Effective Decolorization and Detoxification of Single and Mixed Dyes with Crude Laccase Preparation from a White-Rot Fungus Strain Pleurotus eryngii
Abstract
:1. Introduction
2. Results
2.1. Preparation of the Crude Laccase from Pleurotus eryngii and Determination of Laccase Activity
2.2. Decolorization of Azo Dyes
2.2.1. Decolorization Efficiency of Azo Dyes at Different Concentrations
2.2.2. Time Courses of Decolorization of Azo Dyes at Different Concentrations
2.2.3. Kinetic Equations of Azo Dye Degradation
2.3. Decolorization of the Anthraquinone Dyes
2.3.1. Decolorization Efficiency of Anthraquinone Dyes at Different Concentrations
2.3.2. Time Courses of Decolorization of Anthraquinone Dyes at Different Concentrations
2.3.3. Kinetic Equations of Anthraquinone Dye Degradation
2.4. Decolorization of Triphenylmethane Dyes
2.4.1. Decolorization Efficiency of Triphenylmethane Dyes at Different Concentrations
2.4.2. Time Courses of Decolorization of the Triphenylmethane Dyes at Different Concentrations
2.4.3. Kinetic Equations of Triphenylmethane Dye Degradation
2.5. Decolorization of Indigo Dye
2.5.1. Decolorization Efficiency of Indigo Dye at Different Concentrations
2.5.2. Time Courses of Decolorization of Indigo Dye at Different Concentrations
2.5.3. Kinetic Equations of Indigo Dye Degradation
2.6. Comparison and Ranking of k Values of Various Dyes
2.7. Decolorization of Mixed Dyes with Crude Laccase Preparation: Determination of Decolorization Efficiency
2.7.1. Decolorization of Azo + Azo Dyes
2.7.2. Decolorization of Azo + Anthraquinone Dyes
2.7.3. Decolorization of Azo + Triphenylmethane Dyes
2.7.4. Decolorization of Anthraquinone + Indigo Dyes
2.7.5. Decolorization of Anthraquinone + Triphenylmethane Dyes
2.7.6. Decolorization of Triphenylmethane + Indigo Dyes
2.8. Decolorization Kinetics of Mixed Dyes
2.8.1. Decolorization Kinetics of Azo + Azo Dyes
2.8.2. Decolorization Kinetics of Azo + Anthraquinone Dyes
2.8.3. Decolorization Kinetics of Azo + Indigo Dyes
2.8.4. Decolorization Kinetics of Azo + Triphenylmethane Dyes
2.8.5. Decolorization Kinetics of Anthraquinone + Indigo Dyes
2.8.6. Decolorization Kinetics of Indigo + Triphenylmethane Dyes
2.8.7. Decolorization Kinetics of Anthraquinone + Triphenylmethane Dyes
2.8.8. Decolorization Kinetics of Triphenylmethane + Triphenylmethane Dyes
2.9. Effects of Metal Salts at Different Concentrations on the Degradation of Dyes: Metal Salt Tolerance
2.9.1. Effects of Metal Salts at Different Concentrations on the Degradation of the Azo Dye NC
2.9.2. Effects of Metal Salts at Different Concentrations on the Degradation of the Anthraquinone Dye RBBR
2.9.3. Effects of Metal Salts at Different Concentrations on the Degradation of the Triphenylmethane Dye BB
2.9.4. Effects of Metal Salts at Different Concentrations on the Degradation of the Indigo Dye IC
2.10. Effects of Organic Solvents at Different Concentrations on the Degradation of Dyes: Organic Solvent Tolerance
2.10.1. Effects of Organic Solvents at Different Concentrations on the Degradation of the Azo Dye NC
2.10.2. Effects of Organic Solvents at Different Concentrations on the Degradation of the Anthraquinone Dye RBBR
2.10.3. Effects of Organic Solvents at Different Concentrations on the Degradation of the Triphenylmethane Dye BB
2.10.4. Effects of Organic Solvents at Different Concentrations on the Degradation of the Indigo Dye IC
2.11. Repeated-Batch Decolorization of Different Types of Dyes
2.11.1. Repeated-Batch Decolorization of Single Dyes
2.11.2. Repeated-Batch Decolorization of Two-Dye Mixtures
Azo + Anthraquinone Dyes
Azo + Triphenylmethane Dyes
Azo + Indigo Dyes
Anthraquinone + Triphenylmethane Dyes
Anthraquinone + Indigo Dyes
The Change in Laccase Activity during the Repeated-Batch Decolorization of Two-Dye Mixtures
2.11.3. Repeated-Batch Decolorization of Four-Dye Mixtures
2.12. Detoxification of Single and Mixed Dyes
2.12.1. Detoxification of Single Dyes
Azo Dye NC
Azo Dye RB5
Triphenylmethane Dye MG
Anthraquinone Dye RBBR
2.12.2. Detoxification of Mixed Dyes
Mixed Dyes: NC (Azo) + RB5 (Azo) + RB4 (Anthraquinone) + RBBR (Anthraquinone)
Mixed Dyes: NC (Azo) + RBBR (Anthraquinone) + BB (Triphenylmethane) + IC (Indigo)
Mixed Dyes: NC (Azo) + RB5 (Azo) + RBBR (Anthraquinone) + RB4 (Anthraquinone) + MG (Triphenylmethane) + BB (Triphenylmethane) + IC (Indigo)
3. Discussion
3.1. Comparison of Crude Laccase from Pleurotus eryngii (Used in This Study) with Other Crude Laccases Reported Previously in Decolorization of Different Dyes
3.2. Possible Reasons for the Different Decolorization Efficiencies of Azo Dyes
3.3. Possible Reasons for the Different Decolorization Efficiencies of Triphenylmethane Dyes
3.4. Explanation of How the Decolorization Activity of Laccase Was Higher at Higher Concentrations of Dyes
3.5. Crude Laccase from Pleurotus eryngii Had a High Tolerance to Various Metal Salts and Organic Solvents in the Degradation of Dyes
3.6. Decolorization Kinetics of Mixed Dyes
3.7. Possible Reasons for the Decrease in Toxicity of Dyes after Decolorization
3.8. Advantages and Practical Application Value of Crude Laccase Preparation for Decolorization and Detoxification of Dye Pollutants
4. Materials and Methods
4.1. Strain and Culture Media
4.2. Induction of Laccase Production and Preparation of Crude Laccase
4.3. Decolorization of the Dyes with Crude Laccase from Pleurotus eryngii and Calculation of the Decolorization Efficiency
4.4. Time Courses of Decolorization of Dyes at Different Concentrations
4.5. Kinetic Equations of Single-Dye Degradation
4.6. Decolorization of Mixed Dyes: Determination of Decolorization Efficiency of Each Dye in the Mixtures
4.7. Decolorization Kinetics of the Mixed Dyes
4.8. Effects of Metal Salts at Different Concentrations on Decolorization
4.9. Effects of Organic Solvents at Different Concentrations on Decolorization
4.10. Repeated-Batch Decolorization
4.10.1. Repeated-Batch Decolorization of Single Dyes
4.10.2. Repeated-Batch Decolorization of Mixed Dyes
4.11. Detoxification of the Dyes with Crude Laccase Preparation
4.11.1. Detoxification of Single Dyes
4.11.2. Detoxification of the Mixed Dyes
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, N.; Shahane, S.; Shivam Majumdar, R.; Mishra, U. Mode of action, properties, production, and application of laccase: A review. Recent Pat. Biotechnol. 2019, 13, 19–32. [Google Scholar] [CrossRef]
- Janusz, G.; Pawlik, A.; Świderska-Burek, U.; Polak, J.; Sulej, J.; Jarosz-Wilkołazka, A.; Paszczyński, A. Laccase Properties, Physio-logical Functions, and Evolution. Int. J. Mol. Sci. 2020, 21, 966. [Google Scholar] [CrossRef]
- Piontek, K.; Antorini, M.; Choinowski, T. Crystal structure of a laccase from the Fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. J. Biol. Chem. 2002, 277, 37663–37669. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Kaur, N.; Selvaraj, M.; Ghramh, H.A.; Al-Shehri, B.M.; Singh, G.; Arya, S.K.; Bhatt, K.; Ghotekar, S.; Mani, R.; et al. Laccase-assisted degradation of emerging recalcitrant compounds—A review. Bioresour. Technol. 2022, 364, 128031. [Google Scholar] [CrossRef] [PubMed]
- Kyomuhimbo, H.D.; Brink, H.G. Applications and immobilization strategies of the copper-centred laccase enzyme; a review. Heliyon 2023, 9, e13156. [Google Scholar] [CrossRef] [PubMed]
- Jeyabalan, J.; Veluchamy, A.; Priyan V, V.; Kumar, A.; Chandrasekar, R.; Narayanasamy, S. A review on the laccase assisted decolourization of dyes: Recent trends and research progress. J. Taiwan Inst. Chem. Eng. 2023, 151, 105081. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, M.; Shah, K.; Singh Kalra, S.; Rome, L.H.; Mahendra, S. Decolorization and detoxification of synthetic dye compounds by laccase immobilized in vault nanoparticles. Bioresour. Technol. 2022, 351, 127040. [Google Scholar] [CrossRef]
- Yao, C.Y.; Xia, W.; Dou, M.D.; Du, Y.Y.; Wu, J. Oxidative degradation of UV-irradiated polyethylene by laccase-mediator system. J. Hazard. Mater. 2022, 440, 129709. [Google Scholar] [CrossRef]
- Santo, M.; Weitsman, R.; Sivan, A. The role of the copper-binding enzyme laccase in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int. Biodeterior. Biodegrad. 2013, 84, 204–210. [Google Scholar] [CrossRef]
- Zhang, J.B.; Liu, X.P.; Xu, Z.Q.; Chen, H.; Yang, Y.X. Degradation of chlorophenols catalyzed by laccase. Int. Biodeterior. Biodegrad. 2008, 61, 351–356. [Google Scholar] [CrossRef]
- Chen, J.H.; Liu, J.S.; Chen, B.X.; Yang, F.; Li, B.X.; Li, H.N.; Jiang, Z.B.; Song, H.T. Effective biodegradation of chlorophenols, sulfonamides, and their mixtures by bacterial laccase immobilized on chitin. Ecotoxicol. Environ. Saf. 2023, 256, 114856. [Google Scholar] [CrossRef]
- Xu, P.; Du, H.; Peng, X.; Tang, Y.; Zhou, Y.; Chen, X.; Fei, J.; Meng, Y.; Yuan, L. Degradation of several polycyclic aromatic hydrocarbons by laccase in reverse micelle system. Sci. Total Environ. 2020, 708, 134970. [Google Scholar] [CrossRef]
- Hadibarata, T.; Yuniarto, A. Biodegradation of polycyclic aromatic hydrocarbons by high-laccase basidiomycetes fungi isolated from tropical forest of Borneo. Biocatal. Agric. Biotechnol. 2020, 28, 101717. [Google Scholar] [CrossRef]
- Das, A.; Singh, J.; Yogalakshmi, K.N. Laccase immobilized magnetic iron nanoparticles: Fabrication and its performance evaluation in chlorpyrifos degradation. Int. Biodeterior. Biodegrad. 2017, 117, 183–189. [Google Scholar] [CrossRef]
- Rudakiya, D.M.; Patel, D.H.; Gupte, A. Exploiting the potential of metal and solvent tolerant laccase from Tricholoma giganteum AGDR1 for the removal of pesticides. Int. J. Biol. Macromol. 2020, 144, 586–595. [Google Scholar] [CrossRef]
- Dlamini, M.L.; Lesaoana, M.; Kotze, I.; Richards, H. An oxidoreductase enzyme, fungal laccase immobilized on zeolitic imidazolate frameworks for the biocatalytic degradation of an endocrine-disrupting chemical, dimethyl phthalate. J. Environ. Chem. Eng. 2023, 11, 109810. [Google Scholar] [CrossRef]
- Barrios-Estrada, C.; de Jesús, M.R.A.; Gutiérrez, M.B.D.; Iqbal, H.M.N.; Kannan, S.; Parra-Saldívar, R. Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation—A review. Sci. Total Environ. 2018, 612, 1516–1531. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Q.; Maulidiany, N.; Zeng, P.; Heo, S. Decolourization of azo, anthraquinone and triphenylmethane dyes using aerobic granules: Acclimatization and long-term stability. Chemosphere 2021, 263, 128312. [Google Scholar] [CrossRef]
- Yang, X.Q.; Zhao, X.X.; Liu, C.Y.; Zheng, Y.; Qian, S.J. Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase. Process Biochem. 2009, 44, 1185–1189. [Google Scholar] [CrossRef]
- Soares, G.M.B.; Amorim, M.T.P.; Hrdina, R.; Costa-Ferreira, M. Studies on the biotransformation of novel diazo dyes by laccase. Process Biochem. 2002, 37, 581–587. [Google Scholar] [CrossRef]
- Toker, S.K.; Evlat, H.; Koçyïğït, A. Screening of newly isolated marine-derived fungi for their laccase production and decolorization of different dye types. Reg. Stud. Mar. Sci. 2021, 45, 101837. [Google Scholar] [CrossRef]
- Tomar, T.; Kahandawala, N.; Kaur, J.; Thounaojam, L.; Choudhary, I.; Bera, S. Bioremediation of synthetic dyes from wastewater by using microbial nanocomposites: An emerging field for water pollution management. Biocatal. Agric. Biotechnol. 2023, 51, 102767. [Google Scholar] [CrossRef]
- Qurrat-ul-Ain; Khurshid, S.; Gul, Z.; Khatoon, J.; Shah, M.R.; Hamid, I.; Khan, I.A.T.; Aslam, F. Anionic azo dyes removal from water using amine-functionalized cobalt–iron oxide nanoparticles: A comparative time-dependent study and structural optimization towards the removal mechanism. RSC Adv. 2020, 10, 1021–1041. [Google Scholar] [CrossRef]
- Vats, S.; Srivastava, S.; Maurya, N.; Saxena, S.; Mudgil, B.; Yadav, S.; Chandra, R. Chapter 8—Advances in Dye Contamination: Health Hazards, Biodegradation, and Bioremediation. In Advances in Pollution Research, Biological Approaches to Controlling Pollutants; Woodhead Publishing: Sawston, UK, 2022; pp. 139–162. [Google Scholar]
- Herath, I.S.; Udayanga, D.; Jayasanka, D.J.; Hewawasam, C. Textile dye decolorization by white rot fungi—A review. Bioresour. Technol. Rep. 2024, 25, 101687. [Google Scholar] [CrossRef]
- Hashemi, S.H.; Kaykhaii, M. Azo dyes: Sources, occurrence, toxicity, sampling, analysis, and their removal methods. Emerg. Freshw. Pollut. 2022, 15, 267–287. [Google Scholar]
- Chung, K.T. Azo dyes and human health: A review. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev. 2016, 34, 233–261. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhao, Y.C. Health Impacts of Typical Dyes and Pigments. J. Environ. Health 2005, 22, 229–231. [Google Scholar]
- Uddin, F. Environmental hazard in textile dyeing wastewater from local textile industry. Cellulose 2021, 28, 10715–10739. [Google Scholar] [CrossRef]
- Kumar, V.; Pallavi, P.; Kumar Sen, S.; Raut, S. Harnessing the potential of white rot fungi and ligninolytic enzymes for efficient textile dye degradation: A comprehensive review. Water. Environ. Res. 2024, 96, e10959. [Google Scholar] [CrossRef]
- Zeng, X.K.; Cai, Y.J.; Liao, X.R.; Zeng, X.L.; Luo, S.P.; Zhang, D.B. Anthraquinone dye assisted the decolorization of azo dyes by a novel Trametes trogii laccase. Process Biochem. 2012, 47, 160–163. [Google Scholar] [CrossRef]
- Pan, F. Decoloration of Printing and Dyeing Wastewater by Crude Enzyme of White-rot Fungus. J. Anhui Agric. Sci. 2007, 35, 6898–6899. [Google Scholar]
- Yanto, D.H.Y.; Anita, S.H.; Solihat, N.N. Enzymatic degradation and metabolic pathway of acid blue 129 dye by crude laccase from newly isolated Trametes hirsuta EDN 082. Biocatal. Biotransformation 2022, 1–11. [Google Scholar] [CrossRef]
- Couto, S.R. Decolonization of industrial azo dyes by crude laccase from Trametes Hirsuta. J. Hazard. Mater. 2007, 148, 768–770. [Google Scholar] [CrossRef] [PubMed]
- Jasińska, A.; Soboń, A.; Góralczyk-Bińkowska, A.; Długoński, J. Analysis of decolorization potential of Myrothecium roridum in the light of its secretome and toxicological studies. Environ. Sci. Pollut. Res. 2019, 26, 26313–26323. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.K.; Cai, Y.J.; Liao, X.R.; Zeng, X.L.; Li, W.X.; Zhang, D.B. Decolorization of synthetic dyes by crude laccase from a newly isolated Trametes trogii strain cultivated on solid agro-industrial residue. J. Hazard. Mater. 2011, 187, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.M.; Zhou, J.T.; Wang, J.; Du, C.H.; Yan, B. Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye. Process Biochem. 2004, 11, 1415–1419. [Google Scholar] [CrossRef]
- Wong, Y.; Yu, J. Laccase-catalyzed decolorization of synthetic dyes. Water Res. 1999, 33, 3512–3520. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, P.; Singh, A.K.; Kumar, V.; Sonawane, V.C.; Markandeya; Bharagava, R.N.; Raj, A. Decolourisation of textile dye by laccase: Process evaluation and assessment of its degradation bioproducts. Bioresour. Technol. 2021, 340, 125591. [Google Scholar] [CrossRef]
- Osma, J.F.; Herrera, J.L.T.; Couto, S.R. Banana skin: A novel waste for laccase production by Trametes pubescens under solid-state conditions. Application to synthetic dye decolouration. Dye. Pigment. 2007, 75, 32–37. [Google Scholar] [CrossRef]
- Grassi, E.; Scodeller, P.; Filiel, N.; Carballo, R.; Levin, L. Potential of Trametes trogii culture fluids and its purified laccase for the decolorization of different types of recalcitrant dyes without the addition of redox mediators. Int. Biodeterior. Biodegrad. 2011, 65, 635–643. [Google Scholar] [CrossRef]
- Li, J.H. Purification and Characterization of Three Laccases from Pycnoporus sanguineus MX5 and Their Decolorization of Industrial Dyes; Zhejiang Agriculture & Forestry University: Hangzhou, China, 2019. [Google Scholar]
- Hadibarata, T.; Yusoff, A.R.M.; Aris, A.; Salmiati Hidayat, S.T.; Kristanti, R.A. Decolorization of Azo, Triphenylmethane and Anthraquinone Dyes by Laccase of a Newly Isolated Armillaria sp. F022. Water Air Soil Pollut. 2012, 223, 1045–1054. [Google Scholar] [CrossRef]
- Núria, C.; Teodor, P.; Teresa, V.; Glòria, C.; Montserrat, S. Metabolites from the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase. Chemosphere 2009, 75, 1344–1349. [Google Scholar]
- Hu, M.R.; Chao, Y.P.; Zhang, G.Q.; Xue, Z.Q.; Qian, S. Laccase-mediator system in the decolorization of different types of recalcitrant dyes. J. Ind. Microbiol. Biotechnol. 2009, 36, 45–51. [Google Scholar] [CrossRef]
- Collins, P.J.; Dobson, A.D.W. Regulation of laccase gene transcription in Trametes versicolor. Appl. Environ. Microbiol 1997, 63, 3444–3450. [Google Scholar] [CrossRef] [PubMed]
- Enayatzamir, K.; Alikhani, H.A.; Couto, S.R. Simultaneous production of laccase and decolouration of the diazo dye Reactive Black 5 in a fixed-bed bioreactor. J. Hazard. Mater. 2009, 164, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Darvishi, F.; Moradi, M.; Jolivalt, C.; Madzak, C. Laccase production from sucrose by recombinant Yarrowia lipolytica and its application to decolorization of environmental pollutant dyes. Ecotoxicol. Environ. Saf. 2018, 165, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, A.; Couto, S.R.; Sanroman, M.A. Dye decolorization by Trametes hirsuta immobilized into alginate beads. World J. Microbiol. Biotechnol. 2005, 21, 405–409. [Google Scholar] [CrossRef]
- Kandelbauer, A.; Maute, O.; Kessler, R.W.; Erlacher, A.; Gübitz, G.M. Study of dye decolorization in an immobilized laccase enzyme-reactor using online spectroscopy. Biotechnol Bioeng. 2004, 87, 552–563. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Montoya, L.A.; Hernández-Montoya, V.; Montes-Morán, M.A.; Jáuregui-Rincón, J.; Cervante, F.J. Decolorization of dyes with different molecular properties using free and immobilized laccases from Trametes versicolor. J. Mol. Liq. 2015, 212, 30–37. [Google Scholar] [CrossRef]
- Gomes, E.; Aguiar, A.P.; Carvalho, C.C.; Bonfá, M.R.B.; Silva, R.D.; Boscolo, M. Ligninases production by Basidiomycetes strains on lignocellulosic agricultural residues and their application in the decolorization of synthetic dyes. Braz. J. Microbiol. 2009, 40, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, B.K.; Linde, G.A.; Colauto, N.B.; do Valle, J.S. Panus strigellus laccase decolorizes anthraquinone, azo, and triphenylmethane dyes. Biocatal. Agric. Biotechnol. 2018, 16, 558–563. [Google Scholar] [CrossRef]
- Pasti-Grigsby, M.B.; Paszczynski, A.; Goszczynski, S.; Crawford, D.L.; Crawford, R.L. Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium. Appl. Environ. Microbiol. 1992, 58, 3605–3613. [Google Scholar] [CrossRef]
- Azmi, W.; Sani, R.K.; Banerjee, U.C. Biodegradation of triphenylmethane dyes. Enzym. Microb. Technol. 1998, 22, 185–191. [Google Scholar] [CrossRef]
- Wang, X.W.; Zhan, H.Y.; He, W. Effect of metal ions on laccase activity. China Pulp Pap. Ind. 2003, 24, 3. [Google Scholar]
- Couto, S.R.; Sanromán, M.; Gübitz, G.M. Influence of redox mediators and metal ions on synthetic acid dye decolourization by crude laccase from Trametes hirsuta. Chemosphere 2005, 58, 417–422. [Google Scholar] [CrossRef]
- Zilly, A.; da Silva, J.C.M.; Bracht, A.; de Souza, C.G.M.; Carvajal, A.E.; Koehnlein, E.A.; Peralta, R.M. Influence of NaCl and Na2SO4 on the kinetics and dye decolorization ability of crude laccase from Ganoderma lucidum. Int. Biodeterior. Biodegrad. 2011, 65, 340–344. [Google Scholar] [CrossRef]
- Gao, E.L.; Zhong, W.J.; Fu, X.L.; Chen, F.S.; Ye, Z.G. Decolorization on Indigo Dyeing Wastewater by Laccase from Coriolus versicolor. J. Anhui Agric. Sci. 2012, 40, 16321–16324. [Google Scholar]
- Wang, Y.Q.; Xie, X.H.; Zheng, X.L.; Zhang, Q.Y.; Xu, K.X.; Liu, J.S. Advances in research on activators promoting microbial degradation of dyes. Chem. Ind. Eng. Prog. 2019, 38, 2968–2976. [Google Scholar]
- Forootanfar, H.; Moezzi, A.; Aghaie, M.K.; Mahmoudjanlou, Y.; Ameri, A.; Niknejad, F.; Faramarzi, M.A. Synthetic dye decolorization by three sources of fungal laccase. Iran. J. Environ. Health Sci Eng. 2012, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Zille, A.; Górnacka, B.; Rehorek, A.; Cavaco-Paulo, A. Degradation of azo dyes by Trametes villosa laccase over long periods of oxidative conditions. Appl. Environ. Microbiol. 2005, 71, 6711–6718. [Google Scholar] [CrossRef] [PubMed]
Types of Dye | Dye | The Reaction Rate Constants of Various Dyes (min−1) | R2 Values |
---|---|---|---|
Azo dye | New Coccine (NC) | 0.9938 | |
Reactive Black 5 (RB5) | 0.9582 | ||
Acid Orange 7 (AO7) | 0.9711 | ||
Anthraquinone Dye | Remazol Brilliant Blue R (RBBR) | 0.9706 | |
Reactive Blue 4 (RB4) | 0.9827 | ||
Triphenylmethane Dye | Methyl Green (MG) | 0.9742 | |
Bromophenol Blue (BB) | 0.9565 | ||
Acid Fuchsin (AF) | 0.9733 | ||
Indigo dye | Indigo Carmine (IC) | 0.9742 |
Mixed Dyes | Dye | The Reaction Rate Constants of Various Dyes (min−1) | R2 Values |
---|---|---|---|
NC + RB4 | NC | 0.9516 | |
RB4 | 0.9503 | ||
NC + RBBR | NC | 0.9808 | |
RBBR | 0.9539 | ||
NC + IC | NC | 0.9535 | |
IC | 0.9877 | ||
NC + MG | NC | 0.9848 | |
MG | 0.9505 | ||
RB4 + IC | RB4 | 0.9866 | |
IC | 0.9815 | ||
MG + CR | MG | 0.9755 | |
CR | 0.9575 | ||
AF + BB | AF | 0.9707 | |
BB | 0.9792 | ||
CR + IC | CR | 0.9545 | |
IC | 0.9523 | ||
CR + RBBR | CR | 0.9529 | |
RBBR | 0.9652 | ||
MG + BB | MG | 0.9936 | |
BB | 0.9963 | ||
NC + RB5 | NC | 0.9610 | |
RB5 | 0.9536 |
Type of Dye | Dye | Abbreviation | Structure | Maximum Absorption Wavelength (nm) |
---|---|---|---|---|
Azo Dye | New Coccine | NC | 506 | |
Reactive Black 5 | RB5 | 598 | ||
Acid Orange 7 | AO7 | 481 | ||
Sunset Yellow | SY | 482 | ||
Direct Red81 | DR81 | 512 | ||
Reactive Orange 16 | RO16 | 494 | ||
Orange G | OG | 478 | ||
Remazol Brilliant violet 5R | RBV5R | 558 | ||
Anthraquinone Dye | Remazol Brilliant Blue R | RBBR | 591 | |
Reactive Blue 4 | RB4 | 603 | ||
Triphenylmethane Dye | Methyl Green | MG | 632 | |
Cresol Red | CR | 435 | ||
Bromophenol Blue | BB | 591 | ||
Acid Fuchsin | AF | 546 | ||
Indigo dye | Indigo Carmine | IC | 610 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, M.; Deng, W.; Wang, Z.; Weng, C.; Yang, Y. Effective Decolorization and Detoxification of Single and Mixed Dyes with Crude Laccase Preparation from a White-Rot Fungus Strain Pleurotus eryngii. Molecules 2024, 29, 669. https://doi.org/10.3390/molecules29030669
Ge M, Deng W, Wang Z, Weng C, Yang Y. Effective Decolorization and Detoxification of Single and Mixed Dyes with Crude Laccase Preparation from a White-Rot Fungus Strain Pleurotus eryngii. Molecules. 2024; 29(3):669. https://doi.org/10.3390/molecules29030669
Chicago/Turabian StyleGe, Mingrui, Wei Deng, Ziyi Wang, Chenwen Weng, and Yang Yang. 2024. "Effective Decolorization and Detoxification of Single and Mixed Dyes with Crude Laccase Preparation from a White-Rot Fungus Strain Pleurotus eryngii" Molecules 29, no. 3: 669. https://doi.org/10.3390/molecules29030669
APA StyleGe, M., Deng, W., Wang, Z., Weng, C., & Yang, Y. (2024). Effective Decolorization and Detoxification of Single and Mixed Dyes with Crude Laccase Preparation from a White-Rot Fungus Strain Pleurotus eryngii. Molecules, 29(3), 669. https://doi.org/10.3390/molecules29030669