Volatile Substances, Quality and Non-Targeted Metabolomics Analysis of Commercially Available Selenium-Enriched Rice
Abstract
:1. Introduction
2. Results
2.1. Analysis of Volatile Substances
2.1.1. GC-IMS Spectra of Four Kinds of Rice
2.1.2. Identification of Volatile Flavor Components in Four Kinds of Rice
2.2. Rice Quality Evaluation
2.2.1. Analysis of Rice Nutritional Quality
2.2.2. Analysis of Rice Pasting Properties
2.2.3. Analysis of Rice Texture Characteristics
2.2.4. Analysis of Rice Cooking Quality
2.2.5. Analysis of Rice Taste Quality
2.2.6. Correlation Analysis
2.3. Metabolomics
2.3.1. Multivariate Statistical Analysis
2.3.2. Identification of Differential Metabolites
2.3.3. Variable Influence on Projection (VIP) Value Analysis of Differential Metabolites
2.3.4. Kyoto Encyclopedia of Genes and Genomes (KEGG) Annotation and Enrichment Analysis of Differential Metabolites
3. Materials and Methods
3.1. Main Equipment
3.2. Experimental Methods
3.2.1. GC-IMS Analysis Conditions
3.2.2. Physical and Chemical Properties of Rice
3.2.3. Non-Targeted Metabolomics Analysis
3.2.4. Data Processing and Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tong, C.; Gao, H.; Luo, S.; Liu, L.; Bao, J. Impact of Postharvest Operations on Rice Grain Quality: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 626–640. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M. Selenium−Fascinating Microelement, Properties and Sources in Food. Molecules 2019, 24, 1298. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Bai, Y.; Li, Y.; Liu, M. Convolutional Graph Neural Networks-Based Research on Estimating Heavy Metal Concentrations in a Soil-Rice System. Environ. Sci. Pollut. Res. 2023, 30, 44100–44111. [Google Scholar] [CrossRef]
- Tan, J.; Zhu, W.; Wang, W.; Li, R.; Hou, S.; Wang, D.; Yang, L. Selenium in Soil and Endemic Diseases in China. Sci. Total Environ. 2002, 284, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Fordyce, F.M. Selenium Deficiency and Toxicity in the Environment. In Essentials of Medical Geology; Selinus, O., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 375–416. ISBN 978-94-007-4374-8. [Google Scholar]
- Lenz, M.; Lens, P.N.L. The Essential Toxin: The Changing Perception of Selenium in Environmental Sciences. Sci. Total Environ. 2009, 407, 3620–3633. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium and Human Health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Guo, R.; Ren, R.; Wang, L.; Zhi, Q.; Yu, T.; Hou, Q.; Yang, Z. Using Machine Learning to Predict Selenium and Cadmium Contents in Rice Grains from Black Shale-Distributed Farmland Area. Sci. Total Environ. 2024, 912, 168802. [Google Scholar] [CrossRef] [PubMed]
- Dinh, Q.T.; Cui, Z.; Huang, J.; Tran, T.A.T.; Wang, D.; Yang, W.; Zhou, F.; Wang, M.; Yu, D.; Liang, D. Selenium Distribution in the Chinese Environment and Its Relationship with Human Health: A Review. Environ. Int. 2018, 112, 294–309. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, N.; Li, S.; Li, L.; Su, H.; Liu, C. Distribution and Transport of Selenium in Yutangba, China: Impact of Human Activities. Sci. Total Environ. 2008, 392, 252–261. [Google Scholar] [CrossRef]
- Li, H.-F.; Lombi, E.; Stroud, J.L.; McGrath, S.P.; Zhao, F.-J. Selenium Speciation in Soil and Rice: Influence of Water Management and Se Fertilization. J. Agric. Food Chem. 2010, 58, 11837–11843. [Google Scholar] [CrossRef]
- Yuan, Z.; Long, W.; Liang, T.; Zhu, M.; Zhu, A.; Luo, X.; Fu, L.; Hu, Z.; Zhu, R.; Wu, X. Effect of Foliar Spraying of Organic and Inorganic Selenium Fertilizers during Different Growth Stages on Selenium Accumulation and Speciation in Rice. Plant Soil 2023, 486, 87–101. [Google Scholar] [CrossRef]
- Bryant, R.J.; McClung, A.M. Volatile Profiles of Aromatic and Non-Aromatic Rice Cultivars Using SPME/GC–MS. Food Chem. 2011, 124, 501–513. [Google Scholar] [CrossRef]
- Uawisetwathana, U.; Karoonuthaisiri, N. Metabolomics for Rice Quality and Traceability: Feasibility and Future Aspects. Curr. Opin. Food Sci. 2019, 28, 58–66. [Google Scholar] [CrossRef]
- Ch, R.; Chevallier, O.; McCarron, P.; McGrath, T.F.; Wu, D.; Nguyen Doan Duy, L.; Kapil, A.P.; McBride, M.; Elliott, C.T. Metabolomic Fingerprinting of Volatile Organic Compounds for the Geographical Discrimination of Rice Samples from China, Vietnam and India. Food Chem. 2021, 334, 127553. [Google Scholar] [CrossRef]
- Lim, D.; Mo, C.; Lee, D.-K.; Phuoc Long, N.; Lim, J.; Kwon, S. Non-Destructive Profiling of Volatile Organic Compounds Using HS-SPME/GC–MS and Its Application for the Geographical Discrimination of White Rice. J. Food Drug Anal. 2017, 26, 260–267. [Google Scholar] [CrossRef]
- Jin, W.; Fan, X.; Jiang, C.; Liu, Y.; Zhu, K.; Miao, X.; Jiang, P. Characterization of Non-Volatile and Volatile Flavor Profiles of Coregonus Peled Meat Cooked by Different Methods. Food Chem. X 2023, 17, 100584. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, K.; Guo, H.; Geng, Y.; Lv, W.; Wang, S.; Guo, Y.; Qin, P.; Ren, G. Characterization of Volatile Compounds in Differently Coloured Chenopodium Quinoa Seeds before and after Cooking by Headspace-Gas Chromatography-Ion Mobility Spectrometry. Food Chem. 2021, 348, 129086. [Google Scholar] [CrossRef]
- Seo, W.D.; Kim, J.Y.; Han, S.-I.; Ra, J.-E.; Lee, J.H.; Song, Y.C.; Park, M.J.; Kang, H.W.; Oh, S.K.; Jang, K.C. Relationship of Radical Scavenging Activities and Anthocyanin Contents in the 12 Colored Rice Varieties in Korea. J. Korean Soc. Appl. Biol. Chem. 2011, 54, 693–699. [Google Scholar] [CrossRef]
- Saha, S.; Roy, A. Puffed Rice: A Materialistic Understanding of Rice Puffing and Its Associated Changes in Physicochemical and Nutritional Characteristics. J. Food Process Eng. 2020, 43, e13479. [Google Scholar] [CrossRef]
- Dan, S.; Xue, S.; Tie, M.; Sun, J.; He, Z. Exogenous Selenium Foliar Application on Nutrition, Grain Yield and Quality of Rice (Oryza Sativa L.). J. Food Compos. Anal. 2024, 130, 106145. [Google Scholar] [CrossRef]
- Wang, Y.-D.; Wang, X.; Wong, Y.-S. Generation of Selenium-Enriched Rice with Enhanced Grain Yield, Selenium Content and Bioavailability through Fertilisation with Selenite. Food Chem. 2013, 141, 2385–2393. [Google Scholar] [CrossRef] [PubMed]
- Pfarr, M.D.; Kazula, M.J.; Miller-Garvin, J.E.; Naeve, S.L. Amino Acid Balance Is Affected by Protein Concentration in Soybean. Crop Sci. 2018, 58, 2050–2062. [Google Scholar] [CrossRef]
- Zeng, R.; Su, Y.; Huang, R.; Li, L.; Asif, M.; Farooq, M.U.; Ye, X.; Jia, X.; Zhu, J. Selenium in Rice: Impact on Protein Content and Distribution for Enhanced Food and Feed Security in Agroclimatic Challenges. Heliyon 2024, 10, e27701. [Google Scholar] [CrossRef]
- Zhao, S.; Shi, J.; Cai, S.; Xiong, T.; Cai, F.; Li, S.; Chen, X.; Fan, C.; Mei, X.; Sui, Y. Effects of Milling Degree on Nutritional, Sensory, Gelatinization and Taste Quality of Different Rice Varieties. LWT 2023, 186, 115244. [Google Scholar] [CrossRef]
- Dai, Z.; Imtiaz, M.; Rizwan, M.; Yuan, Y.; Huang, H.; Tu, S. Dynamics of Selenium Uptake, Speciation, and Antioxidant Response in Rice at Different Panicle Initiation Stages. Sci. Total Environ. 2019, 691, 827–834. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, W.; Lu, L.; Shao, Y.; Chen, M.; Zhu, Z.; Mou, R. Comparison of Quality of Appearance, Cooking Quality, and Protein Content of Green-Labeled Rice and Conventional Rice. Cereal Chem. 2022, 99, 873–883. [Google Scholar] [CrossRef]
- Chen, H.; Chen, D.; He, L.; Wang, T.; Lu, H.; Yang, F.; Deng, F.; Chen, Y.; Tao, Y.; Li, M.; et al. Correlation of Taste Values with Chemical Compositions and Rapid Visco Analyser Profiles of 36 Indica Rice (Oryza Sativa L.) Varieties. Food Chem. 2021, 349, 129176. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, J.; Chen, X.; Li, E.; Li, S.; Li, C. Mutual Relations between Texture and Aroma of Cooked Rice—A Pilot Study. Foods 2022, 11, 3738. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, O.-W.; Kwak, H.S.; Kim, S.S.; Lee, H.-J. Prediction Model of Rice Eating Quality Using Physicochemical Properties and Sensory Quality Evaluation. J. Sens. Stud. 2017, 32, e12273. [Google Scholar] [CrossRef]
- Liu, K.; Ning, M. Antioxidant Activity Stability and Digestibility of Protein from Se-Enriched Germinated Brown Rice. LWT 2021, 142, 111032. [Google Scholar] [CrossRef]
- Pongsuwan, W.; Bamba, T.; Yonetani, T.; Kobayashi, A.; Fukusaki, E. Quality Prediction of Japanese Green Tea Using Pyrolyzer Coupled GC/MS Based Metabolic Fingerprinting. J. Agric. Food Chem. 2008, 56, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Frank, T.; Shu, Q.; Engel, K. Metabolite Profiling of Germinating Rice Seeds. J. Agric. Food Chem. 2008, 56, 11612–11620. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhou, G.; Qin, H.; Guan, Y.; Wang, T.; Ni, W.; Xie, H.; Xing, Y.; Tian, G.; Lyu, M.; et al. Metabolomics Combined with Physiology and Transcriptomics Reveal Key Metabolic Pathway Responses in Apple Plants Exposure to Different Selenium Concentrations. J. Hazard. Mater. 2024, 464, 132953. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Han, G.; Li, Y.; Lv, H. Changes in Quality Characteristics and Metabolites Composition of Wheat under Different Storage Temperatures. J. Stored Prod. Res. 2024, 105, 102229. [Google Scholar] [CrossRef]
- Gala Marti, V.; Coenen, A.; Schörken, U. Synthesis of Linoleic Acid 13-Hydroperoxides from Safflower Oil Utilizing Lipoxygenase in a Coupled Enzyme System with In-Situ Oxygen Generation. Catalysts 2021, 11, 1119. [Google Scholar] [CrossRef]
- Miyazaki, R.; Kato, S.; Otoki, Y.; Rahmania, H.; Sakaino, M.; Takeuchi, S.; Sato, T.; Imagi, J.; Nakagawa, K. Elucidation of Decomposition Pathways of Linoleic Acid Hydroperoxide Isomers by GC-MS and LC-MS/MS. Biosci. Biotechnol. Biochem. 2023, 87, 179–190. [Google Scholar] [CrossRef]
- GB/T15683-2008; Rice—Determination of Amylose Content. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2008.
- GB5009.5-2016; National Food Safety Standard—Determination of Protein in Food. China Food and Drug Administration, National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- GB5009.6-2016; Determination of Fat in Food. China Food and Drug Administration, National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- GB5009.3-2016; Determination of Moisture in Food. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- GB5009.4-2016; Determination of Ash Content in Food. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- Shu, Z.; Jia, W.; Zhang, W.; Wang, P. Selected Quality Attributes of Paddy Rice as Affected by Storage Temperature History. Int. J. Food Prop. 2021, 24, 316–324. [Google Scholar] [CrossRef]
- GB/T24852-2010; Determination of the Pasting Properties of Rice—Rapid Visco Analyzer Method. State General Administration of the People’s Republic of China for Quality Supervision and Inspection and Quarantine, Standardization Administration of the People’s Republic of China: Beijing, China, 2010.
Group | Amylose (wt%) | Protein (wt%) | Crude Fat (wt%) | Moisture Content (wt%) | Ash Content (wt%) | Selenium Content (mg/kg) |
---|---|---|---|---|---|---|
A | 12.57 ± 0.42 a | 9.03 ± 0.12 a | 0.94 ± 0.05 a | 14.27 ± 0.06 d | 1.01 ± 0.03 a | 0.25 ± 0.01 a |
B | 13.59 ± 0.34 ab | 8.83 ± 0.07 a | 0.86 ± 0.01 b | 13.70 ± 0.10 c | 0.98 ± 0.01 a | 0.09 ± 0.00 b |
C | 13.73 ± 0.21 ab | 8.97 ± 0.06 a | 0.84 ± 0.03 b | 12.70 ± 0.00 a | 0.90 ± 0.01 b | 0.08 ± 0.01 b |
D | 14.37 ± 0.72 b | 8.01 ± 0.65 b | 0.83 ± 0.01 b | 13.53 ± 0.06 b | 0.87 ± 0.02 b | 0.09 ± 0.00 b |
Group | Peak Viscosity/cP | Holding Strength Viscosity/cP | Retrogradation Value/cP | Final Viscosity/cP | Breakdown Value/cP | Peak Time/min |
---|---|---|---|---|---|---|
A | 3483.67 ± 195.81 a | 1668.67 ± 184.37 b | 1355.33 ± 37.65 b | 3024.00 ± 207.94 c | 1815.00 ± 14.93 a | 5.89 ± 0.10 ab |
B | 3616.67 ± 137.76 a | 1850.00 ± 19.05 ab | 1382.00 ± 24.76 b | 3232.00 ± 40.04 b | 1766.67 ± 123.57 a | 5.76 ± 0.10 bc |
C | 3423.67 ± 39.43 a | 2010.00 ± 15.39 a | 1527.33 ± 29.48 a | 3537.33 ± 44.84 a | 1413.67 ± 52.35 b | 6.00 ± 0.00 a |
D | 3508.67 ± 156.46 a | 1801.67 ± 29.87 b | 1491.00 ± 20.42 a | 3292.67 ± 37.54 b | 1707.00 ± 152.05 a | 5.69 ± 0.03 c |
Group | Hardness (N) | Chewiness (N) | Cohesiveness (Ratio) | Resilience (Ratio) | Springiness (Ratio) |
---|---|---|---|---|---|
A | 6.67 ± 0.93 b | 1.96 ± 0.52 ab | 0.50 ± 0.04 a | 0.35 ± 0.03 a | 0.61 ± 0.05 a |
B | 6.81 ± 0.33 b | 1.60 ± 0.23 b | 0.45 ± 0.03 b | 0.35 ± 0.03 a | 0.54 ± 0.03 b |
C | 8.81 ± 0.99 a | 2.46 ± 0.55 a | 0.47 ± 0.04 ab | 0.35 ± 0.03 a | 0.59 ± 0.04 ab |
D | 8.28 ± 1.13 a | 2.00 ± 0.57 ab | 0.44 ± 0.05 b | 0.34 ± 0.05 a | 0.54 ± 0.05 b |
Group | Water Absorption (%) | Volume Expansion Ratio (%) | Rice Soup Dry Matter (%) | Rice Soup pH | Iodine Blue Value |
---|---|---|---|---|---|
A | 254.56 ± 1.95 a | 468.23 ± 2.36 b | 85.80 ± 1.71 a | 7.51 ± 0.36 a | 0.417 ± 0.01 a |
B | 242.97 ± 2.30 ab | 389.23 ± 3.56 c | 55.53 ± 2.00 b | 7.24 ± 0.11 a | 0.236 ± 0.03 c |
C | 240.84 ± 3.48 ab | 479.32 ± 1.23 a | 57.73 ± 1.86 b | 7.62 ± 0.25 a | 0.322 ± 0.02 b |
D | 240.60 ± 3.40 b | 367.15 ± 1.09 d | 41.87 ± 3.51 c | 7.24 ± 0.45 a | 0.248 ± 0.01 c |
Group | Appearance | Tasted | Rice Elasticity | Rice Taste Value |
---|---|---|---|---|
A | 7.55 ± 0.21 a | 6.60 ± 0.14 a | 0.90 ± 0.04 a | 77.50 ± 2.12 a |
B | 5.65 ± 0.21 b | 5.45 ± 0.35 ab | 0.83 ± 0.08 a | 62.50 ± 0.71 b |
C | 5.75 ± 0.35 b | 5.60 ± 0.28 ab | 0.88 ± 0.03 a | 65.50 ± 2.12 b |
D | 6.05 ± 0.35 b | 5.20 ± 0.71 b | 0.67 ± 0.06 b | 59.00 ± 4.24 b |
Nutritional Quality | Pasting Properties | Texture Properties | Cooking Characteristics | Taste Quality | |||||
---|---|---|---|---|---|---|---|---|---|
Index | Correlation Coefficient | Index | Correlation Coefficient | Index | Correlation Coefficient | Index | Correlation Coefficient | Index | Correlation Coefficient |
Amylose | 0.123 | Peak Viscosity | −0.155 | Hardness | −0.647 | Water Absorption | 0.828 | Appearance | 0.969 * |
Protein | 0.448 | Holding Strength Viscosity | −0.809 | Chewiness | −0.140 | Volume Expansion Ratio | 0.521 | Tasted | 0.974 * |
Crude Fat | 0.968 * | Breakdown Value | 0.564 | Cohesiveness | 0.849 | Rice Soup Dry Matter | 0.943 | Rice Elasticity | 0.427 |
Moisture Content | 0.777 | Final Viscosity | −0.815 | Resilience | 0.298 | Rice Soup pH | 0.383 | Composite Score | 0.956 * |
Ash Content | 0.426 | Retrogradation Value | −0.698 | Springiness | 0.728 | Iodine Blue Value | 0.891 | ||
Peak Time | 0.214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Lian, Q.; Zhao, J.; He, Y.; Dai, H.; Liu, X.; Zhang, W.; Bi, J. Volatile Substances, Quality and Non-Targeted Metabolomics Analysis of Commercially Available Selenium-Enriched Rice. Molecules 2024, 29, 5703. https://doi.org/10.3390/molecules29235703
Zhang Y, Lian Q, Zhao J, He Y, Dai H, Liu X, Zhang W, Bi J. Volatile Substances, Quality and Non-Targeted Metabolomics Analysis of Commercially Available Selenium-Enriched Rice. Molecules. 2024; 29(23):5703. https://doi.org/10.3390/molecules29235703
Chicago/Turabian StyleZhang, Yu, Qianqian Lian, Jianji Zhao, Yanping He, Huang Dai, Xiuying Liu, Wei Zhang, and Jie Bi. 2024. "Volatile Substances, Quality and Non-Targeted Metabolomics Analysis of Commercially Available Selenium-Enriched Rice" Molecules 29, no. 23: 5703. https://doi.org/10.3390/molecules29235703
APA StyleZhang, Y., Lian, Q., Zhao, J., He, Y., Dai, H., Liu, X., Zhang, W., & Bi, J. (2024). Volatile Substances, Quality and Non-Targeted Metabolomics Analysis of Commercially Available Selenium-Enriched Rice. Molecules, 29(23), 5703. https://doi.org/10.3390/molecules29235703