Cytotoxicity Enhancement in Osteosarcoma with Multifunctional I-131 Radiotherapeutic Nanoparticles: In Vitro Three-Dimensional Spheroid Model and Release Kinetics Modeling
Abstract
:1. Introduction
2. Results
2.1. Physiochemical Properties and Characterization of Curcumin-Loaded Nanoparticles
2.2. Radioactive Properties of Curcumin-Loaded Nanoparticles
2.3. Quantification of Carboxymethyl Chitosan Nanoparticles (CMCS) and Anti-Human EGFR Antibody Surface Coverage
2.4. Entrapment and Loading Efficiency of Curcumin and Doxorubicin
2.5. Release Profile and Mathematical Modelling of Release Kinetics of Curcumin- and Doxorubicin-Loaded ICED-N
2.5.1. Release Profile of Curcumin- and Doxorubicin-Loaded ICED-N
2.5.2. Higuchi Mathematical Modelling of Release Kinetics of Curcumin- and Doxorubicin-Loaded ICED-N
2.6. Dose Response Cytotoxicity of Curcumin and Doxorubicin in Human Osteosarcoma Cell Proliferation
2.7. Curcumin, Doxorubicin, and Radiation-Induced Cytotoxicity in 3D Human Osteosarcoma Spheroid
2.8. Anti-Human EGFR Specifically Targets Human Osteosarcoma
2.9. Time-Dependent Study of Nanoparticle Penetration in 3D Human Osteosarcoma Tumor Spheroids
2.10. Curcumin Enhances Radiation-Induced Cell Apoptosis/Programmed Cell Death Incidence Level in Human Osteosarcoma
2.11. Curcumin Enhances Doxorubicin- and Radiation-Induced G2/M Cell Cycle Arrest in Human Osteosarcoma
3. Discussion
4. Materials and Methods
4.1. Materials and Cell Lines
4.2. Preparation and Characterization of Nanoparticles
- Control: The Dulbecco′s Modified Eagle (DMEM) complete medium was composed of DMEM high glucose medium supplemented with 2 mM L-glutamine, sodium pyruvate, 10% fetal bovine serum (FBS), and 1% penicillin/streptomycin.
- CMCS: The preparation of carboxymethyl chitosan was conducted using the method proposed by Sun et al. [102]. A mixture consisting of 10 g of chitosan, 10 g of sodium hydroxide, 50 mL of isopropanol, and 50 mL of water was introduced into a flask for the purpose of swelling and alkalization. The process was carried out at a temperature of 50 °C for a duration of 1 h. A solution of monochloroacetic acid (15 g) was prepared by dissolving it in isopropanol (20 mL). This solution was then added drop-wise to the reaction mixture over a period of 30 min and allowed to react for a duration of 4 h at 50 °C. The reaction was thereafter terminated by the addition of 70% ethyl alcohol (250 mL). The solid material underwent filtration and subsequent rinsing using ethyl alcohol with a concentration ranging from 70% to 90%. Following this, the solid was subjected to vacuum drying at room temperature. The product under consideration is the sodium salt of carboxymethyl chitosan (Na-CC). Na-CC suspension (1 g) was prepared in a 100 mL solution of 80% ethyl alcohol in water. Subsequently, 10 mL of 37% hydrochloric acid was added to the suspension, and the mixture underwent stirring for a duration of 30 min. The solid material underwent filtration and subsequent rinsing in ethyl alcohol with a concentration of 70−90% in order to achieve neutralization. Following this, the solid was subjected to vacuum drying [103].
- Na131I: Sodium iodide, dissolved in 1 M phosphate-buffered saline (1 × PBS), with an activity of 3.70 MBq (100 μCi).
- C-N: The double emulsion procedure utilized to prepare the CMCS cores, into which curcumin was inserted into the inner phase, curcumin was diffused using 25 μL of 1 × PBS. The diffusion process was followed by sonication for 2 min at 70% pulsed power, with a pattern of 2 s on, and 1 s off. The core material employed during sonication was CMCS. Subsequently, the solution was combined with 5 mL of 1 × PBS and subjected to sonication for 2 min. Next, a volume of 10 mL of 1 × PBS was introduced to facilitate the process of evaporation. The mixture was then agitated for 4 h within a fume hood.
- D-N: Doxorubicin was loaded into the CMCS core using the double emulsion, following the same procedure as the C-N.
- CD-N: Curcumin and doxorubicin were loaded into the CMCS cores using the double emulsion procedure, following the same procedure as the C-N.
- I-N: Na131I was loaded into the CMCS cores using the double emulsion procedure without chelating agents, following the same procedure as the C-N.
- IC-N: Na131I and curcumin were loaded into the CMCS cores using the double emulsion procedure, following the same procedure as the C-N.
- ID-N: Na131I and doxorubicin were loaded into the CMCS cores using the double emulsion procedure, following the same procedure as the C-N.
- ICD-N: Na131I, curcumin, and doxorubicin were loaded into the CMCS cores using the double emulsion procedure.
- ICED-N: The double emulsion method was used to synthesize the epidermal growth factor receptor (EGFR)-targeted Na131I radiolabeled carboxymethyl chitosan (CMCS) nanoparticle, with co-administration of doxorubicin and curcumin (ICED-N).
4.3. Radioactive Properties of Nanoparticles
4.3.1. Radiochemical Purity
4.3.2. Radioactive Stability
4.3.3. Radioactive Yield
4.4. Entrapment and Loading Efficiency of Curcumin and Doxorubicin
4.4.1. Entrapment and Loading Efficiency of Curcumin
4.4.2. Entrapment and Loading Efficiency of Doxorubicin
4.5. Release Profile of Curcumin- and Doxorubicin-Loaded ICED-N
4.6. Drug Release Mathematical Models
4.6.1. Zero-Order Release: Assumes a Constant Release Rate over Time
4.6.2. Higuchi Model: Describes Drug Release from a Matrix System Where Release Is Diffusion-Controlled
4.6.3. Korsmeyer–Peppas Model (Power Law): Suitable for Showing Anomalous (Non-Fickian) Release Kinetics, a Combination of Diffusion and Polymer Relaxation
4.7. In Vitro Dose Response Cytotoxicity of Curcumin and Doxorubicin in Human Osteosarcoma Cell Proliferation: MTT Assay
4.7.1. In Vitro Dose Response Cytotoxicity of Curcumin in Human Osteosarcoma Cell Proliferation
4.7.2. In Vitro Dose Response Cytotoxicity of Doxorubicin in Human Osteosarcoma Cell Proliferation
4.8. In Vitro Cytotoxicity in Human Osteosarcoma Spheroids
4.9. In Vitro Surface Immunofluorescence Cellular Binding in Human Osteosarcoma
4.10. Time-Dependent Study of Nanoparticle Penetration in MG-63 Osteosarcoma Monolayer Cells and MG-63 Osteosarcoma Cellular Spheroids
4.11. Apoptosis/Programmed Cell Death Incidence Level in Human Osteosarcoma
4.12. Relative Cell Cycle Analysis in Human Osteosarcoma
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tamanoi, F.; Bathaie, S.Z. Natural Products and Cancer Signaling: Isoprenoids, Polyphenols and Flavonoids; Academic Press: Cambridge, MA, USA, 2014; ISBN 0-12-802527-1. [Google Scholar]
- Sharifi-Rad, J.; Rayess, Y.E.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front. Pharmacol. 2020, 11, 1021. [Google Scholar] [CrossRef]
- Yang, X.; Ren, H.; Guo, X.; Hu, C.; Fu, J. Radiation-Induced Skin Injury: Pathogenesis, Treatment, and Management. Aging 2020, 12, 23379. [Google Scholar] [CrossRef]
- Prasanna, P.G.; Stone, H.B.; Wong, R.S.; Capala, J.; Bernhard, E.J.; Vikram, B.; Coleman, C. Normal Tissue Protection for Improving Radiotherapy: Where Are the Gaps? Transl. Cancer Res. 2012, 1, 35. [Google Scholar]
- Kang, H.; Kim, B.; Park, J.; Youn, H.; Youn, B. The Warburg Effect on Radioresistance: Survival beyond Growth. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 188988. [Google Scholar] [CrossRef] [PubMed]
- Verma, V. Relationship and Interactions of Curcumin with Radiation Therapy. World J. Clin. Oncol. 2016, 7, 275. [Google Scholar] [CrossRef] [PubMed]
- Jagetia, G.C. Radioprotection and Radiosensitization by Curcumin. Mol. Targets Ther. Uses Curcumin Health Dis. 2007, 7, 301–320. [Google Scholar]
- Momtazi-Borojeni, A.A.; Ghasemi, F.; Hesari, A.; Majeed, M.; Caraglia, M.; Sahebkar, A. Anti-Cancer and Radio-Sensitizing Effects of Curcumin in Nasopharyngeal Carcinoma. Curr. Pharm. Des. 2018, 24, 2121–2128. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.-H.; Lu, P.W.-A.; Lin, C.-W.; Yang, S.-F. Curcumin in Human Osteosarcoma: From Analogs to Carriers. Drug Discov. Today 2022, 28, 103437. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lu, Y.; Lee, R.J.; Xiang, G. Nano Encapsulated Curcumin: And Its Potential for Biomedical Applications. Int. J. Nanomed. 2020, 15, 3099–3120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yu, X.-H.; Yan, Y.-G.; Wang, C.; Wang, W.-J. PI3K/Akt Signaling in Osteosarcoma. Clin. Chim. Acta 2015, 444, 182–192. [Google Scholar] [CrossRef]
- Peng, S.-F.; Lee, C.-Y.; Hour, M.-J.; Tsai, S.-C.; Kuo, D.-H.; Chen, F.-A.; Shieh, P.-C.; Yang, J.-S. Curcumin-Loaded Nanoparticles Enhance Apoptotic Cell Death of U2OS Human Osteosarcoma Cells through the Akt-Bad Signaling Pathway. Int. J. Oncol. 2014, 44, 238–246. [Google Scholar] [CrossRef]
- Biazzo, A.; De Paolis, M. Multidisciplinary Approach to Osteosarcoma. Acta Orthop. Belg. 2016, 82, 690–698. [Google Scholar]
- Luetke, A.; Meyers, P.A.; Lewis, I.; Juergens, H. Osteosarcoma Treatment–Where Do We Stand? A State of the Art Review. Cancer Treat. Rev. 2014, 40, 523–532. [Google Scholar] [CrossRef]
- Isakoff, M.S.; Bielack, S.S.; Meltzer, P.; Gorlick, R. Osteosarcoma: Current Treatment and a Collaborative Pathway to Success. J. Clin. Oncol. 2015, 33, 3029. [Google Scholar] [CrossRef]
- Berner, K.; Johannesen, T.B.; Berner, A.; Haugland, H.K.; Bjerkehagen, B.; Bøhler, P.J.; Bruland, Ø.S. Time-Trends on Incidence and Survival in a Nationwide and Unselected Cohort of Patients with Skeletal Osteosarcoma. Acta Oncol. 2015, 54, 25–33. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Guo, P.; He, D. Survival Benefits and Challenges of Adjuvant Chemotherapy for High-Grade Osteosarcoma: A Population-Based Study. J. Orthop. Surg. Res. 2023, 18, 465. [Google Scholar] [CrossRef]
- Liu, R.; Luo, C.; Pang, Z.; Zhang, J.; Ruan, S.; Wu, M.; Wang, L.; Sun, T.; Li, N.; Han, L. Advances of Nanoparticles as Drug Delivery Systems for Disease Diagnosis and Treatment. Chin. Chem. Lett. 2023, 34, 107518. [Google Scholar] [CrossRef]
- Elumalai, K.; Srinivasan, S.; Shanmugam, A. Review of the Efficacy of Nanoparticle-Based Drug Delivery Systems for Cancer Treatment. Biomed. Technol. 2024, 5, 109–122. [Google Scholar] [CrossRef]
- Li, X.; Ding, B.; Zheng, P.; Lin, J. Advanced Nanomaterials for Enhanced Immunotherapy via Metabolic Regulation. Coord. Chem. Rev. 2024, 500, 215540. [Google Scholar] [CrossRef]
- Jiang, Z.; Song, Z.; Cao, C.; Yan, M.; Liu, Z.; Cheng, X.; Wang, H.; Wang, Q.; Liu, H.; Chen, S. Multiple Natural Polymers in Drug and Gene Delivery Systems. Curr. Med. Chem. 2024, 31, 1691–1715. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wu, W.; Yang, W.; Qing, X.; Shao, Z. Surface Engineering of Nanoparticles with Ligands for Targeted Delivery to Osteosarcoma. Colloids Surf. B Biointerfaces 2020, 190, 110891. [Google Scholar] [CrossRef]
- Ashique, S.; Faiyazuddin, M.; Afzal, O.; Gowri, S.; Hussain, A.; Mishra, N.; Garg, A.; Maqsood, S.; Akhtar, M.S.; Altamimi, A.S. Advanced Nanoparticles, the Hallmark of Targeted Drug Delivery for Osteosarcoma—An Updated Review. J. Drug Deliv. Sci. Technol. 2023, 87, 104753. [Google Scholar] [CrossRef]
- Cheng, X.; Wei, J.; Ge, Q.; Xing, D.; Zhou, X.; Qian, Y.; Jiang, G. The Optimized Drug Delivery Systems of Treating Cancer Bone Metastatic Osteolysis with Nanomaterials. Drug Deliv. 2021, 28, 37–53. [Google Scholar] [CrossRef]
- Chen, W.; Li, Z.; Yu, N.; Zhang, L.; Li, H.; Chen, Y.; Gong, F.; Lin, W.; He, X.; Wang, S. Bone-Targeting Exosome Nanoparticles Activate Keap1/Nrf2/GPX4 Signaling Pathway to Induce Ferroptosis in Osteosarcoma Cells. J. Nanobiotechnol. 2023, 21, 355. [Google Scholar] [CrossRef]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Heras Caballero, A.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef]
- Jhaveri, J.; Raichura, Z.; Khan, T.; Momin, M.; Omri, A. Chitosan Nanoparticles-Insight into Properties, Functionalization and Applications in Drug Delivery and Theranostics. Molecules 2021, 26, 272. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.; Gorlick, R. Advancing Therapy for Osteosarcoma. Nat. Rev. Clin. Oncol. 2021, 18, 609–624. [Google Scholar] [CrossRef]
- Wang, L.; Wang, W.; Rui, Z.; Zhou, D. The Effective Combination Therapy against Human Osteosarcoma: Doxorubicin plus Curcumin Co-Encapsulated Lipid-Coated Polymeric Nanoparticulate Drug Delivery System. Drug Deliv. 2016, 23, 3200–3208. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hu, S.; Sun, M.; Shi, J.; Zhang, H.; Yu, H.; Yang, Z. Recent Advances and Clinical Translation of Liposomal Delivery Systems in Cancer Therapy. Eur. J. Pharm. Sci. 2024, 193, 106688. [Google Scholar] [CrossRef]
- Chen, C.; Wang, S.; Wang, J.; Yao, F.; Tang, X.; Guo, W. Nanosized Drug Delivery Strategies in Osteosarcoma Chemotherapy. APL Bioeng. 2023, 7, 011501. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Garcia, J.; Jubelin, C.; Loussouarn, A.; Goumard, M.; Griscom, L.; Renodon-Cornière, A.; Heymann, M.-F.; Heymann, D. In Vitro Three-Dimensional Cell Cultures for Bone Sarcomas. J. Bone Oncol. 2021, 30, 100379. [Google Scholar] [CrossRef]
- Ferreira, D.; Silva, R.; Figueiredo, L.; Rodrigues, L. Smart Targeted-Nanocarriers for Cancer Therapeutics. In Biogenic Nanomaterials for Environmental Sustainability: Principles, Practices, and Opportunities; Springer: Berlin/Heidelberg, Germany, 2024; pp. 377–407. [Google Scholar]
- Jiang, L.Q.; Wang, T.Y.; Webster, T.J.; Duan, H.-J.; Qiu, J.Y.; Zhao, Z.M.; Yin, X.X.; Zheng, C.L. Intracellular Disposition of Chitosan Nanoparticles in Macrophages: Intracellular Uptake, Exocytosis, and Intercellular Transport. Int. J. Nanomed. 2017, 12, 6383–6398. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, J.; Watanabe, W. Physical and Chemical Stability of Drug Nanoparticles. Adv. Drug Deliv. Rev. 2011, 63, 456–469. [Google Scholar] [CrossRef] [PubMed]
- Freitas, C.; Müller, R.H. Effect of Light and Temperature on Zeta Potential and Physical Stability in Solid Lipid Nanoparticle (SLNTM) Dispersions. Int. J. Pharm. 1998, 168, 221–229. [Google Scholar] [CrossRef]
- World Health Organization. Consultation Document: The International Pharmacopoeia. WHO Drug Inf. 2013, 27, 35–40.
- Vauthier, C.; Schmidt, C.; Couvreur, P. Measurement of the Density of Polymeric Nanoparticulate Drug Carriers by Isopycnic Centrifugation. J. Nanopart. Res. 1999, 1, 411–418. [Google Scholar] [CrossRef]
- Shi, X.; Du, Y.; Yang, J.; Zhang, B.; Sun, L. Effect of Degree of Substitution and Molecular Weight of Carboxymethyl Chitosan Nanoparticles on Doxorubicin Delivery. J. Appl. Polym. Sci. 2006, 100, 4689–4696. [Google Scholar] [CrossRef]
- Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. Drug Release Study of the Chitosan-Based Nanoparticles. Heliyon 2021, 8, e08674. [Google Scholar] [CrossRef]
- Trucillo, P. Drug Carriers: A Review on the Most Used Mathematical Models for Drug Release. Processes 2022, 10, 1094. [Google Scholar] [CrossRef]
- Jayachandran, P.; Ilango, S.; Suseela, V.; Nirmaladevi, R.; Shaik, M.R.; Khan, M.; Khan, M.; Shaik, B. Green Synthesized Silver Nanoparticle-Loaded Liposome-Based Nanoarchitectonics for Cancer Management: In Vitro Drug Release Analysis. Biomedicines 2023, 11, 217. [Google Scholar] [CrossRef]
- Fosca, M.; Rau, J.V.; Uskoković, V. Factors Influencing the Drug Release from Calcium Phosphate Cements. Bioact. Mater. 2022, 7, 341–363. [Google Scholar] [CrossRef]
- Paul, D. Elaborations on the Higuchi Model for Drug Delivery. Int. J. Pharm. 2011, 418, 13–17. [Google Scholar] [CrossRef]
- Petropoulos, J.H.; Papadokostaki, K.G.; Sanopoulou, M. Higuchi’s Equation and beyond: Overview of the Formulation and Application of a Generalized Model of Drug Release from Polymeric Matrices. Int. J. Pharm. 2012, 437, 178–191. [Google Scholar] [CrossRef]
- Koo, S.Y.; Hwang, K.T.; Hwang, S.; Choi, K.Y.; Park, Y.J.; Choi, J.-H.; Truong, T.Q.; Kim, S.M. Nanoencapsulation Enhances the Bioavailability of Fucoxanthin in Microalga Phaeodactylum Tricornutum Extract. Food Chem. 2023, 403, 134348. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei Mirakabad, F.S.; Akbarzadeh, A.; Milani, M.; Zarghami, N.; Taheri-Anganeh, M.; Zeighamian, V.; Badrzadeh, F.; Rahmati-Yamchi, M. A Comparison between the Cytotoxic Effects of Pure Curcumin and Curcumin-Loaded PLGA-PEG Nanoparticles on the MCF-7 Human Breast Cancer Cell Line. Artif. Cells Nanomed. Biotechnol. 2016, 44, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Meredith, A.-M.; Dass, C.R. Increasing Role of the Cancer Chemotherapeutic Doxorubicin in Cellular Metabolism. J. Pharm. Pharmacol. 2016, 68, 729–741. [Google Scholar] [CrossRef]
- Rimann, M.; Laternser, S.; Gvozdenovic, A.; Muff, R.; Fuchs, B.; Kelm, J.M.; Graf-Hausner, U. An in Vitro Osteosarcoma 3D Microtissue Model for Drug Development. J. Biotechnol. 2014, 189, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.S.; Barros, A.S.; Costa, E.C.; Moreira, A.F.; Correia, I.J. 3D Tumor Spheroids as in Vitro Models to Mimic in Vivo Human Solid Tumors Resistance to Therapeutic Drugs. Biotechnol. Bioeng. 2019, 116, 206–226. [Google Scholar] [CrossRef] [PubMed]
- Pinto, B.; Henriques, A.C.; Silva, P.M.; Bousbaa, H. Three-Dimensional Spheroids as in Vitro Preclinical Models for Cancer Research. Pharmaceutics 2020, 12, 1186. [Google Scholar] [CrossRef] [PubMed]
- Sak, K. Radiosensitizing Potential of Curcumin in Different Cancer Models. Nutr. Cancer 2020, 72, 1276–1289. [Google Scholar] [CrossRef]
- Ma, W.; Wang, J.; Guo, Q.; Tu, P. Simultaneous Determination of Doxorubicin and Curcumin in Rat Plasma by LC–MS/MS and Its Application to Pharmacokinetic Study. J. Pharm. Biomed. Anal. 2015, 111, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zeng, Y.; Qi, X.; Chen, Y.; Ge, Z.; Jiang, Z.; Zhang, X.; Dong, Y.; Chen, H.; Yu, Z. Targeted Salinomycin Delivery with EGFR and CD133 Aptamers Based Dual-Ligand Lipid-Polymer Nanoparticles to Both Osteosarcoma Cells and Cancer Stem Cells. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 2115–2127. [Google Scholar] [CrossRef] [PubMed]
- Trédan, O.; Galmarini, C.M.; Patel, K.; Tannock, I.F. Drug Resistance and the Solid Tumor Microenvironment. J. Natl. Cancer Inst. 2007, 99, 1441–1454. [Google Scholar] [CrossRef]
- Lilienthal, I.; Herold, N. Targeting Molecular Mechanisms Underlying Treatment Efficacy and Resistance in Osteosarcoma: A Review of Current and Future Strategies. Int. J. Mol. Sci. 2020, 21, 6885. [Google Scholar] [CrossRef] [PubMed]
- Prudowsky, Z.D.; Yustein, J.T. Recent Insights into Therapy Resistance in Osteosarcoma. Cancers 2020, 13, 83. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Tian, Q.; Teng, Q.; Wurpel, J.N.; Zeng, L.; Pan, Y.; Chen, Z. Understanding and Targeting Resistance Mechanisms in Cancer. MedComm 2023, 4, e265. [Google Scholar] [CrossRef] [PubMed]
- Kankala, R.K.; Liu, C.-G.; Chen, A.-Z.; Wang, S.-B.; Xu, P.-Y.; Mende, L.K.; Liu, C.-L.; Lee, C.-H.; Hu, Y.-F. Overcoming Multidrug Resistance through the Synergistic Effects of Hierarchical pH-Sensitive, ROS-Generating Nanoreactors. ACS Biomater. Sci. Eng. 2017, 3, 2431–2442. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Yu, M.; Xu, J.; Li, B.-Y.; Zhao, Y.; Kankala, R.K. Overcoming Cancer Multi-Drug Resistance (MDR): Reasons, Mechanisms, Nanotherapeutic Solutions, and Challenges. Biomed. Pharmacother. 2023, 162, 114643. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and Their Benefits: A Review. Int. J. Food Prop. 2017, 20, 1700–1741. [Google Scholar] [CrossRef]
- Tabanelli, R.; Brogi, S.; Calderone, V. Improving Curcumin Bioavailability: Current Strategies and Future Perspectives. Pharmaceutics 2021, 13, 1715. [Google Scholar] [CrossRef]
- Racz, L.Z.; Racz, C.P.; Pop, L.-C.; Tomoaia, G.; Mocanu, A.; Barbu, I.; Sárközi, M.; Roman, I.; Avram, A.; Tomoaia-Cotisel, M. Strategies for Improving Bioavailability, Bioactivity, and Physical-Chemical Behavior of Curcumin. Molecules 2022, 27, 6854. [Google Scholar] [CrossRef]
- Prasad, M.; Salar, A.; Salar, R.K. In Vitro Anticancer Activity of Curcumin Loaded Chitosan Nanoparticles (CLCNPs) against Vero Cells. Pharmacol. Res. Mod. Chin. Med. 2022, 3, 100116. [Google Scholar]
- Chuah, L.H.; Roberts, C.J.; Billa, N.; Abdullah, S.; Rosli, R. Cellular Uptake and Anticancer Effects of Mucoadhesive Curcumin-Containing Chitosan Nanoparticles. Colloids Surf. B Biointerfaces 2014, 116, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Wang, L.; Bernards, R. Rational Combinations of Targeted Cancer Therapies: Background, Advances and Challenges. Nat. Rev. Drug Discov. 2023, 22, 213–234. [Google Scholar] [CrossRef] [PubMed]
- Vetha, B.S.S.; Kim, E.-M.; Oh, P.-S.; Kim, S.H.; Lim, S.T.; Sohn, M.-H.; Jeong, H.-J. Curcumin Encapsulated Micellar Nanoplatform for Blue Light Emitting Diode Induced Apoptosis as a New Class of Cancer Therapy. Macromol. Res. 2019, 27, 1179–1184. [Google Scholar] [CrossRef]
- Keyvani-Ghamsari, S.; Khorsandi, K.; Gul, A. Curcumin Effect on Cancer Cells’ Multidrug Resistance: An Update. Phytother. Res. 2020, 34, 2534–2556. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Fu, L.; Huang, J.; Dai, Y.; Wang, B.; Xu, G.; Wu, L.; Zhou, H. Curcumin Reverses Doxorubicin Resistance via Inhibition the Efflux Function of ABCB4 in Doxorubicin-resistant Breast Cancer Cells. Mol. Med. Rep. 2019, 19, 5162–5168. [Google Scholar] [CrossRef]
- Munn, L.L. Cancer and Inflammation. Wiley Interdiscip. Rev. Syst. Biol. Med. 2017, 9, e1370. [Google Scholar] [CrossRef]
- Joshi, P.; Verma, K.; Kumar Semwal, D.; Dwivedi, J.; Sharma, S. Mechanism Insights of Curcumin and Its Analogues in Cancer: An Update. Phytother. Res. 2023, 37, 5435–5463. [Google Scholar] [CrossRef]
- Srinivas, U.S.; Tan, B.W.; Vellayappan, B.A.; Jeyasekharan, A.D. ROS and the DNA Damage Response in Cancer. Redox Biol. 2019, 25, 101084. [Google Scholar] [CrossRef]
- Xu, C.; Wang, M.; Zandieh Doulabi, B.; Sun, Y.; Liu, Y. Paradox: Curcumin, a Natural Antioxidant, Suppresses Osteosarcoma Cells via Excessive Reactive Oxygen Species. Int. J. Mol. Sci. 2023, 24, 11975. [Google Scholar] [CrossRef]
- Li, C.; Shi, X.; Zhou, G.; Liu, X.; Wu, S.; Zhao, J. The Canonical Wnt-Beta-Catenin Pathway in Development and Chemotherapy of Osteosarcoma. Front. Biosci. 2013, 18, 1384–1391. [Google Scholar]
- Wang, J.-Y.; Wang, X.; Wang, X.-J.; Zheng, B.-Z.; Wang, Y.; Liang, B. Curcumin Inhibits the Growth via Wnt/β-Catenin Pathway in Non-Small-Cell Lung Cancer Cells. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7492–7499. [Google Scholar] [PubMed]
- Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedei, A.; Amin, A.R.; Amin, A.; Aquilano, K.; Arbiser, J.; Arreola, A.; Arzumanyan, A. Designing a Broad-Spectrum Integrative Approach for Cancer Prevention and Treatment; Elsevier: Amsterdam, The Netherlands, 2015; Volume 35, pp. 276–304. [Google Scholar]
- Farnood, P.R.; Pazhooh, R.D.; Asemi, Z.; Yousefi, B. Targeting Signaling Pathway by Curcumin in Osteosarcoma. Curr. Mol. Pharmacol. 2023, 16, 71–82. [Google Scholar] [PubMed]
- Ning, B.; Liu, Y.; Huang, T.; Wei, Y. Autophagy and Its Role in Osteosarcoma. Cancer Med. 2023, 12, 5676–5687. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Zhang, S.; Feng, A.; Xu, D.; Zhu, Q.; Mao, Y.; Zhao, Y.; Lv, Y.; Han, C.; Liu, R. Methotrexate, Doxorubicin, and Cisplatinum Regimen Is Still the Preferred Option for Osteosarcoma Chemotherapy: A Meta-Analysis and Clinical Observation. Medicine 2019, 98, e15582. [Google Scholar] [CrossRef] [PubMed]
- Marchandet, L.; Lallier, M.; Charrier, C.; Baud’huin, M.; Ory, B.; Lamoureux, F. Mechanisms of Resistance to Conventional Therapies for Osteosarcoma. Cancers 2021, 13, 683. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Yang, X.; Liu, F.; Li, D.; Zheng, B.; Abdullah, A.O.; Liu, Y. The Impact of Curcumin on Bone Osteogenic Promotion of MC3T3 Cells under High Glucose Conditions and Enhanced Bone Formation in Diabetic Mice. Coatings 2020, 10, 258. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Zarrabi, A.; Hashemi, F.; Zabolian, A.; Saleki, H.; Bagherian, M.; Azami, N.; Bejandi, A.K.; Hushmandi, K.; Ang, H.L. Polychemotherapy with Curcumin and Doxorubicin via Biological Nanoplatforms: Enhancing Antitumor Activity. Pharmaceutics 2020, 12, 1084. [Google Scholar] [CrossRef]
- Rycaj, K.; Tang, D.G. Cancer Stem Cells and Radioresistance. Int. J. Radiat. Biol. 2014, 90, 615–621. [Google Scholar] [CrossRef]
- Ni, S.; Kuang, Y.; Yuan, Y.; Yu, B. Mitochondrion-Mediated Iron Accumulation Promotes Carcinogenesis and Warburg Effect through Reactive Oxygen Species in Osteosarcoma. Cancer Cell Int. 2020, 20, 399. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, F.A.; Prakasam, G.; Chattopadhyay, S.; Rehman, A.U.; Padder, R.A.; Ansari, M.A.; Irshad, R.; Mangalhara, K.; Bamezai, R.N.; Husain, M. Curcumin Decreases Warburg Effect in Cancer Cells by Down-Regulating Pyruvate Kinase M2 via mTOR-HIF1α Inhibition. Sci. Rep. 2018, 8, 8323. [Google Scholar] [CrossRef] [PubMed]
- Ogiwara, H.; Ui, A.; Shiotani, B.; Zou, L.; Yasui, A.; Kohno, T. Curcumin Suppresses Multiple DNA Damage Response Pathways and Has Potency as a Sensitizer to PARP Inhibitor. Carcinogenesis 2013, 34, 2486–2497. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: An Add-in Program for Modeling and Comparison of Drug Dissolution Profiles. AAPS J. 2010, 12, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Arifin, D.Y.; Lee, L.Y.; Wang, C.-H. Mathematical Modeling and Simulation of Drug Release from Microspheres: Implications to Drug Delivery Systems. Adv. Drug Deliv. Rev. 2006, 58, 1274–1325. [Google Scholar] [CrossRef] [PubMed]
- Walbi, I.A.; Ahmad, M.Z.; Ahmad, J.; Algahtani, M.S.; Alali, A.S.; Alsudir, S.A.; Aodah, A.H.; Albarqi, H.A. Development of a Curcumin-Loaded Lecithin/Chitosan Nanoparticle Utilizing a Box-Behnken Design of Experiment: Formulation Design and Influence of Process Parameters. Polymers 2022, 14, 3758. [Google Scholar] [CrossRef] [PubMed]
- Zare, M.; Samani, S.M.; Sobhani, Z. Enhanced Intestinal Permeation of Doxorubicin Using Chitosan Nanoparticles. Adv. Pharm. Bull. 2018, 8, 411. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.-K.; Strauss, R.; Richter, M.; Yun, C.-O.; Lieber, A. Strategies to Increase Drug Penetration in Solid Tumors. Front. Oncol. 2013, 3, 57276. [Google Scholar] [CrossRef]
- Barbosa, M.A.; Xavier, C.P.; Pereira, R.F.; Petrikaitė, V.; Vasconcelos, M.H. 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of Anti-Cancer Drugs. Cancers 2021, 14, 190. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, G.; Chen, R.; Hua, Y.; Cai, Z. Mesenchymal Stem Cells in the Osteosarcoma Microenvironment: Their Biological Properties, Influence on Tumor Growth, and Therapeutic Implications. Stem Cell Res. Ther. 2018, 9, 22. [Google Scholar] [CrossRef] [PubMed]
- Cortini, M.; Baldini, N.; Avnet, S. New Advances in the Study of Bone Tumors: A Lesson from the 3D Environment. Front. Physiol. 2019, 10, 814. [Google Scholar] [CrossRef] [PubMed]
- Marshall, S.K.; Kaewpradit, N.; Mudmarn, T.; Buathong, J.; Sriwirote, P. Evaluation of Single Dose and Fractionated Dose of I-131 Radiolabeled Nanoparticles for Triple-Negative Breast Cancer Treatment. Biomedicines 2023, 11, 2169. [Google Scholar] [CrossRef] [PubMed]
- Pahl, J.H.; Ruslan, S.E.N.; Buddingh, E.P.; Santos, S.J.; Szuhai, K.; Serra, M.; Gelderblom, H.; Hogendoorn, P.C.; Egeler, R.M.; Schilham, M.W. Anti-EGFR Antibody Cetuximab Enhances the Cytolytic Activity of Natural Killer Cells toward Osteosarcoma. Clin. Cancer Res. 2012, 18, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, X.; Bai, Z.; Chi, B.; Wei, Y.; Chen, X. Curcumol Induces Cell Cycle Arrest in Colon Cancer Cells via Reactive Oxygen Species and Akt/GSK3β/Cyclin D1 Pathway. J. Ethnopharmacol. 2018, 210, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Stark, G.R.; Taylor, W.R. Analyzing the G2/M Checkpoint. Methods Mol. Biol. 2004, 280, 51–82. [Google Scholar] [PubMed]
- Sun, G.; Chen, X.; Li, Y.; Zheng, B.; Gong, Z.; Sun, J.; Chen, H.; Li, J.; Lin, W. Preparation of H-Oleoyl-Carboxymethyl-Chitosan and the Function as a Coagulation Agent for Residual Oil in Aqueous System. Front. Mater. Sci. China 2008, 2, 105–112. [Google Scholar] [CrossRef]
- Safee, N.H.A.; Abdullah, M.P.; Othman, M.R. Carboxymethyl Chitosan-Fe3O4 Nanoparticles: Synthesis and Characterization. Malays. J. Anal. Sci. 2010, 14, 63–68. [Google Scholar]
- Wani, T.U.; Pandith, A.H.; Sheikh, F.A. Polyelectrolytic Nature of Chitosan: Influence on Physicochemical Properties and Synthesis of Nanoparticles. J. Drug Deliv. Sci. Technol. 2021, 65, 102730. [Google Scholar] [CrossRef]
- Poole, C.F.; Poole, S.K. Foundations of Retention in Partition Chromatography. J. Chromatogr. A 2009, 1216, 1530–1550. [Google Scholar] [CrossRef]
- Marshall, S.K.; Saelim, B.; Taweesap, M.; Pachana, V.; Panrak, Y.; Makchuchit, N.; Jaroenpakdee, P. Anti-EGFR Targeted Multifunctional I-131 Radio-Nanotherapeutic for Treating Osteosarcoma: In Vitro 3D Tumor Spheroid Model. Nanomaterials 2022, 12, 3517. [Google Scholar] [CrossRef] [PubMed]
- Anitha, A.; Maya, S.; Deepa, N.; Chennazhi, K.; Nair, S.; Jayakumar, R. Curcumin-Loaded N, O-Carboxymethyl Chitosan Nanoparticles for Cancer Drug Delivery. J. Biomater. Sci. Polym. Ed. 2012, 23, 1381–1400. [Google Scholar] [CrossRef]
- Ali, Z.; Saleem, M.; Atta, B.M.; Khan, S.S.; Hammad, G. Determination of Curcuminoid Content in Turmeric Using Fluorescence Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 213, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Laracuente, M.-L.; Marina, H.Y.; McHugh, K.J. Zero-Order Drug Delivery: State of the Art and Future Prospects. J. Control. Release 2020, 327, 834–856. [Google Scholar] [CrossRef]
- Wu, I.Y.; Bala, S.; Škalko-Basnet, N.; Di Cagno, M.P. Interpreting Non-Linear Drug Diffusion Data: Utilizing Korsmeyer-Peppas Model to Study Drug Release from Liposomes. Eur. J. Pharm. Sci. 2019, 138, 105026. [Google Scholar] [CrossRef]
- Adan, A.; Kiraz, Y.; Baran, Y. Cell Proliferation and Cytotoxicity Assays. Curr. Pharm. Biotechnol. 2016, 17, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Bahadar, H.; Maqbool, F.; Niaz, K.; Abdollahi, M. Toxicity of Nanoparticles and an Overview of Current Experimental Models. Iran. Biomed. J. 2016, 20, 1–11. [Google Scholar]
- Shiraha, H.; Gupta, K.; Drabik, K.; Wells, A. Aging Fibroblasts Present Reduced Epidermal Growth Factor (EGF) Responsiveness Due to Preferential Loss of EGF Receptors. J. Biol. Chem. 2000, 275, 19343–19351. [Google Scholar] [CrossRef]
- Gawne, P.J.; Ferreira, M.; Papaluca, M.; Grimm, J.; Decuzzi, P. New Opportunities and Old Challenges in the Clinical Translation of Nanotheranostics. Nat. Rev. Mater. 2023, 8, 783–798. [Google Scholar] [CrossRef]
Carboxymethyl Chitosan (CMCS) Nanoparticles | |||||
---|---|---|---|---|---|
Conjugation (mg) | Surface Area (SA) (nm2 × mg NP) | Volume (nm3 × mg NP) | SA:Volume Ratio (nm2/nm3)/mg NP | Molecules × mg NP | Number of CMCS Particles |
1 | 1.96 × 105 | 8.18 × 106 | 2.40 × 10−2 | 1.11 × 1018 | 3.50 × 109 |
5 | 9.80 × 105 | 4.09 × 107 | 4.79 × 10−3 | 5.54 × 1018 | 1.75 × 1010 |
10 | 1.96 × 106 | 8.18 × 107 | 2.40 × 10−3 | 1.10 × 1019 | 3.50 × 1010 |
25 | 4.90 × 106 | 2.05 × 108 | 9.58 × 10−4 | 2.77 × 1019 | 8.75 × 1010 |
50 | 9.80 × 106 | 4.09 × 108 | 4.79 × 10−4 | 5.54 × 1019 | 1.75 × 1011 |
100 | 1.96 × 107 | 8.18 × 108 | 2.40 × 10−4 | 1.11 × 1020 | 3.50 × 1011 |
200 | 3.92 × 107 | 1.64 × 109 | 1.20 × 10−4 | 2.22 × 1020 | 7.00 × 1011 |
Drug | Entrapment Efficiency (%) | Loading Efficiency (%) |
---|---|---|
Curcumin | 85.48 | 67.35 |
Doxorubicin | 37.61 | 42.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marshall, S.K.; Taweesap, M.; Saelim, B.; Pachana, V.; Benlateh, N.; Sangangam, S.; Bumrungsin, A.; Kholo-asae, H.; Wongtechanon, I. Cytotoxicity Enhancement in Osteosarcoma with Multifunctional I-131 Radiotherapeutic Nanoparticles: In Vitro Three-Dimensional Spheroid Model and Release Kinetics Modeling. Molecules 2024, 29, 630. https://doi.org/10.3390/molecules29030630
Marshall SK, Taweesap M, Saelim B, Pachana V, Benlateh N, Sangangam S, Bumrungsin A, Kholo-asae H, Wongtechanon I. Cytotoxicity Enhancement in Osteosarcoma with Multifunctional I-131 Radiotherapeutic Nanoparticles: In Vitro Three-Dimensional Spheroid Model and Release Kinetics Modeling. Molecules. 2024; 29(3):630. https://doi.org/10.3390/molecules29030630
Chicago/Turabian StyleMarshall, Suphalak Khamruang, Maneerat Taweesap, Boonyisa Saelim, Verachai Pachana, Nadeeya Benlateh, Sireetorn Sangangam, Achiraya Bumrungsin, Haswanee Kholo-asae, and Issaree Wongtechanon. 2024. "Cytotoxicity Enhancement in Osteosarcoma with Multifunctional I-131 Radiotherapeutic Nanoparticles: In Vitro Three-Dimensional Spheroid Model and Release Kinetics Modeling" Molecules 29, no. 3: 630. https://doi.org/10.3390/molecules29030630
APA StyleMarshall, S. K., Taweesap, M., Saelim, B., Pachana, V., Benlateh, N., Sangangam, S., Bumrungsin, A., Kholo-asae, H., & Wongtechanon, I. (2024). Cytotoxicity Enhancement in Osteosarcoma with Multifunctional I-131 Radiotherapeutic Nanoparticles: In Vitro Three-Dimensional Spheroid Model and Release Kinetics Modeling. Molecules, 29(3), 630. https://doi.org/10.3390/molecules29030630