In Silico Prediction of Alkaline Phosphatase Interaction with the Natural Inhibitory 5-Azaindoles Guitarrin C and D
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Homology Modelling and Molecular Docking
3.2. Production of Recombinant Phosphatase CmAP
3.3. Isolation and Purification of Recombinant Phosphatase CmAP
3.4. Alkaline Phosphatase Activity Assay
3.5. Inhibitory Activity Assay
3.6. Determination of Inhibition Type and Constant (Ki)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nargis, W.; Ahamed, B.U.; Hossain, M.A.; Biswas, S.; Ibrahim, M. Pattern of elevated serum alkaline phosphatase (ALP) levels in hospitalized patients: A single centre study. Pulse 2013, 6, 20–26. [Google Scholar] [CrossRef]
- Levitt, M.D.; Hapak, S.M.; Levitt, D.G. Alkaline phosphatase pathophysiology with emphasis on the seldom-discussed role of defective elimination in unexplained elevations of serum alp—A case report and literature review. Clin. Exp. Gastroenterol. 2022, 15, 41–49. [Google Scholar] [CrossRef]
- Bassi, G.; Favalli, N.; Pellegrino, C.; Onda, Y.; Scheuermann, J.; Cazzamalli, S.; Manz, M.G.; Neri, D. Specific inhibitor of placental alkaline phosphatase isolated from a dna-encoded chemical library targets tumor of the female reproductive tract. Med. Chem. 2021, 64, 15799–15809. [Google Scholar] [CrossRef]
- Baqi, Y. Ecto-nucleotidase inhibitors: Recent developments in drug discovery. Rev. Med. Chem. 2015, 15, 21–33. [Google Scholar] [CrossRef]
- Maruyama, S.; Visser, H.; Ito, T.; Limsakun, T.; Zahir, H.; Ford, D.; Tao, B.; Zamora, C.A.; Stark, J.G.; Chou, H.S. Phase I studies of the safety, tolerability, pharmacokinetics, and pharmacodynamics of DS-1211, a tissue-nonspecific alkaline phosphatase inhibitor. Clin. Transl. Sci. 2022, 15, 967–980. [Google Scholar] [CrossRef]
- Jablonska, P.; Kutryb-Zajac, B.; Mierzejewska, P.; Jasztal, A.; Bocian, B.; Lango, R.; Rogowski, J.; Chlopicki, S.; Smolenski, R.T.; Slominska, E.M. The new insight into extracellular NAD+ degradation-the contribution of CD38 and CD73 in calcific aortic valve disease. J. Cell Mol. Med. 2021, 25, 5884–5898. [Google Scholar] [CrossRef]
- Gao, C.; Koko, M.Y.F.; Ding, M.; Hong, W.; Li, J.; Dong, N.; Hui, M. Intestinal alkaline phosphatase (IAP, IAP Enhancer) attenuates intestinal inflammation and alleviates insulin resistance. Front. Immunol. 2022, 13, 927272. [Google Scholar] [CrossRef] [PubMed]
- Balabanova, L.; Bondarev, G.; Seitkalieva, A.; Son, O.; Tekutyeva, L. Insights into alkaline phosphatase anti-inflammatory mechanisms. Biomedicines 2024, 12, 2502. [Google Scholar] [CrossRef]
- Ejaz, S.A.; Zain-ul-Abideen, M.; Channar, P.A.; Saeed, A.; Ahmed, A.; Alsaiari, N.S.; Katubi, K.M.; Abbas, Q.; Dahlous, K.A.; Raza, H.; et al. Synthesis, biochemical characterization and molecular modeling studies of 5-(substituted benzylidene) pyrimidine-2,4,6-trione: Potential inhibitors of alkaline phosphatase. J. Mol. Struct. 2023, 1282, 135225. [Google Scholar] [CrossRef]
- Fushimi, A.; Takeyama, H.; Tachibana, T.; Manome, Y. Osteogenic cocktail induces calcifications in human breast cancer cell line via placental alkaline phosphatase expression. Sci. Rep. 2020, 10, 12669. [Google Scholar] [CrossRef]
- Briolay, A.; Bessueille, L.; Magne, D. TNAP: A New Multitask Enzyme in Energy Metabolism. Int. J. Mol. Sci. 2021, 22, 10470. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Nam, H.K.; Crouch, S.; Hatch, N.E. Tissue Nonspecific Alkaline Phosphatase Function in Bone and Muscle Progenitor Cells: Control of Mitochondrial Respiration and ATP Production. Int. J. Mol. Sci. 2021, 22, 1140. [Google Scholar] [CrossRef]
- Sato, M.; Saitoh, I.; Kiyokawa, Y.; Iwase, Y.; Kubota, N.; Ibano, N.; Noguchi, H.; Yamasaki, Y.; Inada, E. Tissue-nonspecific alkaline phosphatase, a possible mediator of cell maturation: Towards a new paradigm. Cells 2021, 10, 3338. [Google Scholar] [CrossRef]
- Channar, P.A.; Irum, H.; Mahmood, A.; Shabir, G.; Zaib, S.; Saeed, A.; Ashraf, Z.; Larik, F.A.; Lecka, J.; Sévigny, J.; et al. Design, synthesis and biological evaluation of trinary benzocoumarin-thiazoles-azomethines derivatives as effective and selective inhibitors of alkaline phosphatase. Bioorg. Chem. 2019, 91, 103137. [Google Scholar] [CrossRef]
- Khurshid, A.; Saeed, A.; Ashraf, Z.; Abbas, Q.; Hassan, M. Understanding the enzymatic inhibition of intestinal alkaline phosphatase by aminophenazone-derived aryl thioureas with aided computational molecular dynamics simulations: Synthesis, characterization, SAR and kinetic profiling. Mol. Divers. 2021, 25, 1701–1715. [Google Scholar] [CrossRef]
- Salar, U.; Khan, K.M.; Iqbal, J.; Ejaz, S.A.; Hameed, A.; Al-Rashida, M.; Perveen, S.; Tahir, M.N. Coumarin sulfonates: New alkaline phosphatase inhibitors; in vitro and in silico studies. Eur. J. Med. Chem. 2017, 131, 29–47. [Google Scholar] [CrossRef]
- al-Rashida, M.; Iqbal, J. Inhibition of alkaline phosphatase: An emerging new drug target. Med. Chem. 2015, 15, 41–51. [Google Scholar] [CrossRef]
- Jassas, R.S.; Naeem, N.; Sadiq, A.; Mehmood, R.; Alenazi, N.A.; Al-Rooqi, M.M.; Mughal, E.U.; Alsantali, R.I.; Ahmed, S.A. Current status of N-, O-, S-heterocycles as potential alkaline phosphatase inhibitors: A medicinal chemistry overview. RSC Adv. 2023, 13, 16413–16452. [Google Scholar] [CrossRef] [PubMed]
- Hosseini Nasab, N.; Raza, H.; Shim, R.S.; Hassan, M.; Kloczkowski, A.; Kim, S.J. Potent Alkaline Phosphatase Inhibitors, Pyrazolo-Oxothiazolidines: Synthesis, Biological Evaluation, Molecular Docking, and Kinetic Studies. Int. J. Mol. Sci. 2022, 23, 13262. [Google Scholar] [CrossRef]
- Le-Vinh, B.; Akkuş-Dağdeviren, Z.B.; Le, N.-M.N.; Nazir, I.; Bernkop-Schnürch, A. Alkaline phosphatase: A reliable endogenous partner for drug delivery and diagnostics. Adv. Therap. 2022, 5, 2100219. [Google Scholar] [CrossRef]
- Singh, S.B.; Carroll-Portillo, A.; Coffman, C.; Ritz, N.L.; Lin, H.C. Intestinal Alkaline Phosphatase Exerts Anti-Inflammatory Effects Against Lipopolysaccharide by Inducing Autophagy. Sci. Rep. 2020, 10, 3107. [Google Scholar] [CrossRef]
- Mumtaza, A.; Saeeda, K.; Mahmoodb, A. Bisthioureas of pimelic acid and 4-methylsalicylic acid derivatives as selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP) and intestinal alkaline phosphatase (IAP): Synthesis and molecular docking studies. Bioorg. Chem. 2020, 101, 10399. [Google Scholar] [CrossRef]
- Le Du, M.H.; Stigbrand, T.; Taussig, M.J.; Ménez, A.; Stura, E.A. Crystal structure of alkaline phosphatase from human placenta at 1.8 A resolution. Implication for a substrate specificity. J. Biol. Chem. 2001, 276, 9158–9165. [Google Scholar] [CrossRef]
- Akdel, M.; Pires, D.E.V.; Pardo, E.P.; Jänes, J.; Zalevsky, A.O.; Mészáros, B.; Bryant, P.; Good, L.L.; Laskowski, R.A.; Pozzati, G.; et al. A structural biology community assessment of AlphaFold2 applications. Nat. Struct. Mol. Biol. 2022, 29, 1056–1067. [Google Scholar] [CrossRef] [PubMed]
- Burke, D.F.; Bryant, P.; Barrio-Hernandez, I.; Memon, D.; Pozzati, G.; Shenoy, A.; Zhu, W.; Dunham, A.S.; Albanese, P.; Keller, A.; et al. Towards a structurally resolved human protein interaction network. Nat. Struct. Mol. Biol. 2023, 30, 216–225. [Google Scholar] [CrossRef]
- Yu, Y.; Rong, K.; Yao, D.; Zhang, Q.; Cao, X.; Rao, B.; Xia, Y.; Lu, Y.; Shen, Y.; Yao, Y.; et al. The structural pathology for hypophosphatasia caused by malfunctional tissue non-specific alkaline phosphatase. Nat. Commun. 2023, 14, 4048. [Google Scholar] [CrossRef]
- Asgeirsson, B.; Markússon, S.; Hlynsdóttir, S.S.; Helland, R.; Hjörleifsson, J.G. X-ray crystal structure of Vibrio alkaline phosphatase with the non-competitive inhibitor cyclohexylamine. Biochem. Biophys. Rep. 2020, 24, 100830. [Google Scholar] [CrossRef]
- Minai-Tehrani, D.; Soheili, Z.; Yahyavi, E. Inhibition of microbial alkaline phosphatase by cimetidine; kinetics and molecular model of binding. Curr. Enzyme. Inhib. 2015, 11, 39–45. [Google Scholar] [CrossRef]
- Srivastava, A.; Saavedra, D.E.M.; Thomson, B.; García, J.A.L.; Zhao, Z.; Patrick, W.M.; Herndl, G.J.; Baltar, F. Enzyme promiscuity in natural environments: Alkaline phosphatase in the ocean. ISME J. 2021, 15, 3375–3383. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Huang, L.; Zhao, L.; Zeng, Q.; Liu, X.; Sheng, Y.; Shi, L.; Wu, G.; Jiang, H.; Li, F.; et al. A critical review of mineral–microbe interaction and co-evolution: Mechanisms and applications. Natl. Sci. Rev. 2022, 9, nwac128. [Google Scholar] [CrossRef] [PubMed]
- Golotin, V.; Balabanova, L.; Likhatskaya, G.; Rasskazov, V. Recombinant production and characterization of a highly active alkaline phosphatase from marine bacterium Cobetia marina. Mar. Biotechnol. 2015, 17, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Zorzetto, L.; Scoppola, E.; Raguin, E.; Blank, K.G.; Fratzl, P.; Bidan, C.M. Induced mineralization of hydroxyapatite in escherichia coli biofilms and the potential role of bacterial alkaline phosphatase. Chem. Mater. 2023, 35, 2762–2772. [Google Scholar] [CrossRef]
- Guzii, A.G.; Makarieva, T.N.; Denisenko, V.A.; Gerasimenko, A.V.; Udovenko, A.A.; Popov, R.S.; Dmitrenok, P.S.; Golotin, V.A.; Fedorov, S.N.; Grebnev, B.B.; et al. Guitarrins A–E and Aluminumguitarrin A: 5-azaindoles from the Northwestern Pacific marine sponge Guitarra fimbriata. J. Nat. Prod. 2019, 82, 1704–1709. [Google Scholar] [CrossRef]
- Motati, D.R.; Amaradhi, R.; Ganesh, T. Azaindole therapeutic agents. Bioorg. Med. Chem. 2020, 28, 115830. [Google Scholar] [CrossRef]
- Fang, G.; Chen, H.; Cheng, Z.; Tang, Z.; Wan, Y. Azaindole derivatives as potential kinase inhibitors and their SARs elucidation. Eur. J. Med. Chem. 2023, 258, 115621. [Google Scholar] [CrossRef]
- Balabanova, L.; Bakholdina, S.; Buinovskaya, N.; Noskova, Y.; Kolpakova, O.; Vlasova, V.; Bondarev, G.; Seitkalieva, A.; Son, O.; Tekutyeva, L. LPS-Dephosphorylating Cobetia amphilecti alkaline phosphatase of PhoA family divergent from the multiple homologues of Cobetia spp. Microorganisms 2024, 12, 631. [Google Scholar] [CrossRef]
- Chen, S.-L.; Liao, R.-Z. Phosphate monoester hydrolysis by trinuclear alkaline phosphatase; DFT study of transition states and reaction mechanism. ChemPhysChem 2014, 11, 2321–2330. [Google Scholar] [CrossRef]
- Borosky, G.L. Quantuchanical study on the catalytic mechanism of alkaline phosphatases. J. Chem. Inf. Model. 2017, 3, 540–549. [Google Scholar] [CrossRef]
- Orhanović, S.; Pavela-Vrančič, M. Dimer asymmetry and the catalytic cycle of alkaline phosphatase from Escherichia coli. Eur. J. Biochem. 2003, 21, 4356–4364. [Google Scholar] [CrossRef]
- O’Brien, P.J.; Lassila, J.K.; Fenn, T.D.; Zalatan, J.G.; Herschlag, D. Arginine coordination in enzymatic phosphoryl transfer: Evaluation of the effect of Arg166 mutations in Escherichia coli alkaline phosphatase. Biochemistry 2008, 47, 7663–7672. [Google Scholar] [CrossRef] [PubMed]
- Pesaresi, A. Mixed and non-competitive enzyme inhibition: Underlying mechanisms and mechanistic irrelevance of the formal two-site model. J. Enzyme. Inhib. Med. Chem. 2023, 38, 2245168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, J.; Zhou, Z.; Huang, R.; Lin, S. Roles of Alkaline Phosphatase PhoA in Algal Metabolic Regulation under Phosphorus-replete Conditions. J. Phycol. 2021, 57, 703–707. [Google Scholar] [CrossRef]
- Plisova, E.Y.; Balabanova, L.A.; Ivanova, E.P.; Kozhemyako, V.B.; Mikhailov, V.V.; Agafonova, E.V.; Rasskazov, V.A. A highly active alkaline phosphatase from the marine bacterium cobetia. Mar. Biotechnol. 2005, 7, 173–178. [Google Scholar] [CrossRef]
- Reid, T.W.; Wilson, I.B. 17 E. coli Alkaline Phosphatase. Enzymes 1971, 4, 373–415. [Google Scholar] [CrossRef]
- Rosin, D.L.; Perry Hall, J.; Zheng, S.; Huang, L.; Campos-Bilderback, S.; Sandoval, R.; Bree, A.; Beaumont, K.; Miller, E.; Larsen, J.; et al. Human Recombinant Alkaline Phosphatase (Ilofotase Alfa) Protects against Kidney Ischemia-Reperfusion Injury in Mice and Rats through Adenosine Receptors. Front. Med. 2022, 9, 931293. [Google Scholar] [CrossRef]
- Labute, P. Molecular Operating Environment; Chemical Computing Group, Inc.: Montreal, QC, Canada, 2008. [Google Scholar]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Bienert, S.; Waterhouse, A.; de Beer, T.A.; Tauriello, G.; Studer, G.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res. 2017, 45, D313–D319. [Google Scholar] [CrossRef] [PubMed]
- Corbeil, C.R.; Williams, C.I.; Labute, P. Variability in docking success rates due to dataset preparation. J. Comput. Aided Mol. Des. 2012, 26, 775–786. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Cheng, Y.; Prusoff, W.H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099–3108. [Google Scholar] [CrossRef]
Value | CIAP | CmAP |
---|---|---|
IC50 (Guit C) * | 195 ± 2.2 µM | 8.5 ± 0.08 µM |
IC50 (Guit D) ** | 230 ± 1.6 µM | 110 ± 0.8 µM |
Ki (Guit C) * | 38 ± 0.1 µM | 1.58 ± 0.04 µM |
Ki (Guit D) * | 45 ± 0.2 µM | 20.56 ± 0.06 µM |
Vmax | 0.35 ± 0.012 U mL−1 | 5.98 ± 0.03 U mL−1 |
V1/2 | 0.175 ± 0.007 U mL−1 | 2.99 ± 0.01 U mL−1 |
Km | 0.49 ± 0.015 mM | 0.46 ± 0.2 mM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seitkalieva, A.; Noskova, Y.; Isaeva, M.; Guzii, A.; Makarieva, T.N.; Fedorov, S.; Balabanova, L. In Silico Prediction of Alkaline Phosphatase Interaction with the Natural Inhibitory 5-Azaindoles Guitarrin C and D. Molecules 2024, 29, 5701. https://doi.org/10.3390/molecules29235701
Seitkalieva A, Noskova Y, Isaeva M, Guzii A, Makarieva TN, Fedorov S, Balabanova L. In Silico Prediction of Alkaline Phosphatase Interaction with the Natural Inhibitory 5-Azaindoles Guitarrin C and D. Molecules. 2024; 29(23):5701. https://doi.org/10.3390/molecules29235701
Chicago/Turabian StyleSeitkalieva, Aleksandra, Yulia Noskova, Marina Isaeva, Alla Guzii, Tatyana N. Makarieva, Sergey Fedorov, and Larissa Balabanova. 2024. "In Silico Prediction of Alkaline Phosphatase Interaction with the Natural Inhibitory 5-Azaindoles Guitarrin C and D" Molecules 29, no. 23: 5701. https://doi.org/10.3390/molecules29235701
APA StyleSeitkalieva, A., Noskova, Y., Isaeva, M., Guzii, A., Makarieva, T. N., Fedorov, S., & Balabanova, L. (2024). In Silico Prediction of Alkaline Phosphatase Interaction with the Natural Inhibitory 5-Azaindoles Guitarrin C and D. Molecules, 29(23), 5701. https://doi.org/10.3390/molecules29235701