Extraction Optimization and Qualitative/Quantitative Determination of Bioactive Abietane-Type Diterpenes from Three Salvia Species (Common Sage, Greek Sage and Rosemary) by 1H-qNMR
Abstract
:1. Introduction
2. Results
2.1. Quantitation of the Metabolites
2.2. Aqueous Extracts
- -
- For rosemary (SR):
- -
- For Greek sage (SF):
- -
- For common sage (SO):
2.3. Tinctures
2.4. Oleolites
2.5. Study of the Effect of the Storage Time of the Drug on the Qualitative and Quantitative Characteristics of Abietane-Type Diterpenes
2.6. Study on 7MER
3. Discussion
- (i)
- CA, CS and 12MCA are extracted (starting from dried leaves) and dissolved (starting with dry extract) in olive oil.
- (ii)
- In the experiment investigating the stability of the examined substances in olive oil as a function of storage time (2 months), which was carried out at room temperature and in a place protected from light, it was found that the total amount of the tested abietane-type diterpenes decreased only by 4.31%. Hence, CA, CS and 12MCA are quite stable in extra virgin olive oil, which behaves as a lipophilic, non-polar solvent. This is a very important finding considering the easy and fast conversion of CA, CS and 12MCA (especially CA, CS) in polar solvents such as water, ethanol and methanol. By using olive oil for the preparation of an oleolite containing the CA, CS and 12MCA, we can have a pharmaceutical form where the compounds of interest are very stable, at least for the first 2 months after its preparation, as was shown by the experimental results described in Section 2.4.
- -
- With the same drug/solvent ratio maceration in oil at room temperature for 21 days in the absence of light, the extraction was more efficient than by heating at 65 °C for 6 h with regard to all of the tested abietane-type diterpenes.
- -
- With the same method, maceration in oil at 65° for 6 h, but with different proportions of drug solvent 1:10 and 1:20 w/w, the ratio 1:10 w/w was more efficient.
- -
- In rosemary (SR)
- (a)
- CA was detected as 12.16% of the amount present in the methanolic extract.
- (b)
- CS and 12MCA were detected in the oleolite.
- (c)
- The total of the abietane-type diterpenes tested in the oil was 7.47% of the amount present in the methanolic extract.
- -
- In Greek sage (SF)
- (a)
- CA was detected as 12.57% of the amount present in the methanolic extract.
- (b)
- CS was detected in the oleolite.
- (c)
- 12MCA was not detected.
- (d)
- The total of the abietane-type diterpenes tested in the oil was 8.46% of the amount present in the methanolic extract.
4. Materials and Methods
4.1. Chemicals
4.2. Plant Material
4.3. Extracts Preparations
4.3.1. Aqueous Extracts
Infusions and Decoctions
Turbulent Flow Extraction
4.3.2. Tinctures
- (1)
- With constant drug:solvent ratio 1:10 w/v and 2 different alcoholic degrees, (1a) 45° and (1b) 70°, in order to compare the two most commonly used alcohol degrees for the preparation of tinctures.
- (2)
- With drug:solvent ratio 1:20 w/v (as usually mentioned in the literature) with an alcoholic degree of 20°, comparable to liqueurs and wine.
4.3.3. Oleolites
Dried Ground Leaves of Rosemary (SR)
- -
- By extracting the herb in vegetable oil by maceration.
- -
- By dissolving an herbal dry extract in the oil.
- (i)
- Maceration at room temperature
- (ii)
- Hot maceration (65 °C “Digestion”)
- (iii)
- Dissolution of dry extract in olive oil
4.3.4. Preparation of the Extracts for the Estimation of the Effect of Storage Time of Drug in the Quantity of Abietane-Type Diterpenes
4.3.5. Study on 7MER
4.3.6. Comparison of the Extractive Capacity of Olive Oil, Ethanol and Methanol
4.4. Nuclear Magnetic Resonance (NMR) Spectroscopy
4.5. Isolation of Secondary Metabolites from the Studied Plants
4.5.1. Isolation of 12MCA (1)
4.5.2. Isolation of Rosmanol (RO) (5)
4.6. Development of Analytical Method
4.6.1. Aqueous Extracts (Infusions, Decoctions, Turbulent Flow Extracts)
4.6.2. Tinctures
4.6.3. Oleolites
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
12MCA | 12-O-methyl-carnosic acid |
1H-qNMR | Quantitative Proton Nuclear Magnetic Resonance Spectroscopy |
7MER | 7-O-methyl-epi-rosmanol |
AhR | aryl hydrocarbon receptor also called dioxin receptor |
CA | carnosic acid |
CS | carnosol |
FICZ | 6-formylindolo [3,2-b]carbazole |
IND | indirubin |
ΝΜR | Nuclear Magnetic Resonance Spectroscopy |
PZ | pityriazepin |
RO | rosmanol |
SF | Greek sage, Salvia fruticosa Mill. |
SO | Common sage, Salvia officinalis L. |
SR | Rosemary sage, Salvia rosmarinus Spenn syn. Rosmarinus officinalis L. |
TCDD | 2,3,7,8-tetrachlorodibenzo-p-dioxin |
References
- Bekut, M.; Brkić, S.; Kladar, N.; Dragović, G.; Gavarić, N.; Božin, B. Potential of selected Lamiaceae plants in anti (retro) viral therapy. Pharm Res. 2018, 133, 301–314. [Google Scholar] [CrossRef]
- Rivera, D.; Obon, C.; Cano, F. The botany, history and traditional uses of three-lobed Sage (Salvia fruticosa Miller) (Labiatae). Econ. Bot. 1994, 48, 190–195. [Google Scholar] [CrossRef]
- Andrade, J.M.; Faustino, C.; Garcia, C.; Ladeiras, D.; Reis, C.P.; Rijo, P. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. Future Sci. OA 2018, 4, FSO283. [Google Scholar] [CrossRef]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef]
- Ramasubramania Raja, R. Medicinally potential plants of Labiatae (Lamiaceae) family: An overview Res. J. Med. Plants 2012, 6, 203–213. [Google Scholar]
- Begum, A.; Sandhya, S.; Shaffath, A.S.; Vinod, K.R.; Reddy, S.; Banji, D. An in-depth review on the medicinal flora Rosmarinus officinalis (Lamiaceae). Acta Sci. Pol. Technol. Aliment. 2013, 12, 61–73. [Google Scholar]
- World Health Organization (WHO). Geneva: WHO Traditional Medicine Strategy: 2014–2023. 2013. Available online: http://apps.who.int/iris/bitstream/10665/92455/1/9789241506090_eng.pdf?ua=1 (accessed on 25 January 2024).
- European Medicines Agency (EMA). Community Herbal Monograph on Rosmarinus officinalis L., Folium. Available online: https://www.ema.europa.eu/en/documents/herbal-monograph/final-community-herbal-monograph-rosmarinus-officinalis-l-folium_en.pdf (accessed on 25 January 2024).
- Carović-Stanko, K.; Petek, M.; Grdiša, M.; Pintar, J.; Bedeković, D.; Herak Ćustić, M.; Satovic, Z. Medicinal plants of the family Lamiaceae as functional foods—A review. Czech J. Food Sci. 2016, 34, 377–390. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). Final European Union Herbal Monograph on Salvia officinalis L., Folium-Revision 1. 2017. Available online: https://www.ema.europa.eu/en/documents/herbal-monograph/final-european-union-herbal-monograph-salvia-officinalis-l-folium-revision-1_en.pdf (accessed on 25 January 2024).
- Chan, E.W.C.; Wong, S.K.; Chan, H.T. An overview of the chemistry and anticancer properties of rosemary extract and its diterpenes. J. Herbmed Pharmacol. 2022, 11, 10–19. [Google Scholar] [CrossRef]
- González, M.A. Aromatic abietane diterpenoids: Their biological activity and synthesis. Nat. Prod. Rep. 2015, 32, 684–704. [Google Scholar] [CrossRef]
- Wu, C.Y.; Li, H.W. On the evolution and distribution in Labiatae. Acta Bot. Yunnan 1982, 4, 97–118. [Google Scholar]
- Kallimanis, P.; Magiatis, P.; Tsiaka, T.; Zoumpoulakis, P.; Panagiotopoulou, A.; Chinou, I. Quantitative and qualitative evaluation of 60 Labiatae species, growing in Greece, regarding the content of selected abietane-type diterpenes using 1H-qNMR. Planta Med. 2021, 87, 1274. [Google Scholar]
- European Medicines Agency (EMA). Concept Paper on the Development of a Guideline on Preparation on Herbal Teas. EMA/HMPC/5829/2010. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/concept-paper-development-guideline-preparation-herbal-teas_en.pdf (accessed on 25 January 2024).
- European Medicines Agency (EMA). Glossary on Herbal Teas EMA/HMPC/5829/2010 Rev.1. Available online: https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/glossary-herbal-teas_en.pdf (accessed on 25 January 2024).
- Kallimanis, P. Study of Plants of the Lamiaceae Family for the Production of Metabolites That Inhibit the Action of the Aryl Hydrocarbon Receptor (AhR) with Application to Skin Diseases. Ph.D. Thesis, National & Kapodistrian University of Athens, Athens, Greece, 2022. [Google Scholar]
- Kallimanis, P.; Chinou, I.; Panagiotopoulou, A.; Soshilov, A.A.; He, G.; Denison, M.S.; Magiatis, P. Rosmarinus officinalis L. Leaf extracts and their metabolites inhibit the aryl hydrocarbon receptor (AhR) activation in vitro and in human keratinocytes: Potential impact on inflammatory skin diseases and skin cancer. Molecules 2022, 27, 2499. [Google Scholar] [CrossRef]
- Alexovič, M.; Burkhard, H.; Solich, P.; Sabo, J. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: Approaches based on impregnated membranes and porous supports. Anal. Chim. Acta 2016, 907, 18–30. [Google Scholar] [CrossRef]
- Bettiol, F. Manuale delle Preparazioni Galeniche; Tecniche Nuove: Milan, Italy, 1995. [Google Scholar]
- Jacotet-Navarro, M.; Laguerre, M.; Fabiano-Tixier, A.S.; Tenon, M.; Feuillère, N.; Bily, A.; Chemat, F. What is the best ethanol-water ratio for the extraction of antioxidants from rosemary? Impact of the solvent on yield, composition, and activity of the extracts. Electrophoresis 2018, 39, 1946–1956. [Google Scholar] [CrossRef]
- Zhang, Y.; Smuts, J.P.; Dodbiba, E.; Rangarajan, R.; Lang, J.C.; Armstrong, D.W. Degradation study of carnosic acid, carnosol, rosmarinic acid, and rosemary extract (Rosmarinus officinalis L.) assessed using HPLC. J. Agric. Food Chem. 2012, 60, 9305–9314. [Google Scholar] [CrossRef]
- Sharma, Y.; Velamuri, R.; Fagan, J.; Schaefer, J. Full-Spectrum Analysis of Bioactive Compounds in Rosemary (Rosmarinus officinalis L.) as Influenced by Different Extraction Methods. Molecules 2020, 25, 4599. [Google Scholar] [CrossRef]
- Sharma, Y.; Velamuri, R.; Fagan, J.; Schaefer, J. UHPLC-ESI-QTOF-Mass Spectrometric Assessment of the Polyphenolic Content of Salvia officinalis to Evaluate the Efficiency of Traditional Herbal Extraction Procedures. Rev. Bras. Farmacogn. 2020, 30, 701–708. [Google Scholar] [CrossRef]
- Zimmermann, B.F.; Walch, S.G.; Tinzoh, L.N.; Stühlinger, W.; Lachenmeier, D.W. Rapid UHPLC determination of polyphenols in aqueous infusions of Salvia officinalis L. (sage tea). J. Chromatogr. B 2011, 879, 2459–2464. [Google Scholar] [CrossRef]
- Walch, S.G.; Tinzoh, L.N.; Zimmermann, B.F.; Stühlinger, W.; Lachenmeier, D.W. Antioxidant Capacity and Polyphenolic Composition as Quality Indicators for Aqueous Infusions of Salvia officinalis L. (sage tea). Front. Pharmacol. 2011, 2, 79. [Google Scholar] [CrossRef]
- Matsingou, T.C.; Petrakis, N.; Kapsokefalou, M.; Salifoglou, A. Antioxidant activity of organic extracts from aqueous infusions of sage. J. Agric. Food Chem. 2003, 51, 6696–6701. [Google Scholar] [CrossRef]
- Oliveira, G.; Oliveira, A.; Conceição, E.C.; Leles, M. Multiresponse optimization of an extraction procedure of carnosol and rosmarinic and carnosic acids from rosemary. Food Chem. 2016, 211, 465–473. [Google Scholar] [CrossRef]
- Nguyen-Kim, M.; Truong, Q.; Nguyen, M.; Cao-Thi, B.; Tong, T.; Dao, T.; Tran, T.; Van Tan, L.; Le, X. Optimized extraction of polyphenols from leaves of Rosemary (Rosmarinus officinalis L.) grown in Lam Dong province, Vietnam, and evaluation of their antioxidant capacity. Open Chem. 2021, 19, 1043–1051. [Google Scholar] [CrossRef]
- Li, Y.; Bundeesomchok, K.; Rakotomanomana, N.; Fabiano-Tixier, A.-S.; Bott, R.; Wang, Y.; Chemat, F. Towards a Zero-Waste Biorefinery Using Edible Oils as Solvents for the Green Extraction of Volatile and Non-Volatile Bioactive Compounds from Rosemary. Antioxidants 2019, 8, 140. [Google Scholar] [CrossRef]
- Zunin, P.; Leardi, R.; Bisio, A.; Boggia, R.; Romussi, G. Oxidative stability of virgin olive oil enriched with carnosic acid. Food Res. Int. 2010, 43, 1511–1516. [Google Scholar] [CrossRef]
- Ginsburg, S.R.; Maleky, F. Extraction of lipid-soluble antioxidants from rosemary leaves using vegetable oils. Int. J. Food Sci. Technol. 2020, 55, 3135–3144. [Google Scholar] [CrossRef]
- Liu, X.; Du, J.; Ou, Y.; Xu, H.; Chen, X.; Zhou, A.; He, L.; Cao, Y. Degradation pathway of carnosic acid in methanol solution through isolation and structural identification of its degradation products. Eur. Food Res. Technol. 2013, 237, 617–626. [Google Scholar] [CrossRef]
- Kerkoub, N.; Panda, S.K.; Yang, M.R.; Lu, J.G.; Jiang, Z.H.; Nasri, H.; Luyten, W. Bioassay-guided isolation of anti-candida biofilm compounds from methanol extracts of the aerial parts of Salvia officinalis (Annaba, Algeria). Front. Pharmacol. 2018, 9, 1418. [Google Scholar] [CrossRef]
- Marrero, J.G.; Andrés, L.S.; Luis, J.G. Semisynthesis of rosmanol and its derivatives. Easy access to abietane diterpenes isolated from the genus Salvia with biological activities. J. Nat. Prod. 2002, 65, 986–989. [Google Scholar] [CrossRef]
- Karkoula, E.; Skantzari, A.; Melliou, E.; Magiatis, P. Direct measurement of oleocanthal and oleacein levels in olive oil by quantitative 1H NMR. Establishment of a new index for the characterization of extra virgin olive oils. J. Agric. Food Chem. 2012, 60, 11696–11703. [Google Scholar] [CrossRef]
Compounds | y = ax + b | R2 | LOD | LOQ |
---|---|---|---|---|
12MCA | y = 0.4696x − 0.0021 | 0.9999 | 0.04 | 0.1 |
CA | y = 0.4812x − 0.0067 | 0.9999 | 0.04 | 0.1 |
CS | y = 0.4565x − 0.0043 | 0.9999 | 0.04 | 0.1 |
7MER | y = 0.4917x − 0.0025 | 0.9999 | 0.04 | 0.1 |
RO | y = 0.4736x − 0.003 | 0.9999 | 0.04 | 0.1 |
Extract | Compounds | 2 Min | 5 Min | 10 Min | 15 Min |
---|---|---|---|---|---|
Infusions | 12MCA | tr | tr | tr | tr |
CA | tr | tr | tr | 0.18 ± 0.05 | |
CS | tr | tr | tr | tr | |
7MER | nd | nd | nd | nd | |
RO | 0.25 ± 0.03 b | 0.32 ± 0.08 ab | 0.42 ± 0.07 a | 0.21 ± 0.03 b | |
Total | 0.25 ± 0.03 b | 0.32 ± 0.08 ab | 0.42 ± 0.07 a | 0.39 ± 0.05 a | |
Decoctions | 12MCA | tr | tr | 0.12 ± 0.04 a | 0.11 ± 0.04 a |
CA | tr | tr | 0.16 ± 0.07 b | 0.29 ± 0.08 a | |
CS | nd | nd | tr | tr | |
7MER | nd | nd | nd | nd | |
RO | 0.30 ± 0.04 b | 0.38 ± 0.05 ab | 0.40 ± 0.06 a | 0.40 ± 0.02 a | |
Total | 0.30 ± 0.04 c | 0.38 ± 0.05 c | 0.68 ± 0.04 b | 0.80 ± 0.09 a | |
Turbulent flow extractions at RT | 12MCA | nd | nm | nm | nm |
CA | nd | nm | nm | nm | |
CS | tr | nm | nm | nm | |
7MER | nd | nm | nm | nm | |
RO | nd | nm | nm | nm | |
Total | tr | nm | nm | nm | |
Turbulent flow extraction under heating | 12MCA | 0.12 ± 0.01 | nm | nm | nm |
CA | 0.32 ± 0.03 | nm | nm | nm | |
CS | 0.17 ± 0.02 | nm | nm | nm | |
7MER | nd | nm | nm | nm | |
RO | 0.23 ± 0.03 | nm | nm | nm | |
Total | 0.84 ± 0.04 | nm | nm | nm |
Extract | Compounds | 2 Min | 5 Min | 10 Min | 15 Min |
---|---|---|---|---|---|
Infusions | 12MCA | 0.10 ± 0.01 b | 0.11 ± 0.01 b | 0.13 ± 0.01 a | tr |
CA | 0.13 ± 0.01 d | 0.37 ± 0.08 c | 0.56 ± 0.06 b | 0.75 ± 0.09 a | |
CS | tr | tr | 0.13 ± 0.01 b | 0.19 ± 0.01 a | |
7MER | nd | nd | nd | nd | |
RO | 0.52 ± 0.04 a | 0.42 ± 0.03 b | 0.34 ± 0.02 c | 0.34 ± 0.02 c | |
Total | 0.75 ± 0.06 b | 0.90 ± 0.11 b | 1.16 ± 0.08 a | 1.28 ± 0.10 a | |
Decoctions | 12MCA | 0.20 ± 0.03 b | 0.32 ± 0.05 a | 0.34 ± 0.03 a | 0.33 ± 0.07 a |
CA | 0.86 ± 0.09 b | 1.62 ± 0.18 a | 1.38 ± 0.12 a | 1.33 ± 0.38 a | |
CS | 0.14 ± 0.06 b | 0.26 ± 0.10 a | 0.25 ± 0.06 a | 0.17 ± 0.06 b | |
7MER | nd | nd | nd | Nd | |
RO | 0.96 ± 0.01 b | 1.12 ± 0.19 ab | 1.24 ± 0.03 a | 1.00 ± 0.08 b | |
Total | 2.16 ± 0.10 b | 3.32 ± 0.37 a | 3.21 ± 0.20 a | 2.83 ± 0.41 a | |
Turbulent flow extractions at RT | 12MCA | tr | nm | nm | nm |
CA | tr | nm | nm | nm | |
CS | 0.19 ± 0.10 | nm | nm | nm | |
7MER | nd | nm | nm | nm | |
RO | nd | nm | nm | nm | |
Total | 0.19 ± 0.10 | nm | nm | nm | |
Turbulent flow extraction under heating | 12MCA | 0.17 ± 0.04 | nm | nm | nm |
CA | 1.12 ± 0.44 | nm | nm | nm | |
CS | 0.24 ± 0.03 | nm | nm | nm | |
7MER | nd | nm | nm | nm | |
RO | 0.53 ± 0.18 | nm | nm | nm | |
Total | 2.06 ± 0.61 | nm | nm | nm |
Extract | Compounds | 2 Min | 5 Min | 10 Min | 15 Min |
---|---|---|---|---|---|
Infusions | 12MCA | 0.31 ± 0.02 b | 0.31 ± 0.02 b | 0.39 ± 0.03 a | 0.31 ± 0.04 b |
CA | 0.48 ± 0.03 b | 0.50 ± 0.02 b | 0.62 ± 0.04 a | 0.64 ± 0.02 a | |
CS | 0.13 ± 0.01 b | 0.13 ± 0.01 b | 0.15 ± 0.01 b | 0.18 ± 0.02 a | |
7MER | nd | nd | nd | nd | |
RO | 0.14 ± 0.02 b | 0.14 ± 0.02 b | 0.24 ± 0.08 a | 0.16 ± 0.01 b | |
Total | 1.06 ± 0.05 b | 1.08 ± 0.03 b | 1.40 ± 0.14 a | 1.29 ± 0.08 a | |
Decoctions | 12MCA | 0.84 ± 0.02 b | 1.02 ± 0.03 a | 0.95 ± 0.05 ab | 0.74 ± 0.03 c |
CA | 1.25 ± 0.02 b | 1.52 ± 0.13 a | 0.81 ± 0.12 c | 0.60 ± 0.02 c | |
CS | tr | 0.11 ± 0.02 b | 0.17 ± 0.03 a | 0.12 ± 0.01 b | |
7MER | nd | nd | nd | nd | |
RO | 0.65 ± 0.04 b | 0.74 ± 0.09 ab | 0.85 ± 0.05 a | 0.41 ± 0.07 c | |
Total | 2.74 ± 0.02 b | 3.39 ± 0.09 a | 2.78 ± 0.09 b | 1.87 ± 0.07 c | |
Turbulent flow extractions at RT | 12MCA | 0.22 ± 0.02 | nm | nm | nm |
CA | 0.11 ± 0.01 | nm | nm | nm | |
CS | 0.21 ± 0.02 | nm | nm | nm | |
7MER | nd | nm | nm | nm | |
RO | nd | nm | nm | nm | |
Total | 0.54 ± 0.02 | nm | nm | nm | |
Turbulent flow extraction under heating | 12MCA | 0.95 ± 0.04 | nm | nm | nm |
CA | 1.59 ± 0.16 | nm | nm | nm | |
CS | 0.30 ± 0.03 | nm | nm | nm | |
7MER | nd | nm | nm | nm | |
RO | 0.11 ± 0.03 | nm | nm | nm | |
Total | 2.95 ± 0.14 | nm | nm | nm |
Compounds | 1:10, (10:100 w/v), 70% EtOH | 1:10, (10:100 w/v), 45% EtOH | 1:20, (5:100 w/v), 20% EtOH |
---|---|---|---|
12MCA | 2.61 ± 0.20 | tr | tr |
CA | 11.16 ± 1.03 | tr | tr |
CS | 3.24 ± 0.27 a | 2.13 ± 0.14 b | tr |
7MER | nd | nd | nd |
RO | tr | tr | 2.36 ± 0.11 |
T 1 | 17.01 ± 1.20 a | 2.13 ± 0.14 b | 2.36 ± 0.11 b |
Compounds | 1 Day | 7 Days | 14 Days |
---|---|---|---|
12MCA | 2.61 ± 0.20 a | 1.46 ± 0.09 b | tr |
CA | 11.16 ± 1.03 a | 3.09 ± 0.11 b | tr |
CS | 3.24 ± 0.27 b | 6.75 ± 0.54 a | 1.29 ± 0.08 c |
7MER | nd | nd | nd |
RO | tr | tr | tr |
T 1 | 17.01 ± 1.20 a | 11.31 ± 0.61 b | 1.29 ± 0.08 c |
Compounds | 1:20 w/w 65 °C, 6 h | 1:10 w/w 65 °C, 6 h | 1:20 w/w 25 °C, 21 days |
---|---|---|---|
12MCA | tr | tr | tr |
CA | tr | 5.37 ± 0.60 a | 2.55 ± 0.23 b |
CS | tr | tr | tr |
7MER | nd | nd | nd |
RO | nd | nd | nd |
T 1 | tr | 5.37 ± 0.60 a | 2.55 ± 0.23 b |
Compounds | Methanolic Extract Rosemary (SR) | Oleolite Rosemary (SR) | Methanolic Extract Greek Sage (SF) | Oleolite Greek Sage (SF) |
---|---|---|---|---|
12MCA | 15.51 ± 2.23 | tr | 7.13 ± 0.76 | nd |
CA | 59.07 ± 5.35 a | 7.18 ± 0.68 b | 55.43 ± 5.88 a | 6.97 ± 0.68 b |
CS | 21.51 ± 2.76 | tr | 19.82 ± 1.92 | tr |
7MER | nd | nd | nd | nd |
RO | nd | nd | nd | nd |
T 1 | 96.09 ± 6.89 a | 7.18 ± 0.68 b | 82.38 ± 6.88 a | 6.97 ± 0.68 b |
Compounds | 0 Time | 2 Months |
---|---|---|
12MCA | tr | tr |
CA | 2.55 ± 0.23 a | 2.44 ± 0.31 a |
CS | tr | tr |
7MER | nd | nd |
RO | nd | nd |
T 1 | 2.55 ± 0.23 a | 2.44 ± 0.31 a |
Compounds | Oleolite | Ethanol | Methanol |
---|---|---|---|
12MCA | tr | 16.11 ± 2.35 a | 20.3 ± 6.65 a |
CA | tr | 46.81 ± 5.43 b | 69.93 ± 8.14 a |
CS | tr | 8.60 ± 1.00 a | 10.68 ± 1.34 a |
Compounds | 0 Months (Start) | 12 Months | 24 Months | 36 Months |
---|---|---|---|---|
12MCA | 1.02 | 0.85 | 0.73 | 0.64 |
CA | 6.52 | 5.24 | 4.16 | 3.68 |
CS | 0.82 | 0.69 | 0.53 | 0.49 |
7MER | nd | nd | nd | nd |
RO | nd | 0.20 | 0.13 | 0.14 |
T 1 | 8.36 | 6.98 | 5.55 | 4.95 |
Compound | 12 h | 48 h | 7 Days | 2 Months |
---|---|---|---|---|
7MER | nd | nd | tr | 32.3 ± 2.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kallimanis, P.; Magiatis, P.; Panagiotopoulou, A.; Ioannidis, K.; Chinou, I. Extraction Optimization and Qualitative/Quantitative Determination of Bioactive Abietane-Type Diterpenes from Three Salvia Species (Common Sage, Greek Sage and Rosemary) by 1H-qNMR. Molecules 2024, 29, 625. https://doi.org/10.3390/molecules29030625
Kallimanis P, Magiatis P, Panagiotopoulou A, Ioannidis K, Chinou I. Extraction Optimization and Qualitative/Quantitative Determination of Bioactive Abietane-Type Diterpenes from Three Salvia Species (Common Sage, Greek Sage and Rosemary) by 1H-qNMR. Molecules. 2024; 29(3):625. https://doi.org/10.3390/molecules29030625
Chicago/Turabian StyleKallimanis, Panagiotis, Prokopios Magiatis, Angeliki Panagiotopoulou, Kostas Ioannidis, and Ioanna Chinou. 2024. "Extraction Optimization and Qualitative/Quantitative Determination of Bioactive Abietane-Type Diterpenes from Three Salvia Species (Common Sage, Greek Sage and Rosemary) by 1H-qNMR" Molecules 29, no. 3: 625. https://doi.org/10.3390/molecules29030625
APA StyleKallimanis, P., Magiatis, P., Panagiotopoulou, A., Ioannidis, K., & Chinou, I. (2024). Extraction Optimization and Qualitative/Quantitative Determination of Bioactive Abietane-Type Diterpenes from Three Salvia Species (Common Sage, Greek Sage and Rosemary) by 1H-qNMR. Molecules, 29(3), 625. https://doi.org/10.3390/molecules29030625