The Impact of LY487379 or CDPPB on eNOS Expression in the Mouse Brain and the Effect of Joint Administration of Compounds with NO• Releasers on MK-801- or Scopolamine-Driven Cognitive Dysfunction in Mice
Abstract
:1. Introduction
2. Results
2.1. Compounds and Experimental Design
- Acute administration at active doses:
- −
- LY487379—1 mg/kg or CDPPB (5 mg/kg) with MK-801 (0.3 mg/kg);
- −
- LY487379—1 mg/kg or CDPPB (2 mg/kg) with scopolamine (1 mg/kg).
- Chronic administration for 14 days at low and top doses.
- −
- LY487379—0.1 or 1 mg/kg; CDPPB—0.1 and 5 mg/kg with MK-801 (0.3 mg/kg);
- −
- LY487379—0.1 or 1 mg/kg; CDPPB—0.5 and 2 mg/kg with scopolamine (1 mg/kg).
- Dose-dependent studies for LY487379 and CDPPB on scopolamine-induced dysfunction. The compounds were administered at the following doses: LY487379—0.1, 0.5 and 1 mg/kg; CDPPB—0.5, 1 and 2 mg/kg.
- The activity of simultaneous administration of ineffective, moderately effective and top doses of CDPPB or LY487379 with NO• releasers: slow NO releaser DETANONOate or fast releaser, spermineNONOate, on MK-801- or scopolamine-induced cognitive deficits. The scheme of administration was thought to resemble, to some extent, an isobolographic scheme of analysis. The exact doses are summarized in Table 2.
2.2. eNOS Expression
2.2.1. Acute Administration
2.2.2. Chronic Administration
2.3. Novel Object Recognition
2.3.1. Dose-Dependent Activity of CDPPB and LY487379 on Scopolamine-Induced Cognitive Deficits
2.3.2. The Coadministration of CDPPB with spermineNONOate
2.3.3. The Coadministration of CDPPB with DETANONOate
2.3.4. The Coadministration of LY487379 with spermineNONOate
2.3.5. The Coadministration of LY487379 with DETANONOate
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Western Blotting
4.3. Novel Object Recognition
4.4. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janaszak-Jasiecka, A.; Płoska, A.; Wierońska, J.M.; Dobrucki, L.W.; Kalinowski, L. Endothelial Dysfunction Due to ENOS Uncoupling: Molecular Mechanisms as Potential Therapeutic Targets. Cell. Mol. Biol. Lett. 2023, 28, 21. [Google Scholar] [CrossRef]
- Austin, S.A.; Katusic, Z.S. Loss of Endothelial Nitric Oxide Synthase Promotes P25 Generation and Tau Phosphorylation in a Murine Model of Alzheimer’s Disease. Circ. Res. 2016, 119, 1128–1134. [Google Scholar] [CrossRef]
- Dobrucki, L.W.; Kalinowski, L.; Uracz, W.; Malinski, T. The Protective Role of Nitric Oxide in the Brain Ischemia. J. Physiol. Pharmacol. 2000, 51, 695–703. [Google Scholar]
- Danysz, W.; Zajaczkowski, W.; Parsons, C.G. Modulation of Learning Processes by Ionotropic Glutamate Receptor Ligands. Behav. Pharmacol. 1995, 6, 455–474. [Google Scholar] [CrossRef]
- Alderton, W.K.; Cooper, C.E.; Knowles, R.G. Nitric Oxide Synthases: Structure, Function and Inhibition. Biochem. J. 2001, 357, 593–615. [Google Scholar] [CrossRef]
- Kalinowski, L.; Dobrucki, I.T.; Malinski, T. Race-Specific Differences in Endothelial Function: Predisposition of African Americans to Vascular Diseases. Circulation 2004, 109, 2511–2517. [Google Scholar] [CrossRef]
- Eliasson, M.J.; Huang, Z.; Ferrante, R.J.; Sasamata, M.; Molliver, M.E.; Snyder, S.H.; Moskowitz, M.A. Neuronal Nitric Oxide Synthase Activation and Peroxynitriteformation in Ischemic Stroke Linked to Neural Damage. J. Neurosci. 1999, 19, 5910–5918. [Google Scholar] [CrossRef]
- Kalinowski, L.; Malinski, T. Endothelial NADH/NADPH-Dependent Enzymatic Sources of Superoxide Production: Relationship to Endothelial Dysfunction. Acta Biochim. Pol. 2004, 51, 459–469. [Google Scholar] [CrossRef]
- Najjar, S.; Pahlajani, S.; De Sanctis, V.; Stern, J.N.H.; Najjar, A.; Chong, D. Neurovascular Unit Dysfunction and Blood–Brain Barrier Hyperpermeability Contribute to Schizophrenia Neurobiology: A Theoretical Integration of Clinical and Experimental Evidence. Front. Psychiatry 2017, 8, 00083. [Google Scholar] [CrossRef]
- Santhanam, A.V.R.; D’Uscio, L.V.; He, T.; Das, P.; Younkin, S.G.; Katusic, Z.S. Uncoupling of Endothelial Nitric Oxide Synthase in Cerebral Vasculature of Tg2576 Mice. J. Neurochem. 2015, 134, 1129–1138. [Google Scholar] [CrossRef]
- Lamoke, F.; Mazzone, V.; Persichini, T.; Maraschi, A.; Harris, M.B.; Venema, R.C.; Colasanti, M.; Gliozzi, M.; Muscoli, C.; Bartoli, M.; et al. Amyloid β Peptide-Induced Inhibition of Endothelial Nitric Oxide Production Involves Oxidative Stress-Mediated Constitutive ENOS/HSP90 Interaction and Disruption of Agonist-Mediated Akt Activation. J. Neuroinflamm. 2015, 12, 84. [Google Scholar] [CrossRef]
- Di Marco, L.Y.; Venneri, A.; Farkas, E.; Evans, P.C.; Marzo, A.; Frangi, A.F. Vascular Dysfunction in the Pathogenesis of Alzheimer’s Disease—A Review of Endothelium-Mediated Mechanisms and Ensuing Vicious Circles. Neurobiol. Dis. 2015, 82, 593–606. [Google Scholar] [CrossRef]
- Jeynes, B.; Provias, J. The Case for Blood–Brain Barrier Dysfunction in the Pathogenesis of Alzheimer’s Disease. J. Neurosci. Res. 2011, 89, 22–28. [Google Scholar] [CrossRef]
- Provias, J.; Jeynes, B. The Role of the Blood-Brain Barrier in the Pathogenesis of Senile Plaques in Alzheimer’s Disease. Int. J. Alzheimers Dis. 2014, 2014, 191863. [Google Scholar] [CrossRef]
- de la Monte, S.M.; Wands, J.R. Molecular Indices of Oxidative Stress and Mitochondrial Dysfunction Occur Early and often Progress with Severity of Alzheimer’s Disease. J. Alzheimers Dis. 2006, 9, 167–181. [Google Scholar] [CrossRef]
- Luessen, D.J.; Conn, P.J. Allosteric Modulators of Metabotropic Glutamate Receptors as Novel Therapeutics for Neuropsychiatric Disease. Pharmacol. Rev. 2022, 74, 630–661. [Google Scholar] [CrossRef]
- Dogra, S.; Conn, P.J. Metabotropic Glutamate Receptors As Emerging Targets for the Treatment of Schizophrenia. Mol. Pharmacol. 2022, 101, 275–285. [Google Scholar] [CrossRef]
- Stansley, B.J.; Conn, P.J. The Therapeutic Potential of Metabotropic Glutamate Receptor Modulation for Schizophrenia. Curr. Opin. Pharmacol. 2018, 38, 31–36. [Google Scholar] [CrossRef]
- Senter, R.K.; Ghoshal, A.; Walker, A.G.; Xiang, Z.; Niswender, C.M.; Jeffrey Conn, P. The Role of MGlu Receptors in Hippocampal Plasticity Deficits in Neurological and Psychiatric Disorders: Implications for Allosteric Modulators as Novel Therapeutic Strategies. Curr. Neuropharmacol. 2016, 14, 455–473. [Google Scholar] [CrossRef]
- Hu, N.-W.; Ondrejcak, T.; Rowan, M.J. Glutamate Receptors in Preclinical Research on Alzheimer’s Disease: Update on Recent Advances. Pharmacol. Biochem. Behav. 2012, 100, 855–862. [Google Scholar] [CrossRef]
- Nicoletti, F.; Di Menna, L.; Iacovelli, L.; Orlando, R.; Zuena, A.R.; Conn, P.J.; Dogra, S.; Joffe, M.E. GPCR Interactions Involving Metabotropic Glutamate Receptors and Their Relevance to the Pathophysiology and Treatment of CNS Disorders. Neuropharmacology 2023, 235, 109569. [Google Scholar] [CrossRef]
- Bruno, V.; Battaglia, G.; Copani, A.; D’Onofrio, M.; Di Iorio, P.; De Blasi, A.; Melchiorri, D.; Flor, P.J.; Nicoletti, F. Metabotropic Glutamate Receptor Subtypes as Targets for Neuroprotective Drugs. J. Cereb. Blood Flow Metab. 2001, 21, 1013–1033. [Google Scholar] [CrossRef]
- Foster, D.J.; Conn, P.J. Allosteric Modulation of GPCRs: New Insights and Potential Utility for Treatment of Schizophrenia and Other CNS Disorders. Neuron 2017, 94, 431–446. [Google Scholar] [CrossRef]
- Patil, S.T.; Zhang, L.; Martenyi, F.; Lowe, S.L.; Jackson, K.A.; Andreev, B.V.; Avedisova, A.S.; Bardenstein, L.M.; Gurovich, I.Y.; Morozova, M.A.; et al. Activation of MGlu2/3 Receptors as a New Approach to Treat Schizophrenia: A Randomized Phase 2 Clinical Trial. Nat. Med. 2007, 13, 1102–1107. [Google Scholar] [CrossRef]
- Downing, A.C.M.; Kinon, B.J.; Millen, B.A.; Zhang, L.; Liu, L.; Morozova, M.A.; Brenner, R.; Rayle, T.J.; Nisenbaum, L.; Zhao, F.; et al. A Double-Blind, Placebo-Controlled Comparator Study of LY2140023 Monohydrate in Patients with Schizophrenia. BMC Psychiatry 2014, 14, 351. [Google Scholar] [CrossRef]
- Kinon, B.J.; Millen, B.A.; Zhang, L.; McKinzie, D.L. Exploratory Analysis for a Targeted Patient Population Responsive to the Metabotropic Glutamate 2/3 Receptor Agonist Pomaglumetad Methionil in Schizophrenia. Biol. Psychiatry 2015, 78, 754–762. [Google Scholar] [CrossRef]
- Kinon, B.J.; Zhang, L.; Millen, B.A.; Osuntokun, O.O.; Williams, J.E.; Kollack-Walker, S.; Jackson, K.; Kryzhanovskaya, L.; Jarkova, N. A Multicenter, Inpatient, Phase 2, Double-Blind, Placebo-Controlled Dose-Ranging Study of LY2140023 Monohydrate in Patients with DSM-IV Schizophrenia. J. Clin. Psychopharmacol. 2011, 31, 349–355. [Google Scholar] [CrossRef]
- Marek, G.J. Metabotropic Glutamate 2/3 (MGlu2/3) Receptors, Schizophrenia and Cognition. Eur. J. Pharmacol. 2010, 639, 81–90. [Google Scholar] [CrossRef]
- Budgett, R.F.; Bakker, G.; Sergeev, E.; Bennett, K.A.; Bradley, S.J. Targeting the Type 5 Metabotropic Glutamate Receptor: A Potential Therapeutic Strategy for Neurodegenerative Diseases? Front. Pharmacol. 2022, 13. [Google Scholar] [CrossRef]
- Trabanco, A.A.; Bartolomé, J.M.; Cid, J.M. MGluR2 Positive Allosteric Modulators: An Updated Patent Review (2013–2018). Expert Opin. Ther. Pat. 2019, 29, 497–507. [Google Scholar] [CrossRef]
- Witkin, J.M.; Pandey, K.P.; Smith, J.L. Clinical Investigations of Compounds Targeting Metabotropic Glutamate Receptors. Pharmacol. Biochem. Behav. 2022, 219, 173446. [Google Scholar] [CrossRef]
- Conn, P.J.; Christopoulos, A.; Lindsley, C.W. Allosteric Modulators of GPCRs: A Novel Approach for the Treatment of CNS Disorders. Nat. Rev. Drug Discov. 2009, 8, 41–54. [Google Scholar] [CrossRef]
- Conn, P.J.; Lindsley, C.W.; Jones, C.K. Activation of Metabotropic Glutamate Receptors as a Novel Approach for the Treatment of Schizophrenia. Trends Pharmacol. Sci. 2009, 30, 25–31. [Google Scholar] [CrossRef]
- Moghaddam, B.; Javitt, D. From Revolution to Evolution: The Glutamate Hypothesis of Schizophrenia and Its Implication for Treatment. Neuropsychopharmacology 2012, 37, 4–15. [Google Scholar] [CrossRef]
- Cieślik, P.; Kalinowski, L.; Wierońska, J.M. Procognitive Activity of Nitric Oxide Inhibitors and Donors in Animal Models. Nitric Oxide 2022, 119, 29–40. [Google Scholar] [CrossRef]
- Cieślik, P.; Borska, M.; Wierońska, J.M. A Comparative Study of the Impact of NO-Related Agents on MK-801- or Scopolamine-Induced Cognitive Impairments in the Morris Water Maze. Brain Sci. 2023, 13, 410. [Google Scholar] [CrossRef]
- Li, B.; Ming, Y.; Liu, Y.; Xing, H.; Fu, R.; Li, Z.; Ni, R.; Li, L.; Duan, D.; Xu, J.; et al. Recent Developments in Pharmacological Effect, Mechanism and Application Prospect of Diazeniumdiolates. Front. Pharmacol. 2020, 11, 00923. [Google Scholar] [CrossRef]
- Cieślik, P.; Siekierzycka, A.; Radulska, A.; Płoska, A.; Burnat, G.; Brański, P.; Kalinowski, L.; Wierońska, J.M. Nitric Oxide-Dependent Mechanisms Underlying MK-801- or Scopolamine-Induced Memory Dysfunction in Animals: Mechanistic Studies. Int. J. Mol. Sci. 2021, 22, 12282. [Google Scholar] [CrossRef]
- Schaffhauser, H.; Rowe, B.A.; Morales, S.; Chavez-Noriega, L.E.; Yin, R.; Jachec, C.; Rao, S.P.; Bain, G.; Pinkerton, A.B.; Vernier, J.M.; et al. Pharmacological Characterization and Identification of Amino Acids Involved in the Positive Modulation of Metabotropic Glutamate Receptor Subtype 2. Mol. Pharmacol. 2003, 64, 798–810. [Google Scholar] [CrossRef]
- Lindsley, C.W.; Wisnoski, D.D.; Leister, W.H.; O’Brien, J.A.; Lemaire, W.; Williams, D.L.; Burno, M.; Sur, C.; Kinney, G.G.; Pettibone, D.J.; et al. Discovery of Positive Allosteric Modulators for the Metabotropic Glutamate Receptor Subtype 5 from a Series of N-(1,3-Diphenyl-1H-Pyrazol-5-Yl)Benzamides That Potentiate Receptor Function In Vivo. J. Med. Chem. 2004, 47, 5825–5828. [Google Scholar] [CrossRef]
- Cieślik, P.; Radulska, A.; Pelikant-Małecka, I.; Płoska, A.; Kalinowski, L.; Wierońska, J.M. Reversal of MK-801-Induced Disruptions in Social Interactions and Working Memory with Simultaneous Administration of LY487379 and VU152100 in Mice. Int. J. Mol. Sci. 2019, 20, 2781. [Google Scholar] [CrossRef]
- Cieślik, P.; Domin, H.; Chocyk, A.; Gruca, P.; Litwa, E.; Płoska, A.; Radulska, A.; Pelikant-Małecka, I.; Brański, P.; Kalinowski, L.; et al. Simultaneous Activation of MGlu2 and Muscarinic Receptors Reverses MK-801-Induced Cognitive Decline in Rodents. Neuropharmacology 2020, 174, 107866. [Google Scholar] [CrossRef]
- Wierońska, J.M.; Kłeczek, N.; Woźniak, M.; Gruca, P.; Łasoń-Tyburkiewicz, M.; Papp, M.; Brański, P.; Burnat, G.; Pilc, A. MGlu5-GABAB Interplay in Animal Models of Positive, Negative and Cognitive Symptoms of Schizophrenia. Neurochem. Int. 2015, 88, 97–109. [Google Scholar] [CrossRef]
- Hagena, H.; Manahan-Vaughan, D. Role of MGlu5 in Persistent Forms of Hippocampal Synaptic Plasticity and the Encoding of Spatial Experience. Cells 2022, 11, 3352. [Google Scholar] [CrossRef]
- Xiang, Z.; Lv, X.; Maksymetz, J.; Stansley, B.J.; Ghoshal, A.; Gogliotti, R.G.; Niswender, C.M.; Lindsley, C.W.; Conn, P.J. MGlu5 Positive Allosteric Modulators Facilitate Long-Term Potentiation via Disinhibition Mediated by MGlu5-Endocannabinoid Signaling. ACS Pharmacol. Transl. Sci. 2019, 2, 198–209. [Google Scholar] [CrossRef]
- Buschler, A.; Manahan-Vaughan, D. Metabotropic Glutamate Receptor, MGlu5, Mediates Enhancements of Hippocampal Long-Term Potentiation after Environmental Enrichment in Young and Old Mice. Neuropharmacology 2017, 115, 42–50. [Google Scholar] [CrossRef]
- Rosenberg, N.; Gerber, U.; Ster, J. Activation of Group II Metabotropic Glutamate Receptors Promotes LTP Induction at Schaffer Collateral-CA1 Pyramidal Cell Synapses by Priming NMDA Receptors. J. Neurosci. 2016, 36, 11521–11531. [Google Scholar] [CrossRef]
- Altinbilek, B.; Manahan-Vaughan, D. A Specific Role for Group II Metabotropic Glutamate Receptors in Hippocampal Long-Term Depression and Spatial Memory. Neuroscience 2009, 158, 149–158. [Google Scholar] [CrossRef]
- Pollak, T.A.; Drndarski, S.; Stone, J.M.; David, A.S.; McGuire, P.; Abbott, N.J. The Blood–Brain Barrier in Psychosis. Lancet Psychiatry 2018, 5, 79–92. [Google Scholar] [CrossRef]
- Bowman, G.L.; Dayon, L.; Kirkland, R.; Wojcik, J.; Peyratout, G.; Severin, I.C.; Henry, H.; Oikonomidi, A.; Migliavacca, E.; Bacher, M.; et al. Blood-Brain Barrier Breakdown, Neuroinflammation, and Cognitive Decline in Older Adults. Alzheimers Dement. 2018, 14, 1640–1650. [Google Scholar] [CrossRef]
- Płoska, A.; Cieślik, P.; Siekierzycka, A.; Kalinowski, L.; Wierońska, J.M. Neurochemical Changes Underlying Cognitive Impairment in Olfactory Bulbectomized Rats and the Impact of the MGlu5-Positive Allosteric Modulator CDPPB. Brain Res. 2021, 1768. [Google Scholar] [CrossRef]
- Austin, S.A.; Santhanam, A.V.; Hinton, D.J.; Choi, D.-S.; Katusic, Z.S. Endothelial Nitric Oxide Deficiency Promotes Alzheimer’s Disease Pathology. J. Neurochem. 2013, 127, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Gubandru, M.; Margina, D.; Tsitsimpikou, C.; Goutzourelas, N.; Tsarouhas, K.; Ilie, M.; Tsatsakis, A.M.; Kouretas, D. Alzheimer’s Disease Treated Patients Showed Different Patterns for Oxidative Stress and Inflammation Markers. Food Chem. Toxicol. 2013, 61, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Malinski, T. Nitric Oxide and Nitroxidative Stress in Alzheimer’s Disease. J. Alzheimers Dis. 2007, 11, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Boll, K.M.; Noto, C.; Bonifácio, K.L.; Bortolasci, C.C.; Gadelha, A.; Bressan, R.A.; Barbosa, D.S.; Maes, M.; Moreira, E.G. Oxidative and Nitrosative Stress Biomarkers in Chronic Schizophrenia. Psychiatry Res. 2017, 253, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.; Tripathi, P.N.; Sharma, P.; Rai, S.N.; Singh, S.P.; Srivastava, R.K.; Shankar, S.; Shrivastava, S.K. Design and Development of Some Phenyl Benzoxazole Derivatives as a Potent Acetylcholinesterase Inhibitor with Antioxidant Property to Enhance Learning and Memory. Eur. J. Med. Chem. 2019, 163, 116–135. [Google Scholar] [CrossRef]
- Tripathi, P.N.; Srivastava, P.; Sharma, P.; Tripathi, M.K.; Seth, A.; Tripathi, A.; Rai, S.N.; Singh, S.P.; Shrivastava, S.K. Biphenyl-3-Oxo-1,2,4-Triazine Linked Piperazine Derivatives as Potential Cholinesterase Inhibitors with Anti-Oxidant Property to Improve the Learning and Memory. Bioorg. Chem. 2019, 85, 82–96. [Google Scholar] [CrossRef]
- Zoupa, E.; Pitsikas, N. The Nitric Oxide (NO) Donor Sodium Nitroprusside (SNP) and Its Potential for the Schizophrenia Therapy: Lights and Shadows. Molecules 2021, 26, 3196. [Google Scholar] [CrossRef]
- Pitsikas, N. The Role of Nitric Oxide in the Object Recognition Memory. Behav. Brain Res. 2015, 285, 200–207. [Google Scholar] [CrossRef]
- Vartzoka, F.; Ozenoglu, E.; Pitsikas, N. The Nitric Oxide (NO) Donor Molsidomine Attenuates Memory Impairments Induced by the D1/D2 Dopaminergic Receptor Agonist Apomorphine in the Rat. Molecules 2023, 28, 6861. [Google Scholar] [CrossRef]
- Trevlopoulou, A.; Touzlatzi, N.; Pitsikas, N. The Nitric Oxide Donor Sodium Nitroprusside Attenuates Recognition Memory Deficits and Social Withdrawal Produced by the NMDA Receptor Antagonist Ketamine and Induces Anxiolytic-like Behaviour in Rats. Psychopharmacology 2016, 233, 1045–1054. [Google Scholar] [CrossRef]
- Wang, X.; Ding, S.; Lu, Y.; Jiao, Z.; Zhang, L.; Zhang, Y.; Yang, Y.; Zhang, Y.; Li, W.; Lv, L. Effects of Sodium Nitroprusside in the Acute Dizocilpine (MK-801) Animal Model of Schizophrenia. Brain Res. Bull. 2019, 147, 140–147. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Hu, Y.; Jiao, Z.; Lu, Y.; Ding, M.; Kou, Y.; Li, B.; Meng, F.; Zhao, H.; et al. Sodium Nitroprusside Treatment for Psychotic Symptoms and Cognitive Deficits of Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled Trial. Psychiatry Res. 2018, 269, 271–277. [Google Scholar] [CrossRef]
- Friederich, J.A.; Butterworth, J.F. Sodium Nitroprusside: Twenty Years and Counting. Anesth. Analg. 1995, 81, 152–162. [Google Scholar] [CrossRef]
- Willmot, M.R.; Bath, P.M.W. The Potential of Nitric Oxide Therapeutics in Stroke. Expert Opin. Investig. Drugs 2003, 12, 455–470. [Google Scholar] [CrossRef]
- Pluta, R.M.; Oldfield, E.H.; Boock, R.J. Reversal and Prevention of Cerebral Vasospasm by Intracarotid Infusions of Nitric Oxide Donors in a Primate Model of Subarachnoid Hemorrhage. J. Neurosurg. 1997, 87, 746–751. [Google Scholar] [CrossRef]
- Salom, J.B.; Ortí, M.; Centeno, J.M.; Torregrosa, G.; Alborch, E. Reduction of Infarct Size by the NO Donors Sodium Nitroprusside and Spermine/NO after Transient Focal Cerebral Ischemia in Rats. Brain Res. 2000, 865, 149–156. [Google Scholar] [CrossRef]
- Majumder, S.; Sinha, S.; Siamwala, J.H.; Muley, A.; Reddy Seerapu, H.; Kolluru, G.K.; Veeriah, V.; Nagarajan, S.; Sridhara, S.R.C.; Priya, M.K.; et al. A Comparative Study of NONOate Based NO Donors: Spermine NONOate Is the Best Suited NO Donor for Angiogenesis. Nitric Oxide 2014, 36, 76–86. [Google Scholar] [CrossRef]
- Thompson, A.; Mander, P.; Brown, G. The NO Donor DETA-NONOate Reversibly Activates an Inward Current in Neurones and Is Not Mediated by the Released Nitric Oxide. Br. J. Pharmacol. 2009, 158, 1338–1343. [Google Scholar] [CrossRef]
- Cunningham, E.L.; McGuinness, B.; Herron, B.; Passmore, A.P. Dementia. Ulster Med. J. 2015, 84, 79–87. [Google Scholar] [PubMed]
- Chang, F.; Flavahan, S.; Flavahan, N.A. Potential Pitfalls in Analyzing Structural Uncoupling of Enos: Aging Is Not Associated with Increased Enzyme Monomerization. Am. J. Physiol. Hear. Circ. Physiol. 2019, 316, H80–H88. [Google Scholar] [CrossRef] [PubMed]
- Cieślik, P.; Radulska, A.; Burnat, G.; Kalinowski, L.; Wierońska, J.M. Serotonergic–Muscarinic Interaction within the Prefrontal Cortex as a Novel Target to Reverse Schizophrenia-Related Cognitive Symptoms. Int. J. Mol. Sci. 2021, 22, 8612. [Google Scholar] [CrossRef]
- Horiguchi, M.; Miyauchi, M.; Neugebauer, N.M.; Oyamada, Y.; Meltzer, H.Y. Prolonged Reversal of the Phencyclidine-Induced Impairment in Novel Object Recognition by a Serotonin (5-HT)1A-Dependent Mechanism. Behav. Brain Res. 2016, 301, 132–141. [Google Scholar] [CrossRef]
- Sengmany, K.; Singh, J.; Stewart, G.D.; Conn, P.J.; Christopoulos, A.; Gregory, K.J. Biased Allosteric Agonism and Modulation of Metabotropic Glutamate Receptor 5: Implications for Optimizing Preclinical Neuroscience Drug Discovery. Neuropharmacology 2017, 115, 60–72. [Google Scholar] [CrossRef]
- Trinh, P.N.H.; May, L.T.; Leach, K.; Gregory, K.J. Biased Agonism and Allosteric Modulation of Metabotropic Glutamate Receptor 5. Clin. Sci. 2018, 132, 2323–2338. [Google Scholar] [CrossRef]
Compound | Properties | ||
---|---|---|---|
spermineNONOate (Tocris, Bristol, UK) (Z)-1-[N-[3-aminopropyl]-N-[4-(3-aminopropylammonio)butyl]-amino]diazen-1-ium-1,2-diolate | Fast NO releaser t1/2 ≈ 39 min (37 °C, pH = 7.4) or 230 min (22–25 °C, pH = 7.4) 1 mole of spermine NONOate generates 2 moles of NO | 0.9% NaCl | [37] |
DETANONOate (Tocris, Bristol, UK) (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate | Slow NO releaser t1/2 ≈ 20 h (37 °C, pH = 7.4) or 56 h (22–25 °C, pH = 7.4) 1 mole of DETA NONOate generates 2 moles of NO | 0.9% NaCl | [37] |
MK-801 (Tocris, Bristol, UK) (5S,10R)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine maleate | Selective and noncompetitive NMDA antagonist; Ki = 37.2 nM | 0.9% NaCl | [38] |
Scopolamine hydrobromide (Abcam, Cambridge, UK) (α,S)-α-(Hydroxymethyl) benzeneacetic acid (1α,2β,4β,5α,7β)-9-methyl-3-oxa-9-azatricyclo [3.3.1.02,4]non-7-yl ester | Nonselective muscarinic antagonist | 0.9% NaCl | [38] |
LY487379 (Tocris, Bristol, UK) N-(4-(2-Methoxyphenoxy)phenyl)-N-(2,2,2-trifluoroethylsulfonyl) pyrid-3-ylmethylamine hydrochloride | mGlu2 positive allosteric modulator; EC50 = 1.7 μM | 0.9% NaCl | [39] |
CDPPB (Abcam, Cambridge, UK) 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-ylbenzamide | mGlu5 positive allosteric modulator; EC50 values are 10 and 20 nM for human and rat, respectively | 10% Tween 80 | [40] |
MK-801 (0.3) | Scopolamine (1) | |
---|---|---|
Ineffective doses | SpermineNONOate (0.05) + CDPPB (0.5) SpermineNONOate (0.05) + LY487379 (0.1) DETANONOate (0.05) + CDPPB (0.5) DETANONOate (0.05) + LY487379 (0.1) | SpermineNONOate (0.05) + CDPPB (0.05) SpermineNONOate (0.05) + LY487379 (0.1) DETANONOate (0.025) + CDPPB (0.5) DETANONOate (0.025) + LY487379 (0.1) |
Low/moderate doses | SpermineNONOate (0.075) + CDPPB (0.5) SpermineNONOate (0.05) + CDPPB (2.5) SpermineNONOate (0.05) + LY487379 (0.5) SpermineNONOate (0.75) + LY487379 (0.1) DETANONOate (0.05) + CDPPB (2.5) DETANONOate (0.1) + CDPPB (0.5) DETANONOate (0.05) + LY487379 (0.5) DETANONOate (0.1) + LY487379 (0.1) | SpermineNONOate (0.1) + CDPPB (0.5) SpermineNONOate (0.05) + CDPPB (1) SpermineNONOate (0.1) + LY487379 (0.1) DETANONOate (0.05) + CDPPB (0.5) DETANONOate (0.025) + CDPPB (1) DETANONOate (0.05) + LY487379 (0.1) |
Top doses | SpermineNONOate (0.1) + CDPPB (5) SpermineNONOate (0.1) + LY487379 (1) DETANONOate (0.5) + CDPPB (5) DETANONOate (0.5) + LY487379 (1) | SpermineNONOate (0.5) + CDPPB (2) SpermineNONOate (0.5) + LY487379 (1) DETANONOate (0.5) + CDPPB (2) DETANONOate (0.5) + LY487379 (1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Płoska, A.; Siekierzycka, A.; Cieślik, P.; Dobrucki, L.W.; Kalinowski, L.; Wierońska, J.M. The Impact of LY487379 or CDPPB on eNOS Expression in the Mouse Brain and the Effect of Joint Administration of Compounds with NO• Releasers on MK-801- or Scopolamine-Driven Cognitive Dysfunction in Mice. Molecules 2024, 29, 627. https://doi.org/10.3390/molecules29030627
Płoska A, Siekierzycka A, Cieślik P, Dobrucki LW, Kalinowski L, Wierońska JM. The Impact of LY487379 or CDPPB on eNOS Expression in the Mouse Brain and the Effect of Joint Administration of Compounds with NO• Releasers on MK-801- or Scopolamine-Driven Cognitive Dysfunction in Mice. Molecules. 2024; 29(3):627. https://doi.org/10.3390/molecules29030627
Chicago/Turabian StylePłoska, Agata, Anna Siekierzycka, Paulina Cieślik, Lawrence W. Dobrucki, Leszek Kalinowski, and Joanna M. Wierońska. 2024. "The Impact of LY487379 or CDPPB on eNOS Expression in the Mouse Brain and the Effect of Joint Administration of Compounds with NO• Releasers on MK-801- or Scopolamine-Driven Cognitive Dysfunction in Mice" Molecules 29, no. 3: 627. https://doi.org/10.3390/molecules29030627
APA StylePłoska, A., Siekierzycka, A., Cieślik, P., Dobrucki, L. W., Kalinowski, L., & Wierońska, J. M. (2024). The Impact of LY487379 or CDPPB on eNOS Expression in the Mouse Brain and the Effect of Joint Administration of Compounds with NO• Releasers on MK-801- or Scopolamine-Driven Cognitive Dysfunction in Mice. Molecules, 29(3), 627. https://doi.org/10.3390/molecules29030627