An Electrochemical Sensor for Detection of Lead (II) Ions Using Biochar of Spent Coffee Grounds Modified by TiO2 Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Detection Principle of the Sensor
2.2. Characterization of BC and BC@TiO2NPs Nanohybrid
2.3. Electrochemical Behavior of Modified Electrodes
2.4. Feasibility Validation of the Electrochemical Sensor
2.5. Optimization of Conditions
2.5.1. Effect of Electrolyte and pH
2.5.2. Effect of Concentration of BC@TiO2NPs Composite
2.5.3. Effect of Deposition Time
2.6. Analytical Performance of the Proposed Method
2.7. Selectivity, Reproducibility, and Stability Investigation
2.8. Analysis of Water Samples
3. Materials and Methods
3.1. Reagent and Apparatus
3.2. Preparation of BC@TiO2NPs Nanocomposite
3.3. Fabrication of Electrochemical Sensor for Lead Ions
3.4. Electrochemical Measurement
3.5. Optimization of Experimental Conditions
3.6. Determination of Lead Ions
3.7. Real Sample Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, G.J.; Luo, X.Y. Disposable electrochemical sensor for the detection of lead(II) ions in the natural water. Int. J. Electrochem. Sci. 2021, 16, 210924. [Google Scholar] [CrossRef]
- Baghayeria, M.; Amiria, A.; Malekia, B.; Alizadeha, Z.; Reiser, O. A simple approach for simultaneous detection of cadmium(II) and lead(II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe. Sens. Actuators B Chem. 2018, 273, 1442–1450. [Google Scholar] [CrossRef]
- Kamran, U.; Lee, S.Y.; Rhee, K.Y.; Park, S.J. Rice husk valorization into sustainable Ni@TiO2/biochar nanocomposite for highly selective Pb (II) ions removal from an aqueous media. Chemosphere 2023, 323, 138210. [Google Scholar] [CrossRef]
- Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.A.; Li, S.F. Health and environmental effects of heavy metals. J. King Saud Univ. Sci. 2022, 34, 101653. [Google Scholar] [CrossRef]
- Flora, J.S.; Flora, G.; Saxena, G. Environmental occurrence, health effects and management of lead poisoning. In Lead; Elsevier: Amsterdam, The Netherlands, 2006; pp. 158–228. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011; p. 383. [Google Scholar]
- Huang, Y.F.; Peng, J.H.; Huang, X.J. Allylthiourea functionalized magnetic adsorbent for the extraction of cadmium, copper and lead ions prior to their determination by atomic absorption spectrometry. Microchim. Acta 2019, 186, 51. [Google Scholar] [CrossRef]
- Singh, H.; Bamrah, A.; Bhardwaj, S.K.; Deep, A.; Khatri, M.; Brown, R.J.C.; Bhardwaj, N.; Kim, K.H. Recent advances in the application of noble metal nanoparticles in colorimetric sensors for lead ions. Environ. Sci. Nano 2021, 8, 863–889. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.Z.; Pei, J.X.; Huang, X.J. Highly Permeable Monolith-based Multichannel In-Tip Microextraction Apparatus for Simultaneous Field Sample Preparation of Pesticides and Heavy Metal Ions in Environmental Waters. Anal. Chem. 2020, 92, 2251–2257. [Google Scholar] [CrossRef]
- Zhao, N.; Biana, Y.W.; Donga, X.Y.; Gao, X.; Zhao, L.S. Magnetic solid-phase extraction based on multi-walled carbon nanotubes combined ferroferric oxide nanoparticles for the determination of five heavy metal ions in water samples by inductively coupled plasma mass spectrometry. Water Sci. Technol. 2021, 84, 1417–1427. [Google Scholar] [CrossRef]
- Huang, J.; Cui, W.R.; Liang, R.P.; Zhang, L.; Qiu, J.D. Porous BMTTPA-CS-GO nanocomposite for the efficient removal of heavy metal ions from aqueous solutions. RSC Adv. 2021, 11, 3725–3731. [Google Scholar] [CrossRef] [PubMed]
- Wua, H.Y.; Unnikrishnana, B.; Huang, C.C. Membrane-based detection of lead ions in seawater, urine and drinking straws through laser desorption/ionization. Sens. Actuators B Chem. 2014, 203, 880–886. [Google Scholar] [CrossRef]
- Liu, X.M.; Luo, Y.J.; Lin, T.F.; Xie, Z.Q.; Qi, X.H. Gold nanoclusters-based fluorescence resonance energy transfer for rapid and sensitive detection of Pb2+. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 315, 124302. [Google Scholar] [CrossRef] [PubMed]
- Teng, W.Q.; Li, Q.; Zhao, J.; Shi, P.F.; Zhang, J.; Yan, M.; Zhang, S.S. A novel dual-mode aptasensor based on a multiple amplification system for ultrasensitive detection of lead ions using fluorescence and surface-enhanced Raman spectroscopy. Analyst 2024, 149, 1817–1824. [Google Scholar] [CrossRef]
- Dhaffouli, A.; Salazar-Carballo, P.A.; Carinelli, S.; Holzinger, M.; Barhoumi, H. Improved electrochemical sensor using functionalized silica nanoparticles (SiO2-APTES) for high selectivity detection of lead ions. Mater. Chem. Phys. 2024, 318, 129253. [Google Scholar] [CrossRef]
- Li, Y.; Huang, H.; Cui, R.L.; Wang, D.M.; Yin, Z.; Wang, D.; Zheng, L.R.; Zhang, J.; Zhao, Y.D.; Yuan, H.; et al. Electrochemical sensor based on graphdiyne is effectively used to determine Cd2+ and Pb2+ in water. Sens. Actuators B. Chem. 2021, 332, 129519. [Google Scholar] [CrossRef]
- Qi, T.Y.; Yuan, Z.Y.; Meng, F.L. Highly sensitive and highly selective lead ion electrochemical sensor based on zn/cu-btc-nh2 bimetallic MOFs with nano-reticulated reinforcing microstructure. Anal. Chim. Acta 2024, 1318, 342896. [Google Scholar] [CrossRef] [PubMed]
- Boselli, E.; Wu, Z.Z.; Haynes, E.N.; Papautsky, I. Screen-Printed Sensors Modified with Nafion and Mesoporous Carbon for Electrochemical Detection of Lead in Blood. J. Electrochem. Soc. 2024, 171, 027513. [Google Scholar] [CrossRef]
- Chabbah, T.; Chatti, S.; Jaffrezic-Renault, N.; Weidner, S.; Marestin, C.; Mercier, R. Impedimetric sensors based on diethylphosphonate-containing poly(arylene ether nitrile)s films for the detection of lead ions. Polym. Adv. Technol. 2023, 34, 2471–2481. [Google Scholar] [CrossRef]
- Ren, X.; Wang, M.; Chen, J.G.; Zhao, J.X.; Wang, H.; Wu, D.; Xu, R.; Zhang, Y.; Ju, H.X.; Wei, Q. Sulfur defect-engineered Bi2S3-x/In2S3-y mediated signal enhancement of photoelectrochemical sensor for lead ions detection. Talanta 2024, 273, 125871. [Google Scholar] [CrossRef]
- Sun, X.Y.; Dong, S.L.; Zhao, W.Y. Catalytic hairpin assembly assisted target-dependent DNAzyme nanosystem coupled with AgPt@Thi for the detection of lead ion. Anal. Chim. Acta 2022, 1205, 339735. [Google Scholar] [CrossRef]
- Qu, K.; Hu, X.; Li, Q.L. Electrochemical environmental pollutant detection enabled by waste tangerine peel-derived biochar. Diam. Relat. Mater. 2023, 131, 109617. [Google Scholar] [CrossRef]
- Zhang, C.X.; Meng, L.B.; Fang, Z.H.; Xu, Y.X.; Zhou, Y.; Guo, H.S.; Wang, J.Y.; Zhao, X.T.; Zang, S.Y.; Shen, H.L. Experimental and Theoretical Studies on the Adsorption of Bromocresol Green from Aqueous Solution Using Cucumber Straw Biochar. Molecules 2024, 29, 4517. [Google Scholar] [CrossRef] [PubMed]
- Cardozo, R.E.; Clauser, N.M.; Felissia, F.E.; Areaa, M.S.; Vallejosa, M.E. Design of an integrated biorefinery for bioethylene production from industrial forest byproducts. Green Chem. 2024, 26, 4092–4102. [Google Scholar] [CrossRef]
- Liu, Q.H.; Sun, H.Y.; Yang, Z.M. Role of KOH-activated biochar on promoting anaerobic digestion of biomass from Pennisetum gianteum. J. Environ. Manag. 2024, 353, 120165. [Google Scholar] [CrossRef]
- Nie, W.; Che, Q.Q.; Chen, D.; Cao, H.Y.; Deng, Y.H. Comparative Study for Propranolol Adsorption on the Biochars from Different Agricultural Solid Wastes. Materials 2024, 17, 2793. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, S.M.; Ter, M.T.; Chen, J.X. Cradle-to-gate life cycle analysis of slow pyrolysis biochar from forest harvest residues in Ontario, Canada. Biochar 2024, 6, 58. [Google Scholar] [CrossRef]
- Djebbi, M.A.; Allagui, L.; Ayachi, M.S.E.; Boubakri, S.; Jaffrezic-Renault, N.; Namour, P.; Amara, A.B.H. Zero-Valent Iron Nanoparticles Supported on Biomass-Derived Porous Carbon for Simultaneous Detection of Cd2+ and Pb2+. ACS Appl. Nano Mater. 2022, 5, 546–558. [Google Scholar] [CrossRef]
- Kouchachvili, L.; Gagnon-Caya, G.; Djebbar, R. Wood-derived biochar as a matrix for cost-effective and high performing composite thermal energy storage materials. J. Porous Mater. 2024, 31, 1–12. [Google Scholar] [CrossRef]
- Joshi, M.; Bhatt, D.; Srivastava, A. Enhanced Adsorption Efficiency through Biochar Modification: A Comprehensive Review. Ind. Eng. Chem. Res. 2023, 62, 13748–13761. [Google Scholar] [CrossRef]
- Zou, J.; Liu, J.W.; Peng, G.W.; Huang, H.Y.; Wang, L.Y.; Lu, L.M.; Gao, Y.S.; Hu, D.N.; Chen, S.X. An Electrochemical Sensor Based on a Porous Biochar/Cuprous Oxide (BC/Cu2O) Composite for the Determination of Hg(II). Molecules 2023, 28, 5352. [Google Scholar] [CrossRef]
- Liu, M.; Guan, L.Q.; Wen, Y.J.; Su, L.Z.; Hu, Z.; Peng, Z.J.; Li, S.K.; Tang, Q.Y.; Zhou, Z.; Zhou, N. Rice husk biochar mediated red phosphorus for photocatalysis and photothermal removal of E. coli. Food Chem. 2023, 410, 135455. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Duan, W.Y.; Chang, Z.F.; Du, W.; Chen, F.Y.; Li, F.F.; Oleszczuk, P. Stability of Functionally Modified Biochar: The Role of Surface Charges and Surface Homogeneity. Sustainability 2023, 15, 7745. [Google Scholar] [CrossRef]
- Premalatha, R.P.; Bindu, J.P.; Nivetha, E.; Malarvizhi, P.; Manorama, K.; Parameswari, E.; Davamani, V. A review on biochar’s effect on soil properties and crop growth. Front. Energy Res. 2023, 11, 1092637. [Google Scholar] [CrossRef]
- Zhu, H.S.; Tan, X.L.; Tan, L.Q.; Chen, C.L.; Alharbi, N.S.; Hayat, T.; Fang, M.; Wang, X.K. Biochar Derived from Sawdust Embedded with Molybdenum Disulfide for Highly Selective Removal of Pb2+. ACS Appl. Nano Mater. 2018, 1, 2689–2698. [Google Scholar] [CrossRef]
- Choudhary, V.; Philip, L. Sustainability assessment of acid-modified biochar as adsorbent for the removal of pharmaceuticals and personal care products from secondary treated wastewater. J. Environ. Chem. Eng. 2022, 10, 107592. [Google Scholar] [CrossRef]
- Liu, C.; Wang, W.D.; Wu, R.; Liu, Y.; Lin, X.; Kan, H.; Zheng, Y.W. Preparation of Acid-and Alkali-Modified Biochar for Removal of Methylene Blue Pigment. ACS Omega 2020, 5, 30906–30922. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Hossain, A.; Bhowal, P.D. Integral approach of adsorption and photo-degradation of Bisphenol A using pyrolyzed rice straw biochar coated with metal oxide: Batch, mechanism and optimization. Sadhana Acad. Proc. Eng. Sci. 2024, 49, 38. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, Z.Y.; Wang, Z.W.; Zhou, F.; Yu, J.X.; Chi, R.; Xiao, C.Q. Adsorption of Pb2+ in solution by phosphate-solubilizing microbially modified biochar loaded with Fe3O4. J. Taiwan Inst. Chem. Eng. 2024, 156, 105363. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Chen, K.D.; Zhang, J.C.; Huang, K.Z.; Liang, Y.H.; Hu, H.W.; Xu, X.J.; Chen, D.C.; Chang, M.L.; Wang, Y.Z. Dense and uniform growth of TiO2 nanoparticles on the pomelo-peel-derived biochar surface for efficient photocatalytic antibiotic degradation. J. Environ. Chem. Eng. 2023, 11, 109358. [Google Scholar] [CrossRef]
- Wang, J.W.; Wang, G.Q.; Yu, T.; Ding, N.J.; Wang, M.C.; Chen, Y. Photocatalytic performance of biochar-modified TiO2 (C/TiO2) for ammonia–nitrogen removal. RSC Adv. 2023, 13, 24237–24249. [Google Scholar] [CrossRef]
- Manpetch, P.; Singhapong, W.; Jaroenworaluck, A. Synthesis and characterization of a novel composite of ricehusk-derived graphene oxide with titania microspheres (GO-RH/TiO2)for effective treatment of cationic dye methylene blue in aqueous solutions. Environ. Sci. Pollut. Res. 2022, 29, 63917–63935. [Google Scholar] [CrossRef]
- Ding, Z.; Li, H.; Shaw, L. New Insights into the Solid-State Hydrogen Storage of Nanostructured LiBH4-MgH2 System. Chem. Eng. J. 2020, 385, 123856. [Google Scholar] [CrossRef]
- Ding, Z.; Li, Y.T.; Yang, H.; Lu, Y.F.; Tan, J.; Li, J.B.; Chen, Q.L.Y.A.; Shaw, L.L.; Pan, F.S. Tailoring MgH2 for hydrogen storage through nanoengineering and catalysis. J. Magnes. Alloys 2022, 10, 2946–2967. [Google Scholar] [CrossRef]
- Yang, H.; Ding, Z.; Li, S.Y.; Wu, P.K.; Hou, Q.H.; Zheng, Y.; Gao, B.; Huo, K.F.; Du, W.J.; Shaw, L.L. Recent advances in kinetic and thermodynamic regulation of magnesium hydride for hydrogen storage. Rare Met. 2023, 42, 2906–2927. [Google Scholar] [CrossRef]
- Yameen, M.Z.; Naqvi, S.R.; Juchelková, D.; Aslam Khan, M.N. Harnessing the power of functionalized biochar: Progress, challenges, and future perspectives in energy, water treatment, and environmental sustainability. Biochar 2024, 6, 25. [Google Scholar] [CrossRef]
- Zhang, H.C.; Li, Y.R.; Zhang, Y.P.; Wu, J.F.; Li, S.X.; Li, L.L. A Disposable Electrochemical Sensor for Lead Ion Detection Based on In Situ Polymerization of Conductive Polypyrrole Coating. J. Electron. Mater. 2023, 52, 1819–1828. [Google Scholar] [CrossRef]
- Zhu, N.X.; Liu, X.N.; Peng, K.M.; Cao, H.; Yuan, M.; Ye, T.; Wu, X.X.; Yin, F.Q.; Yu, J.S.; Hao, L.L.; et al. A Novel Aptamer-Imprinted Polymer-Based Electrochemical Biosensor for the Detection of Lead in Aquatic Products. Molecules 2022, 28, 196. [Google Scholar] [CrossRef]
Strategy | Technique | Linear Range/μM | LOD/μM | Reference |
---|---|---|---|---|
G-C-4/SPE | SWASV | 0.05–1 | 0.0089 | [1] |
PA-PPy@SPCE | DPASV | 0.01–6 | 0.43 × 10−3 | [47] |
CHO/CS-GO/Pb(II)/Aptmer/MCH/AuNPs/GCE | DPV | 0.483 × 10−6–0.965 × 10−5 | 0.384 × 10−6 | [48] |
BC@TiO2NPs/GCE | DPV | 1 × 10−6–10 | 0.6268 × 10−6 | This method |
Sample (Tap Water) | Added (nM) | Found (nM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 0 | 0 | 0 | 0 |
2 | 1 | 1.030 | 103.00 | 0.9324 |
3 | 10 | 10.046 | 100.46 | 0.8792 |
4 | 100 | 100.088 | 100.088 | 1.0910 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Xu, Y.; Kan, X.; Chen, M.; Dai, J.; Zhang, Y.; Pang, P.; Ma, W.; Zhang, J. An Electrochemical Sensor for Detection of Lead (II) Ions Using Biochar of Spent Coffee Grounds Modified by TiO2 Nanoparticles. Molecules 2024, 29, 5704. https://doi.org/10.3390/molecules29235704
Liu Z, Xu Y, Kan X, Chen M, Dai J, Zhang Y, Pang P, Ma W, Zhang J. An Electrochemical Sensor for Detection of Lead (II) Ions Using Biochar of Spent Coffee Grounds Modified by TiO2 Nanoparticles. Molecules. 2024; 29(23):5704. https://doi.org/10.3390/molecules29235704
Chicago/Turabian StyleLiu, Zaiqiong, Yiren Xu, Xurundong Kan, Mei Chen, Jingyang Dai, Yanli Zhang, Pengfei Pang, Wenhui Ma, and Jianqiang Zhang. 2024. "An Electrochemical Sensor for Detection of Lead (II) Ions Using Biochar of Spent Coffee Grounds Modified by TiO2 Nanoparticles" Molecules 29, no. 23: 5704. https://doi.org/10.3390/molecules29235704
APA StyleLiu, Z., Xu, Y., Kan, X., Chen, M., Dai, J., Zhang, Y., Pang, P., Ma, W., & Zhang, J. (2024). An Electrochemical Sensor for Detection of Lead (II) Ions Using Biochar of Spent Coffee Grounds Modified by TiO2 Nanoparticles. Molecules, 29(23), 5704. https://doi.org/10.3390/molecules29235704