 1.02, d (6.9) c | 18.8 c, CH3 | 1.02, d (6.8) c | 19.0 c, CH3 | 1.10, d (6.9) c | |||
4 | 76.0, CH | 3.93, d (4.3) | 2 | 5 | 76.7, CH | 3.91, d (4.3) | 80.0, CH | 4.88, d (3.6) | |
5 | 176.4, C | 177.1, C | 170.5, C | ||||||
Val-1 | 6 | 59.7, CH | 4.00, dd (5.9, 4.3) | 7 | 10 | 59.5, CH | 4.04, dd (5.9, 4.3) | 58.1, CH | 4.37, t (8.0) |
6-NH | 7.43, br d (5.5) | 6 | 5 | 7.58, br d (5.5) | 7.21, d (9.1) | ||||
7 | 29.5, CH | 2.09, m | 8, 9 | 29.3, CH | 2.12, m | 29.5, CH | 2.29, m | ||
8 | 19.5 c, CH3 | 1.06, d (6.7) c | 19.2 c, CH3 | 0.95, d (6.7) c | 19.3 c, CH3 | 1.01, d (6.7) c | |||
9 | 19.1 c, CH3 | 1.01, d (6.7) c | 19.1 c, CH3 | 1.00, d (6.7) c | 19.2 c, CH3 | 1.02, d (6.7) c | |||
10 | 172.9, C | 173.8, C | 172.7, C | ||||||
Lac-1 | 11 | 70.9, CH | 5.25, q (6.9) | 12 | 10, 13 | 71.6, CH | 5.12, q (6.9) | 68.6, CH | 4.21, q (6.9) |
12 | 17.6, CH3 | 1.46, d (6.9) | 17.8, CH3 | 1.50, d (6.9) | 20.6, CH3 | 1.39, d (6.9) | |||
13 | 172.7, C | 173.1, C | 178.2, C | ||||||
Val-2 | 14 | 60.6, CH | 4.04, dd (6.3, 4.9) | 15 | 18 | 60.8, CH | 4.00, dd (6.3, 4.9) | 59.6, CH | 4.07, dd (6.8, 4.6) |
14-NH | 8.07, br d (6.2) | 14 | 13 | 7.90, br d (6.2) | 7.50, d (5.5) | ||||
15 | 29.0, CH | 2.28, m | 16, 17 | 28.9, CH | 2.25 m | 29.5, CH | 2.08, m | ||
16 | 19.6 c, CH3 | 0.95, d (6.7) c | 19.3 c, CH3 | 1.03, d (6.7) c | 19.3 c, CH3 | 1.02, d (6.7) c | |||
17 | 19.4 c, CH3 | 1.06, d (6.7) c | 19.8 c, CH3 | 1.08, d (6.7) c | 19.5 c, CH3 | 1.05, d (6.7) c | |||
18 | 173.9, C | 174.8, C | 174.8, C | ||||||
Hiv-2 | 19 | 79.8, CH | 4.93, d (3.3) | 20 | 18, 23 | 80.0, CH | 4.90, d (3.3) | 80.2, CH | 4.75, d (4.0) |
20 | 30.2, CH | 2.35, m | 21, 22 | 30.1, CH | 2.35, m | 29.0, CH | 2.25, m | ||
21 | 16.8 c, CH3 | 1.01, d (6.7) c | 16.6 c, CH3 | 0.98, d (6.7) c | 17.2 c, CH3 | 1.00, d (6.7) c | |||
22 | 19.2 c, CH3 | 0.96, d (6.7) c | 19.5 c, CH3 | 0.97, d (6.7) c | 19.5 c, CH3 | 0.97, d (6.7) c | |||
23 | 171.2, C | 170.5, C | 171.7, C | ||||||
Val-3 | 24 | 57.7, CH | 4.44, br t (8.0) | 25 | 28 | 58.4, CH | 4.33, br t (8.0) | 60.7, CH | 3.99, dd (7.3, 4.9) |
24-NH | 7.45, br d (8.0) | 24 | 23 | 7.34, br d (8.0) | 7.71, d (5.8) | ||||
25 | 29.7, CH | 2.35, m | 26, 27 | 29.6, CH | 2.27, m | 28.7, CH | 2.23, m | ||
26 | 20.0 c, CH3 | 0.99, d (6.6) c | 19.6 c, CH3 | 0.97, d (6.6) c | 19.8 c, CH3 | 0.96, d (6.6) c | |||
27 | 18.4 c, CH3 | 1.00, d (6.6) c | 19.1 c, CH3 | 1.00, d (6.6) c | 19.7 c, CH3 | 0.99, d (6.6) c | |||
28 | 174.5, C | 172.2, C | 174.1, C | ||||||
Lac-2 | 29 | 70.4, CH | 4.97, q (7.0) | 71.3, CH | 5.18, q (7.0) | ||||
30 | 16.8, CH3 | 1.49, d (7.0) | 17.8, CH3 | 1.49, d (7.0) | |||||
31 | 174.9, C | 172.2, C | |||||||
Val-4 | 32 | 60.6, CH | 4.05, dd (6.8, 5.5) | ||||||
32-NH | 7.74, d (5.5) | ||||||||
33 | 30.2, CH | 2.26, m | |||||||
34 | 19.8 c, CH3 | 1.10, d (7.2) c | |||||||
35 | 18.8 c, CH3 | 1.07, d (7.2) c | |||||||
36 | 173.4, C |
Minimal Inhibitory Concentration (μg/mL) | ||||||
---|---|---|---|---|---|---|
Gram (+) Bacteria | Gram (−) Bacteria | |||||
Compounds | B. subtilis KCTC 1021 | K. rhizophila KCTC 1915 | S. aureus KCTC 1621 | E. coli KCTC 2441 | S. typhimurium KCTC 2515 | K. pneumonia KCTC 2690 |
1 | 64 | 32 | 32 | 64 | 32 | 32 |
2 | 64 | 32 | 32 | 64 | 32 | 64 |
3 | 64 | 32 | 64 | 64 | 64 | 32 |
Ampicillin | 1 | 2 | 8 | 32 | 16 | 32 |
Vancomycin | 0.25 | 0.25 | 4 | 64 | 32 | 32 |
Quorum Sensing (MIC, μg/mL) | |||||
---|---|---|---|---|---|
Gram (+) Bacteria | Gram (−) Bacteria | ||||
Compounds | B. subtilis KCTC 1021 | M. luteus KCTC 3063 | S. aureus KCTC 1621 | E. coli KCTC 2441 | P. fluorescens KCTC 42821 |
1 | 32 | 16 | 32 | 64 | 32 |
2 | 64 | 16 | 32 | 32 | 32 |
3 | 32 | 32 | 64 | 64 | 32 |
Rifampin | 0.25 | 0.25 | 0.25 | 32 | 16 |
Kanamycin | 4 | 32 | 1 | 16 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Lee, J.Y.; Lee, J.; Hillman, P.F.; Lee, J.; Choi, B.; Paik, M.-J.; Lee, S.; Nam, S.-J. Three New Depsipeptides, Homiamides A–C, Isolated from Streptomyces sp., ROA-065. Molecules 2024, 29, 5539. https://doi.org/10.3390/molecules29235539
Kim J-H, Lee JY, Lee J, Hillman PF, Lee J, Choi B, Paik M-J, Lee S, Nam S-J. Three New Depsipeptides, Homiamides A–C, Isolated from Streptomyces sp., ROA-065. Molecules. 2024; 29(23):5539. https://doi.org/10.3390/molecules29235539
Chicago/Turabian StyleKim, Jeong-Hyeon, Ji Young Lee, Juri Lee, Prima F. Hillman, Jihye Lee, Byeongchan Choi, Man-Jeong Paik, Songyi Lee, and Sang-Jip Nam. 2024. "Three New Depsipeptides, Homiamides A–C, Isolated from Streptomyces sp., ROA-065" Molecules 29, no. 23: 5539. https://doi.org/10.3390/molecules29235539
APA StyleKim, J.-H., Lee, J. Y., Lee, J., Hillman, P. F., Lee, J., Choi, B., Paik, M.-J., Lee, S., & Nam, S.-J. (2024). Three New Depsipeptides, Homiamides A–C, Isolated from Streptomyces sp., ROA-065. Molecules, 29(23), 5539. https://doi.org/10.3390/molecules29235539