Self-Assembled Molecular Complexes of 1,10-Phenanthroline and 2-Aminobenzimidazoles: Synthesis, Structure Investigations, and Cytotoxic Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Single-Crystal X-ray Diffraction Analysis
2.3. DTF Study
2.4. Cytotoxic Activity
3. Materials and Methods
3.1. General Procedures
3.2. Chemistry
3.2.1. General Procedure for Molecular Complexes 5–7 [21]
3.2.2. Compound Data
3.3. X-ray Structural Analysis
3.4. Computational Methods
3.5. Cytotoxicity
3.5.1. Cell Culture Methods
3.5.2. Cell Viability Assay
3.5.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chhikara, B.S.; Parang, K. Global Cancer Statistics 2022: The trends projection analysis. Chem. Biol. Lett. 2023, 10, 451. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Xu, T.; Xu, Y.; Ring, A.; Kahn, M.; Goldkorn, A. Cancer cells acquire a drug-resistant, highly tumorigenic, cancer stem-like phenotype through modulation of thePI3K/Akt/b-catenin/CBP pathway. Int. J. Cancer 2014, 134, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules 2020, 25, 1909. [Google Scholar] [CrossRef] [PubMed]
- Solomon, V.R.; Hua, C.; Lee, H. Design and synthesis of anti-breast cancer agents from 4-piperazinylquinoline: A hybrid pharmacophore approach. Bioorg. Med. Chem. 2010, 18, 1563–1572. [Google Scholar] [CrossRef] [PubMed]
- Shalini; Kumar, V. Have molecular hybrids delivered effective anti-cancer treatments and what should future drug discovery focus on? Expert Opin. Drug Discov. 2020, 16, 335–363. [Google Scholar] [CrossRef]
- Shrivastava, N.; Naim, M.J.; Alam, M.J.; Nawaz, F.; Ahmed, S.; Alam, O. Benzimidazole Scaffold as Anticancer Agent: Synthetic Approaches and Structure–Activity Relationship. Arch. Pharm. Chem. Life Sci. 2017, 350, e1700040. [Google Scholar] [CrossRef]
- Tahlan, S.; Kumar, S.; Kakkar, S.; Narasimhan, B. Benzimidazole scaffolds as promising antiproliferative agents: A review. BMC Chem. 2019, 13, 66. [Google Scholar] [CrossRef]
- Yadav, S.; Narasimhan, B.; Kaur, H. Perspectives of Benzimidazole Derivatives as Anticancer Agents in the New Era. Anti-Cancer Agents Med. Chem. 2016, 16, 1403–1425. [Google Scholar] [CrossRef]
- Ebenezer, O.; Oyetunde-Joshua, F.; Omotoso, O.D.; Shapi, M. Benzimidazole and its derivatives: Recent Advances (2020–2022). Results Chem. 2023, 5, 100925. [Google Scholar] [CrossRef]
- Bonacorso, H.G.; Andrighetto, R.; Frizzo, C.P.; Zanatta, N.; Martins, M.A.P. Recent Advances in the Chemistry of 1,10-Phenanthroline and Their Metal Derivatives: Synthesis and Promising Application in Medicine, Technology, and Catalysis. Targets Heterocycl. Syst. 2016, 19, 1–27. [Google Scholar] [CrossRef]
- Bencinia, A.; Lippolisb, V. 1,10-Phenanthroline: A versatile building block for the construction of ligands for various purposes. Coord. Chem. Rev. 2010, 254, 2096–2180. [Google Scholar] [CrossRef]
- Abebe, A.; Sendek, A.; Ayalew, S.; Kibret, M. Copper(II) mixed-ligand complexes containing 1,10-phenanthroline, adenine and thymine: Synthesis, characterization and antibacterial activities. Chem. Int. 2017, 3, 230–239. [Google Scholar]
- Mahalakshomi, R.; Natarajan, R. A Therapeutic journey of mixed ligand complexes containing 1,10-phenanthroline derivatives: A review. Int. J. Curr. Pharm. 2016, 8, 1–6. [Google Scholar]
- Margiotta, N.; Fanizzi, F.P.; Kobe, J.; Natile, G. Synthesis, Characterisation and Antiviral Activity of Platinum(II) Complexes with 1,10-Phenanthrolines and the Antiviral Agents Acyclovir and Penciclovir. Eur. J. Inorg. Chem. 2001, 2001, 1303–1310. [Google Scholar] [CrossRef]
- Mahmoud, W.H.; Mohamed, G.G.; El-Dessouky, M.M.I. Synthesis, Characterization and in vitro Biological Activity of Mixed Transition Metal Complexes of Lornoxicam with 1,10-phenanthroline. Int. J. Electrochem. Sci. 2014, 9, 1415–1438. [Google Scholar] [CrossRef]
- Rajarajeswari, C.; Ganeshpandian, M.; Palaniandavar, M.; Riyasdeen, A.; Akbarsha, M.A. Mixed Ligand Copper(II) Complexes of 1,10-Phenanthroline with Tridentate Phenolate/Pyridyl/(Benz)imidazolyl Schiff Base Ligands: Covalent vs Noncovalent DNA Binding, DNA Cleavage and Cytotoxicity. J. Inorg. Biochem. 2014, 140, 255–268. [Google Scholar] [CrossRef]
- Wesselinova, D.; Neykov, M.; Kaloyanov, N.; Toshkova, R.; Dimitrov, G. Antitumour activity of novel 1,10-phenanthroline and 5-amino-1,10-phenanthroline derivatives. Eur. J. Med. Chem. 2009, 44, 2720–2723. [Google Scholar] [CrossRef]
- Loganathan, R.; Ramakrishnan, S.; Suresh, E.; Riyasdeen, A.; Akbarsha, M.A.; Palaniandavar, M. Mixed Ligand Copper(II) Complexes of N,N-Bis(benzimidazol-2- ylmethyl)amine (BBA) with Diimine Co-Ligands: Efficient Chemical Nuclease and Protease Activities and Cytotoxicity. Inorg. Chem. 2012, 51, 5512–5532. [Google Scholar] [CrossRef]
- Hussain, A.; Ajmi, M.F.; Rehman, M.T.; Amir, S.; Husain, F.M.; Alsalme, A.; Siddiqui, M.A.; Khedhairy, A.A.; Khan, R.A. Copper(II) complexes as potential anticancer and Nonsteroidal anti-inflammatory agents: In vitro and in vivo studies. Sci. Rep. 2019, 9, 5237. [Google Scholar] [CrossRef]
- Kaloyanov, N.; Alexandrova, R.; Wesselinova, D.W.; Mayer-Figge, H.; Sheldrick, W.; Dimitrov, G. Self-assembly of novel molecular complexes of 1,10-phenanthroline and 5-amino-1,10-phenanthroline and evaluation of their in vitro antitumour activity. Eur. J. Med. Chem. 2011, 46, 1992–1996. [Google Scholar] [CrossRef] [PubMed]
- Zasheva, D.; Alexandar, I.; Kaloyanov, N. Anticancer activity of molecular complexes of 1,10-phenantroline and 5-aminophenantroline against prostate and bread cancer cell lines. C. R. Acad. Bulg. Sci. 2019, 72, 617–621. [Google Scholar] [CrossRef]
- Atanassova, M.S.; Dimitrov, G.D. Synthesis and spectral characterization of novel compounds derived from 1,10-phenanthroline, lead(II) and tetrabutylammonium tetrafluoroborate. Spectrochim. Acta Part A 2003, 59, 1655–1662. [Google Scholar] [CrossRef] [PubMed]
- Prior, T.J.; Rujiwatra, A.; Chimupala, Y. [Ni(1,10-phenanthroline)2(H2O)2](NO3)2: A Simple Coordination Complex with a Remarkably Complicated Structure that Simplifies on Heating. Crystals 2011, 1, 178–194. [Google Scholar] [CrossRef]
- Oh, S.; Ju, J.; Yang, W.; Lee, K.; Nam, K.; Shin, I. EGFR negates the proliferative effect of oncogenic HER2 in MDA-MB-231 cells. Arch. Biochem. Biophys. 2015, 575, 69–76. [Google Scholar] [CrossRef]
- Lønne, G.K.; Masoumi, K.C.; Lennartsson, J.; Larsson, C. Protein Kinase Cδ Sup-ports Survival of MDA-MB-231 Breast Cancer Cells by Suppressing the ERK1/2 Pathway. JBC 2009, 284, 33456–33465. [Google Scholar] [CrossRef]
- AYang, W.; Ju, J.; Lee, K.; Shin, I. Akt isoform-specific inhibition of MDA-MB-231 cell proliferation. Cell. Signal. 2011, 23, 19–26. [Google Scholar] [CrossRef]
- Chappell, W.H.; Lehmann, B.D.; Terrian, D.M.; Abrams, S.L.; Steelman, L.S.; McCubrey, J.A. p53 expression controls prostate cancer sensitivity to chemotherapy and the MDM2 inhibitor Nutlin-3. Cell Cycle 2012, 11, 4579–4588. [Google Scholar] [CrossRef]
- Alghamdi, A.A.; Nazreen, S. Synthesis, Characterization and Cytotoxic Study of 2-Hydroxy Benzothiazole Incorporated 1,3,4-Oxadiazole Derivatives. Egypt. J. Chem. 2020, 63, 471–482. [Google Scholar] [CrossRef]
- Brana, M.F.; Cacho, M.; Gradillas, A.; de Pascu-al-Teresa, B.; Ramos, A. Intercalators as anticancer drugs. Curr. Pharm. Des. 2001, 7, 1745–1780. [Google Scholar] [CrossRef]
- Martinez, R.; Chacon-Garcia, L. The search of DNA-intercalators as antitumoral drugs: What worked and what did not work. Curr. Med. Chem. 2005, 12, 127–151. [Google Scholar] [CrossRef] [PubMed]
- Arjmand, F.; Parveen, S.; Afzal, M.; Shahid, M. Synthesis, characterization, biological studies (DNA binding, cleavage, antibacterial and topoisomerase I) and molecular docking of copper(II) benzimidazole complexes. J. Photochem. Photobiol. B Biol. 2012, 114, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Guo, Q.; Dong, J.; Xu, T.; Li, J. DNA binding, DNA cleavage and BSA interaction of a mixed-ligand copper(II) complex with taurine Schiff base and 1,10-phenanthroline. J. Photochem. Photobiol. B Biol. 2013, 125, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Szumilak, M.; Merecz, A.; Strek, M.; Stanczak, A.; Inglot, T.; Karwowski, B. DNA Inter-action Studies of Selected Polyamine Conjugates. Int. J. Mol. Sci. 2016, 17, 1560. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, N.H.; Salehzadeh, S.; Tanzadehpanah, H.; Saidijam, M.; Karimi, J.; Khazalpour, S. In vitro cytotoxicity and DNA/HSA interaction study of triamterene using molecular modelling and multi-spectroscopic methods. J. Biomol. Struct. Dyn. 2019, 37, 2242–2253. [Google Scholar] [CrossRef]
- Gurusamy, S.; Krishnaveni, K.; Sankarganesh, M.; Asha, R.N.; Mathavan, M. Synthesis, characterization, DNA interaction, BSA/HSA binding activities of Vo(IV), Cu(II) and Zn(II) Schiff base complexes and its molecular docking with biomolecules. J. Mol. Liq. 2022, 345, 117045. [Google Scholar] [CrossRef]
- Mavrova, A.T.; Denkova, P.; Tsenov, Y.A.; Anichina, K.K.; Vutchev, D.I. Synthesis and antitrichinellosis activity of some bis(benzimidazol-2-yl)amines. Bioorg. Med. Chem. 2007, 15, 6291–6297. [Google Scholar] [CrossRef]
- CrysAlis PRO; Rigaku Oxford Diffraction Ltd., UK Ltd.: Yarnton, UK, 2021.
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Farrugia, L. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Densi-ty-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. (Eds.) Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Slater, T.F.; Sawyer, B.; Sträuli, U. Studies on succinate-tetrazolium reductase systems: III. Points of coupling of four different tetrazolium salts III. Points of coupling of four different tetrazolium salts. Biochim. Biophys. Acta 1963, 77, 383–393. [Google Scholar] [CrossRef]
- Social Science Statistics. Available online: http://www.socscistatistics.com/tests/anova/default2.aspx (accessed on 1 November 2018).
D | H | A | d(D–H), Å | d(H-A), Å | d(D-A), Å | D-H-A, ° |
---|---|---|---|---|---|---|
C8 | H8C | F26 1 | 0.96 | 2.60 | 3.549(4) | 169.6 |
N1 | H1 | N22 | 0.92(3) | 1.87(4) | 2.783(3) | 170(3) |
N9 | H9A | N11 | 0.89(4) | 2.02(4) | 2.881(4) | 162(3) |
N9 | H9B | F26 1 | 0.87(4) | 2.05(4) | 2.895(4) | 165(3) |
IC50 (µM/mL) ± SE a | |||
---|---|---|---|
Compound | MCF-7 Cells | PC3 Cells | HeLa Cells |
5 | 0.085 ± 1.20 | 0.092 ± 1.57 | 0.064 ± 2.00 |
6 | 0.061 ± 1.42 | 0.148 ± 1.53 | 0.081 ± 1.38 |
7 | 0.150 ± 1.41 | 0.082 ± 2.00 | 0.228 ± 1.30 |
Doxorubicin | 1.2 ± 0.005 [29] | N.D. | N.D. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anichina, K.; Kaloyanov, N.; Zasheva, D.; Rusew, R.; Nikolova, R.; Yancheva, D.; Bakov, V.; Georgiev, N. Self-Assembled Molecular Complexes of 1,10-Phenanthroline and 2-Aminobenzimidazoles: Synthesis, Structure Investigations, and Cytotoxic Properties. Molecules 2024, 29, 583. https://doi.org/10.3390/molecules29030583
Anichina K, Kaloyanov N, Zasheva D, Rusew R, Nikolova R, Yancheva D, Bakov V, Georgiev N. Self-Assembled Molecular Complexes of 1,10-Phenanthroline and 2-Aminobenzimidazoles: Synthesis, Structure Investigations, and Cytotoxic Properties. Molecules. 2024; 29(3):583. https://doi.org/10.3390/molecules29030583
Chicago/Turabian StyleAnichina, Kameliya, Nikolay Kaloyanov, Diana Zasheva, Rusi Rusew, Rositsa Nikolova, Denitsa Yancheva, Ventsislav Bakov, and Nikolai Georgiev. 2024. "Self-Assembled Molecular Complexes of 1,10-Phenanthroline and 2-Aminobenzimidazoles: Synthesis, Structure Investigations, and Cytotoxic Properties" Molecules 29, no. 3: 583. https://doi.org/10.3390/molecules29030583
APA StyleAnichina, K., Kaloyanov, N., Zasheva, D., Rusew, R., Nikolova, R., Yancheva, D., Bakov, V., & Georgiev, N. (2024). Self-Assembled Molecular Complexes of 1,10-Phenanthroline and 2-Aminobenzimidazoles: Synthesis, Structure Investigations, and Cytotoxic Properties. Molecules, 29(3), 583. https://doi.org/10.3390/molecules29030583