Catalytic Ketonization over Oxide Catalysts (Part XIV): The Ketonization and Cross-Ketonization of Anhydrides, Substituted Acids and Esters †
Abstract
:1. Introduction
2. Results
2.1. Characterization of Catalysts
2.1.1. Powder X-ray Diffraction (PXRD)
2.1.2. Scanning Electron Microscopy Coupled with Energy-Dispersive X-ray Spectroscopy (SEM-EDX)
2.1.3. Temperature-Programmed Reduction (TPR)
2.1.4. Nitrogen Physisorption
2.2. Activity Measurements
2.2.1. Homo- and Cross-Ketonization of Aliphatic Anhydrides
2.2.2. Cross-Ketonization of Dialkyl Benzenedicarboxylates with Acetic Acid
2.2.3. Cross-Ketonization of Substituted Alkanoic Acids with Acetic Acid
3. Materials and Methods
3.1. Catalysts
3.2. Reagents
3.3. Ketonization of Anhydrides, Acids and Esters
3.4. Ketonization of Dialkyl Benzenedicarboxylates
3.5. XRD Analysis
3.6. Scanning Electron Microscopy Coupled with Energy-Dispersive X-ray Spectroscopy (SEM-EDX)
3.7. Nitrogen Physisorption
3.8. Temperature-Programmed Reduction (TPR)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williamson, A. Űber Aetherbildung. J. Prakt. Chem. 1852, 55, 257–268. [Google Scholar] [CrossRef]
- Piria, R. Über de Umwandlung Organischen Säuren in die entsprechendem Aldeyde. Ann. Chim. Phys. 1856, 48, 113–117. [Google Scholar]
- Ružicka, L.; Brugger, W. Zur Kenntnis des Kohlenstoffringes IV. Űber die Gewinnung des Cyclo-nonanon aus sebacinsäure. Helv. Chim. Acta 1926, 9, 389–398. [Google Scholar] [CrossRef]
- Squibb, E. Improvement in the manufacture of acetone. J. Amer. Chem. Soc. 1895, 17, 187–201. [Google Scholar] [CrossRef]
- Najafishirtari, S.; Friedel Ortega, K.; Douthwaite, M.; Pattisson, S.; Hutchings, G.J.; Bondue, C.J.; Tschulik, K.; Waffel, D.; Peng, B.; Deitermann, M.; et al. A Perspective on Heterogeneous Catalysts for the Selective Oxidation of Alcohols. Chem. Eur. J. 2021, 27, 16809–16833. [Google Scholar] [CrossRef]
- Mallat, T.; Baiker, A. Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions. Catal. Today 1994, 19, 247–283. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Creation of a Monomeric Ru Species on the Surface of Hydroxyapatite as an Efficient Heterogeneous Catalyst for Aerobic Alcohol Oxidation. J. Am. Chem. Soc. 2000, 122, 7144–7145. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Mizuno, N. Supported Ruthenium Catalyst for the Heterogeneous Oxidation of Alcohols with Molecular Oxygen. Angew. Chem. 2002, 114, 4720–4724. [Google Scholar] [CrossRef]
- Chikán, V.; Molnár, Á.; Balázsik, K. One-Step Synthesis of Methyl Isobutyl Ketone from Acetone and Hydrogen over Cu-on-MgO Catalysts. J. Catal. 1999, 184, 134–143. [Google Scholar] [CrossRef]
- Nicol, W.; du Toit, E.L. One-step methyl isobutyl ketone synthesis from acetone and hydrogen using Amberlyst® CH28. Chem. Eng. Proc. Intens. 2004, 43, 1539–1545. [Google Scholar] [CrossRef]
- Rueping, M.; Bootwicha, T.; Baars, H.; Sugiono, E. Continuous-flow hydration-condensation reaction: Synthesis of α,β-unsaturated ketones from alkynes and aldehydes by using a heterogeneous solid acid catalyst. Beilstein J. Org. Chem. 2011, 7, 1680–1687. [Google Scholar] [CrossRef]
- Li, W.-D.; Zhang, J.-S.; Zhang, L.-Y.; Liu, Z.-W.; Fan, J.; Shi, X.-Y. Rhodium-Catalyzed Alkylation of Aromatic Ketones with Allylic Alcohols and α,β-Unsaturated Ketones. Catalysts 2023, 13, 1157. [Google Scholar] [CrossRef]
- Swann, S.; Appel, E.G.; Kistler, S.S. Thoria Aerogel Catalyst: Aliphatic Esters to Ketones. Ind. Eng. Chem. 1934, 26, 1014. [Google Scholar] [CrossRef]
- Gliński, M.; Szymański, W.; Łomot, D. Catalytic ketonization over oxide catalysts. X. Transformation of various alkyl heptanoates. Appl. Catal. A Gen. 2005, 28, 107–113. [Google Scholar] [CrossRef]
- Gliński, M.; Gibka, J. Catalytic ketonization over oxide catalysts. Part IX. Single step synthesis of aliphatic saturated and unsaturated C11-C13 ketones from carboxylic acids. Pol. J. Chem. 2004, 78, 299–303. [Google Scholar]
- Bouchoule, C.; Blanchard, M.; Thomassin, R. Condensation catalytique des acides aliphatiques sur thorine. Bull. Soc. Chim. Fr. 1973, 5, 1773–1776. [Google Scholar]
- Hendren, T.S.; Dooley, K.M. Kinetics of catalyzed acid/acid and acid/aldehyde condensation reaction to non-symmetric ketones. Catal. Today 2003, 85, 333–351. [Google Scholar] [CrossRef]
- Gliński, M.; Kijeński, J. Decarboxylative coupling of heptanoic acid. Manganese, cerium and zirconium oxide catalysts. Appl. Catal. A Gen. 2000, 190, 87–91. [Google Scholar] [CrossRef]
- Piumetti, M.; Bensaid, S.; Andana, T.; Dosa, M.; Novara, C.; Giorgis, F.; Russo, N.; Fino, D. Nanostructured Ceria-Based Materials: Effect of the Hydrothermal Synthesis Conditions on the Structural Properties and Catalytic Activity. Catalysts 2017, 7, 174. [Google Scholar] [CrossRef]
- Trovarelli, A.; Llorca, J. Ceria Catalysts at Nanoscale: How do Crystal Shapes Shape Catalysis? ACS Catal. 2017, 7, 4716–4735. [Google Scholar] [CrossRef]
- Chai Kim, S.; Geun Shim, W. Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl. Catal. B Environ. 2010, 98, 180–185. [Google Scholar]
- Kang, M.; Duck Park, E.; Man Kim, J.; Eui Yie, J. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl. Catal. A Gen. 2007, 327, 261–269. [Google Scholar] [CrossRef]
- Khivantsev, K.; Jaegers, N.R.; Aleksandrov, H.A.; Song, I.; Pereira-Hernandez, X.I.; Engelhard, M.H.; Tian, J.; Chen, L.; Motta Meira, D.; Kovarik, L.; et al. Single Ru(II) Ions on Ceria as a Highly Active Catalyst for Abatement of NO. J. Am. Chem. Soc. 2023, 145, 5029–5040. [Google Scholar] [CrossRef]
- Liao, X.; Hou, J.; Wang, Y.; Zhang, H.; Sun, Y.; Li, X.; Tang, S.; Kato, K.; Yamauchi, M.; Jiang, Z. An active, selective, and stable manganese oxide-supported atomic Pd catalyst for aerobic oxidation of 5-hydroxymethylfurfural. Green Chem. 2019, 21, 4194–4203. [Google Scholar] [CrossRef]
- Delimaris, D.; Ioannides, T. Intrinsic Activity of MnOx-CeO2 Catalysts in Ethanol Oxidation. Catalysts 2017, 7, 339. [Google Scholar] [CrossRef]
- Tanabe, K. Surface and catalytic properties of ZrO2. Mat. Chem. Phys. 1985, 13, 347–364. [Google Scholar] [CrossRef]
- Fatimah, I.; Yanti, I.; Suharto, T.E.; Sagadevan, S. ZrO2-based catalysts for biodiesel production: A review. Inorg. Chem. Commun. 2022, 143, 109808. [Google Scholar] [CrossRef]
- Bamberger, E. Notiz über das Verhalten von Essigsäureanhydrid bei hoher Temperatur. Chem. Ber. 1910, 43, 3917–3920. [Google Scholar] [CrossRef]
- Neunhoffer, O.; Paschke, P. Űber den Mechanismus der Ketonbildung aus Carbonsäuren. Chem. Ber. 1939, 72, 919–929. [Google Scholar] [CrossRef]
- Kwart, H.; King, K. The Chemistry of Carboxylic Acids and Esters; Interscience: New York, NY, USA, 1969; Chapter 8; pp. 341–373. [Google Scholar]
- Renz, M. Ketonization of Carboxylic Acids by Decarboxylation: Mechanism and Scope. Eur. J. Org. Chem. 2005, 2005, 979–988. [Google Scholar] [CrossRef]
- Hernandez, A.; Ruette, F.; Ludena, E.V. Molecular orbital study of cobalt-oxygen interaction. J. Mol. Catal. 1987, 39, 21–41. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Ikeda, N.; Hattori, H.; Tanabe, K. Surface and catalytic properties of cerium oxide. J. Catal. 1981, 67, 324–330. [Google Scholar] [CrossRef]
- Laachir, A.; Perrichon, V.; Badri, A.; Lamotte, J.; Catherine, E.; Lavalley, J.-C.; El Fallah, J.; Hilaire, L.; le Normand, F.; Quemere, E.; et al. Reduction of CeO2 by hydrogen. Magnetic susceptibility and Fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopy measurements. J. Chem. Soc. Farad. Trans. 1991, 87, 1601–1609. [Google Scholar] [CrossRef]
- Zotin, F.; Tournayan, L.; Varloud, J.; Perrichon, V.; Frety, R. Temperature-programmed reduction; limitations of the technique for determining the extent of the reduction of either pure ceria or ceria modified by additives. Appl. Catal. A Gen. 1993, 98, 99–114. [Google Scholar] [CrossRef]
- Leung, A.; Boocock, D.G.; Konar, S.K. Pathway for the Catalytic Conversion of Carboxylic Acids to Hydrocarbons over Activated Alumina. Energy Fuels 1995, 9, 913–920. [Google Scholar] [CrossRef]
- Müller-Erlwein, E.; Rosenberger, B. Heterogen katalysierte Ketonisierung von Laurin- und Stearinsäure in der Gasphase. Chemieingenieurtechnik 1990, 62, 512–513. [Google Scholar] [CrossRef]
Catalyst | H2/MO2 Molar Ratio in TPR |
---|---|
MnO2 1 | 0.98 |
MnO2/Al2O3 | 1.04 |
MnO2/Al2O3 2 | 0.03 |
CeO2 3 | 0.11 |
CeO2/Al2O3 | 0.26 |
CeO2/Al2O3 2 | 0.03 |
ZrO2 4 | ~0.0 |
Catalyst | SBET (m2 g−1) | SBET 1 (m2 g−1) |
---|---|---|
-- 2 | 208 | -- |
CeO2/SiO2 | 188 | 169 3 |
MnO2/SiO2 | 179 | 156 3 |
-- 4 | 103 | -- |
MnO2/Al2O3 | 82 | 63 3 |
60 5 | ||
CeO2/Al2O3 | 85 | 67 3 |
62 5 | ||
ZrO2/Al2O3 | 95 | 68 5 |
Catalyst | Conversion/Yields of Ketones (%)/(%) | ||||
---|---|---|---|---|---|
573 K | 598 K | 623 K | 648 K | 673 K | |
-- 1 | 0/- | 1/0 | 3/1 | 6/2 | 11/4 |
-- 2 | 1/0 | 5/3 | 8/5 | 22/17 | 32/27 |
CeO2/SiO2 | 30/27 | 47/45 | 70/67 | 84/80 | 89/81 |
MnO2/SiO2 | 68/66 | 90/88 | 96/94 | 98/95 | -- |
-- 3 | 18/16 | 27/25 | 39/33 | 54/49 | -- |
CeO2/Al2O3 | 52/50 | 77/75 | 91/87 | 99/94 | -- |
MnO2/Al2O3 | 86/84 | 97/95 | 99/97 | 99/95 | -- |
Anhydride | Active Phase | Conversion/Yields of Ketones (%)/(%) | ||||
---|---|---|---|---|---|---|
598 K | 623 K | 648 K | 673 K | 698 K | ||
(CH3CO)2O | -- 1 | -- | 3/0 | 8/0 | 11/1 | 16/4 |
CeO2 | 32/27 | 84/82 | 95/79 | 96/68 | -- | |
MnO2 | 33/22 | 87/84 | 95/87 | 98/84 | -- | |
(n-C3H7CO)2O | -- 1 | -- | 6/2 | 12/5 | 27/18 | 37/26 |
CeO2 | 6/1 | 13/6 | 44/35 | 78/71 | 93/84 | |
MnO2 | 36/30 | 73/69 | 89/82 | 93/85 | 97/91 | |
(n-C6H13CO)2O | -- 1 | 41/38 | 57/52 | 63/59 | 70/62 | 78/52 |
CeO2 | 68/65 | 82/78 | 93/88 | 96/90 | 98/91 | |
MnO2 | 90/89 | 98/96 | 99/97 | 99/96 | 99/95 |
Anhydride | Active Phase | Conversion/Yields of Ketones (%)/(%) | ||||
---|---|---|---|---|---|---|
623 K | 648 K | 673 K | 698 K | 723 K | ||
((CH3)2CHCO)2O | -- 1 | 1/0 | 2/0 | 4/0 | 6/0 | 15/0 |
CeO2 | 5/1 | 8/5 | 22/16 | 40/37 | 57/55 | |
MnO2 | 5/1 | 9/4 | 11/6 | 60/53 | 87/80 | |
((CH3)3CCO)2O | CeO2 | -- | -- | 36/0 | 60/0 | 75/0 |
MnO2 | -- | -- | 42/0 | 69/0 | 84/0 |
Active Phase | Yields of Ketones (mol%) 1,2 | |||
---|---|---|---|---|
C5 | C9 | C13 | Others | |
CeO2 | 14 | 68 | 15 | 3 |
MnO2 | 18 | 59 | 20 | 3 |
Active Phase | T | Yield (%) | |
---|---|---|---|
(K) | 1,3-DAB 1 | AP 2 | |
-- 3 | 673 | 2 | 2 |
698 | 2 | 3 | |
723 | 3 | 4 | |
MnO2 | 673 | 6 | 8 |
698 | 7 | 9 | |
723 | 8 | 10 | |
ZrO2 | 673 | 2 | 3 |
698 | 2 | 3 | |
723 | 3 | 5 | |
CeO2 | 673 | 4 | 6 |
698 | 5 | 8 | |
723 | 8 | 12 | |
CeO2 4 | 673 | 2 | 3 |
698 | 3 | 4 | |
723 | 3 | 5 | |
CeO2 5 | 673 | 2 | 3 |
698 | 3 | 3 | |
723 | 6 | 9 |
Active Phase | T | Yield (%) 1 | |
---|---|---|---|
(K) | 1,4-DAB 2 | AP 3 | |
MnO2 | 673 | 4 | 12 |
698 | 11 | 51 | |
723 | 9 | 44 | |
CeO2 | 673 | 10 | 6 |
698 | 35 | 17 | |
723 | 31 | 20 | |
CeO2 4 | 673 | 5 | 3 |
698 | 9 | 3 | |
723 | 5 | 4 | |
ZrO2 | 673 | 3 | 0 |
698 | 5 | 0 | |
723 | 4 | 4 |
Dialkyl Terephthalate | T | Yield (%) | |
---|---|---|---|
(K) | 1,4-DAB 1 | AP 2 | |
Dimethyl 3 | 673 | 6 | 37 |
698 | 6 | 36 | |
723 | 6 | 28 | |
Diethyl 4 | 673 | 14 | 6 |
698 | 16 | 8 | |
723 | 23 | 16 | |
Diisopropyl 4 | 673 | 10 | 6 |
698 | 35 | 17 | |
723 | 31 | 20 | |
Diisopropyl 4,5 | 673 | 2 | 5 |
698 | 3 | 6 | |
723 | 3 | 5 | |
Monoisopropyl 6 | 673 | -- | -- |
698 | -- | -- | |
723 | -- | -- |
Dialkyl Terephthalate | Time-on-Stream | Yield (%) 1 | |
---|---|---|---|
(h) | 1,4-DAB 2 | AP 3 | |
Diethyl | 0.5 | 22 | 14 |
1 | 30 | 13 | |
2 | 37 | 13 | |
3 | 39 | 12 | |
4 | 40 | 14 | |
Diisopropyl | 0.5 | 13 | 17 |
1 | 35 | 17 | |
2 | 41 | 18 | |
3 | 42 | 20 | |
4 | 40 | 18 |
Active Phase | Acid | T (K) | Yield of Ketone (%) |
---|---|---|---|
MnO2 | 673 | 48 | |
698 | 44 | ||
723 | 40 | ||
673 | 49 | ||
698 | 45 | ||
723 | 37 | ||
CeO2 | 673 | 47 | |
698 | 34 | ||
723 | 31 | ||
673 1 | 19 | ||
698 | 12 | ||
723 | 2 |
Acid | T (K) | Yield of Ketone (%) |
---|---|---|
673 1 | 14 | |
698 | 10 | |
723 | 5 | |
673 2 | 2 | |
698 | 3 | |
723 | 2 | |
648 3 | -- | |
673 | -- | |
698 | -- |
Active Phase | T (K) | Ester Conv. (%) | Yield of Ketone (%) |
---|---|---|---|
-- 1 | 673 | 87 | 3 |
698 | 97 | 6 | |
723 | 99 | 5 | |
CeO2 | 648 | 70 | 3 |
673 | 76 | 5 | |
698 | 86 | 7 | |
MnO2 | 648 | 55 | 2 |
673 | 62 | 3 | |
698 | 77 | 2 |
Ethyl Esters of Acids | T (K) | Ester Conv. (%) | Yield of Ketone (%) |
---|---|---|---|
673 1 | 98–100 | 0 | |
698 | 0 | ||
723 | 0 | ||
673 | 59 | 18 | |
698 | 66 | 27 | |
723 | 71 | 41 | |
648 | 75 | 13 | |
673 | 95 | 8 | |
698 | 99 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gliński, M.; Gidzińska, M.; Czerwiński, Ł.; Drozdowski, K.; Iwanek, E.M.; Ostrowski, A.; Łomot, D. Catalytic Ketonization over Oxide Catalysts (Part XIV): The Ketonization and Cross-Ketonization of Anhydrides, Substituted Acids and Esters. Molecules 2024, 29, 584. https://doi.org/10.3390/molecules29030584
Gliński M, Gidzińska M, Czerwiński Ł, Drozdowski K, Iwanek EM, Ostrowski A, Łomot D. Catalytic Ketonization over Oxide Catalysts (Part XIV): The Ketonization and Cross-Ketonization of Anhydrides, Substituted Acids and Esters. Molecules. 2024; 29(3):584. https://doi.org/10.3390/molecules29030584
Chicago/Turabian StyleGliński, Marek, Małgorzata Gidzińska, Łukasz Czerwiński, Kasper Drozdowski, Ewa M. Iwanek (nee Wilczkowska), Andrzej Ostrowski, and Dariusz Łomot. 2024. "Catalytic Ketonization over Oxide Catalysts (Part XIV): The Ketonization and Cross-Ketonization of Anhydrides, Substituted Acids and Esters" Molecules 29, no. 3: 584. https://doi.org/10.3390/molecules29030584
APA StyleGliński, M., Gidzińska, M., Czerwiński, Ł., Drozdowski, K., Iwanek, E. M., Ostrowski, A., & Łomot, D. (2024). Catalytic Ketonization over Oxide Catalysts (Part XIV): The Ketonization and Cross-Ketonization of Anhydrides, Substituted Acids and Esters. Molecules, 29(3), 584. https://doi.org/10.3390/molecules29030584