Synthesis and Primary Activity Assay of Novel Benitrobenrazide and Benserazide Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry of Benitrobenrazide and Benserazide Derivatives
2.2. Inhibitory Effect of Benserazide and Benitrobenrazide Derivatives on HK2 Enzymatic Activity
3. Materials and Methods
3.1. Chemistry
3.1.1. General Procedure for the Synthesis of Esters 2e–f
3.1.2. General Procedure for the Synthesis of Hydrazides 3a–3f
3.1.3. General Procedure for the Synthesis of Hydrazones (4a–4f) and Hydrazide (5)
3.1.4. General Procedure for the Synthesis of Amino Acid Methyl Ester Hydrochloride 7a–7c
3.1.5. General Procedure for the Synthesis of N-Benzyloxycarbonyl-L-amino Acid Methyl Esters 8a–8c
3.1.6. General Procedure for the Synthesis of N-Benzyloxycarbonyl-L-amino Acid Hydrazides 9a–9c
3.1.7. General Procedure for the Synthesis of Hydrazones of N-Benzyloxycarbonyl-amino Acids 10a–10c
3.1.8. General Procedure for the Synthesis of Substituted Amino Acid Hydrazide 11 and Substituted Amino Acid Hydrazone 12
3.2. Computational Methods
3.3. Hexokinase Activity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raczuk, E.; Dmochowska, B.; Samaszko-Fiertek, J.; Madaj, J. Different Schiff Bases-Structure, Importance and Classification. Molecules 2022, 27, 787. [Google Scholar] [CrossRef]
- Uddin, N.; Rashid, F.; Ali, S.; Tirmizi, S.A.; Ahmad, I.; Zaib, S. Synthesis, characterization, and anticancer activity of Schiff bases. J. Biomol. Struct. Dyn. 2020, 38, 3246–3259. [Google Scholar] [CrossRef]
- Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff Bases: A Versatile Pharmacophore. J. Catal. 2013, 893512. [Google Scholar] [CrossRef]
- Mounika, K.; Anupama, B.; Pragathi, J.; Gyanakumari, C. Synthesis, characterization and biological activity of a Schiff base derived from 3-ethoxy salicylaldehyde and 2-amino benzoic acid and its transition metal complexes. J. Sci. Res. 2010, 2, 513–524. [Google Scholar] [CrossRef]
- Kargar, H.; Fallah-Mehrjardi, M.; Behjatmanesh-Ardakani, R.; Tahir, M.N.; Ashfaqc, M.; Munawar, K.S. Synthesis, crystal structure determination, Hirshfeld surface analysis, spectral characterization, theoretical and computational studies of titanium(IV) Schiff base complex. J. Coord. Chem. 2021, 74, 2682–2700. [Google Scholar] [CrossRef]
- Awantu, A.F.; Fongang, Y.S.F.; Ayimele, G.A.; Nantia, E.A.; Fokou, P.V.T.; Boyom, F.F.; Ngwang, C.K.; Bruno, N.; Lenta, B.N.; Ngouela, S.A. Novel Hydralazine Schiff Base Derivatives and Their Antimicrobial, Antioxidant and Antiplasmodial Properties. Int. J. Org. Chem. 2020, 10, 1–16. [Google Scholar] [CrossRef]
- Taha, M.; Ismail, N.H.; Imran, S.; Anouar, H.; Selvaraj, M.; Jamil, W.; Ali, M.; Kashif, S.M.; Rahim, F.; Khan, K.M.; et al. Synthesis and molecular modelling studies of phenyl linked oxadiazole-phenylhydrazone hybrids as potent antileishmanial agents. Eur. J. Med. Chem. 2017, 126, 1021–1033. [Google Scholar] [CrossRef] [PubMed]
- Li, L.-Y.; Peng, J.-D.; Zhou, W.; Qiao, H.; Deng, X.; Li, Z.-H.; Li, J.-D.; Fu, Y.-D.; Li, S.; Sun, K.; et al. Potent hydrazone derivatives targeting esophageal cancer cells. Eur. J. Med. Chem. 2018, 148, 359–371. [Google Scholar] [CrossRef]
- Küçükgüzel, S.G.; Mazi, A.; Sahin, F.; Öztürk, S.; Stables, S. Synthesis and biological activities of diflunisal hydrazide-hydrazones. Eur. J. Med. Chem. 2003, 38, 1005–1013. [Google Scholar] [CrossRef]
- Khan, K.M.; Rasheed, M.; Ullah, Z.; Hayat, S.; Kaukab, F.; Choudhary, M.I.; Ur-Rahman, A.; Perveen, S. Synthesis and in vitro leishmanicidal activity of some hydrazides and their analogues. Bioorg. Med. Chem. 2003, 11, 1381–1387. [Google Scholar] [CrossRef]
- Durcik, M.; Tammela, P.; Barančoková, M.; Tomašič, T.; Ilaš, J.; Kikelj, D.; Zidar, N. Synthesis and Evaluation of N-Phenylpyrrolamides as DNA Gyrase B Inhibitors. Chem. Med. Chem. 2018, 13, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Kareem, H.S.; Ariffin, A.; Nordin, N.; Heidelberg, T.; Azlina Abdul-Aziz, A.; Kong, K.W.; Yehye, W.A. Correlation of antioxidant activities with theoretical studies for new hydrazone compounds bearing a 3,4,5-trimethoxy benzyl moiety. Eur. J. Med. Chem. 2015, 103, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, M.; Zhang, Y.; Wu, C.; Yang, K.; Gao, S.; Zheng, M.; Li, X.; Li, H.; Chen, L. Structure based discovery of novel hexokinase 2 inhibitors. Bioorg. Chem. 2020, 96, 103609. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Mengzhu, Z.; Shuangping, W.; Gao, S.; Yang, M.; Li, Z.; Min, Q.; Sun, W.; Chen, L.; Xiang, G.; et al. Benserazide, a dopa decarboxylase inhibitor, suppresses tumor growth by targeting hexokinase 2. J. Exp. Clin. Cancer Res. 2017, 36, 58–70. [Google Scholar] [CrossRef]
- Zheng, M.; Wu, C.; Yang, K.; Yang, Y.; Liu, Y.; Gao, S.; Wang, Q.; Li, C.; Chen, L.; Li, H. Novel selective hexokinase 2 inhibitor Benitrobenrazide blocks cancer cells growth by targeting glycolysis. Pharmacol. Res. 2021, 164, 105367. [Google Scholar] [CrossRef] [PubMed]
- Pelicano, H.; Martin, D.S.; Xu, R.-H.; Huang, P. Glycolysis inhibition for anticancer treatment. Oncogene 2006, 25, 4633–4646. [Google Scholar] [CrossRef] [PubMed]
- Hay, N. Aerobic glycolysis Oxidative phosphorylation Reprogramming glucose metabolism in cancer: Can it be exploited for cancer therapy? Nat. Publ. Gr. 2016, 16, 635. [Google Scholar] [CrossRef]
- Heiden, M.G.V.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science 2009, 324, 1029. [Google Scholar] [CrossRef]
- Semenza, G.L. HIF-1: Upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev. 2010, 20, 51–56. [Google Scholar] [CrossRef]
- Wu, J.; Hu, L.; Wu, F.; Zou, J.; He, T. Poor prognosis of hexokinase 2 overexpression in solid tumors of digestive system: A meta-analysis. Oncotarget 2017, 8, 32332. [Google Scholar] [CrossRef]
- Ciscato, F.; Ferrone, L.; Masgras, I.; Laquatra, C.; Rasola, A. Hexokinase 2 in Cancer: A Prima Donna Playing Multiple Characters. Int. J. Mol. Sci. 2021, 22, 4716. [Google Scholar] [CrossRef] [PubMed]
- Counihan, J.L.; Grossman, E.A.; Nomura, D.K. Cancer Metabolism: Current Understanding and Therapies. Chem. Rev. 2018, 118, 6893–6923. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.E. Isozymes of mammalian hexokinase: Structure, subcellular localization, and metabolic function. J. Exp. Biol. 2003, 206, 2049–2057. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.N.; Guedes, R.C.; Marques, M.M. Unlocking the Potential of HK2 in Cancer Metabolism and Therapeutics. Curr. Med. Chem. 2019, 26, 7285–7322. [Google Scholar] [CrossRef]
- Tsai, J.H.; Wilson, J.E. Functional organization of mammalian hexokinases: Characterization of the rat type III isozyme and its chimeric forms, constructed with the N- and C-terminal halves of the type I and type II isozymes. Arch. Biochem. Biophys. 1997, 338, 183–192. [Google Scholar] [CrossRef]
- Zhang, F.; Angelova, A.; Garamus, V.M.; Angelov, B.; Tu, S.; Kong, L.; Zhang, X.; Li, N.; Zou, A. Mitochondrial Voltage-Dependent Anion Channel 1−Hexokinase-II Complex-Targeted Strategy for Melanoma Inhibition Using Designed Multiblock Peptide Amphiphiles. ACS Appl. Mater. Interfaces 2021, 13, 35281–35293. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Zeng, J.; Xie, R.; Schulz, M.J.; Tedesco, R.; Qu, J.; Erhard, K.F.; Mack, J.F.; Raha, K.; Rendina, A.R.; et al. Discovery of a Novel 2,6-Disubstituted Glucosamine Series of Potent and Selective Hexokinase 2 Inhibitors. ACS Med. Chem. Lett. 2016, 7, 217–222. [Google Scholar] [CrossRef]
- Tanbin, S.; Fuad, F.A.A.; Hamid, A.A.A. Virtual Screening for Potential Inhibitors of Human Hexokinase II for the Development of Anti-Dengue Therapeutics. BioTech 2021, 10, 1. [Google Scholar] [CrossRef]
- Juszczak, K.; Kubicka, A.; Kitel, R.; Zawadzki, S.; Marczak, A.; Dzido, G.; Walczak, K.; Łabieniec-Watała, M.; Matczak, K.; Tomczyk, M.D. Hexokinase 2 Inhibition and Biological Effects of BNBZ and Its Derivatives: The Influence of the Number and Arrangement of Hydroxyl Groups. Int. J. Mol. Sci. 2022, 23, 2616. [Google Scholar] [CrossRef]
- Shan, W.; Zhou, Y.; Tam, K.Y. The development of small-molecule inhibitors targeting hexokinase 2. Drug Discov. Today 2022, 27, 2574–2585. [Google Scholar] [CrossRef]
- Agnihotri, S.; Mansouri, S.; Burrell, K.; Li, M.; Mamatjan, Y.; Liu, J.; Nejad, R.; Kumar, S.; Jalali, S.; Singh, S.K.; et al. Ketoconazole and Posaconazole Selectively Target HK2-expressing Glioblastoma Cells. Clin. Cancer Res. 2019, 25, 844–855. [Google Scholar] [CrossRef] [PubMed]
- Salani, B.; Del Rio, A.; Marini, C.; Sambuceti, G.; Cordera, R.; Maggi, D. Metformin, cancer, and glucose metabolism. Endocr.-Relat. Cancer 2014, 21, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Nepali, K.; Lee, H.Y.; Liou, J.P. Nitro-Group-Containing Drugs. J. Med. Chem. 2019, 62, 2851–2893. [Google Scholar] [CrossRef] [PubMed]
- Nishiwaki, N. A Walk through Recent Nitro Chemistry Advances. Molecules 2020, 25, 3680. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jianlin Han, J.; Sorochinsky, A.; Landa, A.; Soloshonok, V.A. The Latest FDA-Approved Pharmaceuticals ContainingFragments of Tailor-Made Amino Acids and Fluorine. Pharmaceuticals 2022, 15, 999. [Google Scholar] [CrossRef] [PubMed]
- Al-Harthy, T.; Zoghaib, W.; Abdel-Jalil, R. Importance of Fluorine in Benzazole Compounds. Molecules 2020, 25, 4677. [Google Scholar] [CrossRef] [PubMed]
- Hosangadi, B.D.; Dave, R.H. An efficient general method for esterification of aromatic carboxylic acids. Tetrahedron Lett. 1996, 37, 6375–6378. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Z.; Li, G.; Shi, P. Design and Synthesis of Novel Molecular Tweezer Anion Receptors based on Diphenic Acid Carbonyl Thiosemicarbazide. J. Chem. Res. 2010, 34, 410–413. [Google Scholar] [CrossRef]
- Rohane, S.H.; Chauhan, A.J.; Fuloria, N.K.; Fuloria, S. Synthesis and invitro antimycobacterial potential of novel hydrazones of eugenol. Arab. J. Chem. 2020, 13, 4495–4504. [Google Scholar] [CrossRef]
- Gloaguen, E.; Brenner, V.; Alauddin, M.; Tardivel, B.; Mons, M.; Zehnacker-Rentien, A.; Declerck, V.; Aitkenet, D.J. Direct spectroscopic evidence of hyperconjugation unveils the conformational landscape of hydrazides. Angew. Chem. Int. Ed. Engl. 2014, 53, 13756–13759. [Google Scholar] [CrossRef]
- Özen, A.S.; De Proft, F.; Aviyente, V.; Geerlings, P. Interpretation of hydrogen bonding in the weak and strong regions using conceptual DFT descriptors. J. Phys. Chem. A 2006, 110, 5860–5868. [Google Scholar] [CrossRef]
- Green, T.W.; Wuts, P.G.M. Protective Groups in Organic Synthesis; Wiley-Interscience: New York, NY, USA, 1999. [Google Scholar]
- Kozioł, A.; Lendzion-Paluch, A.; Manikowski, A. A fast and effective hydrogenation process of protected pentasaccharide: A key step in the synthesis of fondaparinux sodium. Org. Process Res. Dev. 2013, 17, 869–875. [Google Scholar] [CrossRef]
- Bartholomew, C.H. Mechanisms of catalyst deactivation. Appl. Catal. A Gen. 2001, 212, 17–60. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, J.; Sun, J. A method for determination of hexokinase activity by RP-HPLC. J. Nat. Sci. 2011, 16, 535–540. [Google Scholar] [CrossRef]
- Rodrigues, D.A.; Guerra, F.S.; Sagrillo, F.S.; Pinheiro, P.S.M.; Alves, M.A.; Thota, S.; Chaves, L.S.; Sant’Anna, C.M.R.; Fernandes, P.D.; Fraga, C.A.M. Design, Synthesis, and Pharmacological Evaluation of First-in-Class Multitarget N-Acylhydrazone Derivatives as Selective HDAC6/8 and PI3Kα Inhibitors. ChemMedChem 2020, 15, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Younis, A.; Awad, G.E.A. Utilization of Ultrasonic as an Approach of Green Chemistry for Synthesis of Hydrazones an Bishydrazones as Potential Antimicrobial Agents. Egypt. J. Chem. 2020, 63, 599–610. [Google Scholar] [CrossRef]
- Saha, A.; Kumar, R.; Kumar, R.; Devakumar, C. Development and assessment of green synthesis of hydrazides. Indian J. Chem. 2010, 49B, 526–531. [Google Scholar]
- de Fátima, S.; Barreto, A.; dos Santos, V.A.; Andrade, C.K.Z. Synthesis of acylhydrazino-peptomers, a new class of peptidomimetics, by consecutive Ugi and hydrazino-Ugi reactions. Beilstein J. Org. Chem. 2016, 12, 2865–2872. [Google Scholar] [CrossRef]
- Schröder, E.; Gibian, H. Über Peptidsynthesen, XII. Synthese von Glukagon-Teilsequenzen. Liebigs Ann. Chem. 1962, 656, 190–204. [Google Scholar] [CrossRef]
- Schnabel, E. Nebenreaktionen bei der Synthese von Peptiden nach dem Azidverfahren von Curtius. Liebigs Ann. Chem. 1962, 659, 168–184. [Google Scholar] [CrossRef]
- Bartholini, G.; Hegedues, B. Hoffmann La Roche. Ein Hydrazid und dessen Saeureadditionssalze. Patent Germany 03.12.1970 DE1941261, 1970. [Google Scholar]
- Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juszczak, K.; Szczepankiewicz, W.; Walczak, K. Synthesis and Primary Activity Assay of Novel Benitrobenrazide and Benserazide Derivatives. Molecules 2024, 29, 629. https://doi.org/10.3390/molecules29030629
Juszczak K, Szczepankiewicz W, Walczak K. Synthesis and Primary Activity Assay of Novel Benitrobenrazide and Benserazide Derivatives. Molecules. 2024; 29(3):629. https://doi.org/10.3390/molecules29030629
Chicago/Turabian StyleJuszczak, Karolina, Wojciech Szczepankiewicz, and Krzysztof Walczak. 2024. "Synthesis and Primary Activity Assay of Novel Benitrobenrazide and Benserazide Derivatives" Molecules 29, no. 3: 629. https://doi.org/10.3390/molecules29030629
APA StyleJuszczak, K., Szczepankiewicz, W., & Walczak, K. (2024). Synthesis and Primary Activity Assay of Novel Benitrobenrazide and Benserazide Derivatives. Molecules, 29(3), 629. https://doi.org/10.3390/molecules29030629