Biochemical Profiling and Physicochemical and Biological Valorization of Iraqi Honey: A Comprehensive Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Sugars in Iraqi Honey Samples
2.2. Moisture Contents
2.3. The pH of Honey Samples
2.4. Electrical Conductivity (EC) of Iraqi Honey Samples
2.5. Hydroxymethyl-furfuraldehyde Content (HMF)
2.6. Melanoidin Content in Iraqi Honey Samples
2.7. The Mineral Composition of Iraqi Honey Samples
2.8. Antioxidant Activities and Bioactive Compounds
2.8.1. Total Antioxidant Activities
2.8.2. DPPH (1,1-diphenyl-2-picrylhydrazyl) Assay
2.8.3. Total Phenolic Compounds in Iraqi Honey Samples
2.9. Phenolic Compounds
2.10. Antibacterial and Antifungal Activities of Iraqi Honey Samples
3. Materials and Methods
3.1. Sample Collection
3.2. Reagent
3.3. Sugar Analysis in Iraqi Honey Samples
3.3.1. Total Sugar
3.3.2. Reducing Sugar and Concentration of Sucrose
3.3.3. Concentration of Glucose
3.3.4. Concentration of Fructose
3.4. Determination of Moisture Content
3.5. Determination of pH
3.6. Determination of Electrical Conductivity (EC)
3.7. Detection of Hydroxymethyl-furfuraldehyde (HMF)
3.8. Determination of Mineral Elements
3.9. Determination of Melanoidin Content
3.10. Determination of Total Antioxidant Activity
3.11. DPPH (1,1-diphenyl-2-picrylhydrazyl) Assay
3.12. Determination of Total Phenolic Content (TPC)
3.13. Determination of the Polyphenol Composition of Iraqi Honeys
3.14. Determination of the Antibacterial and Antifungal Activities of Iraqi Honeys
3.15. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Codex Alimentarius. Draft revised standard for standard for honey (at step 10 of the Codex procedure). Alinorm 2001, 1, 19–26. [Google Scholar]
- White, J.W.; Doner, L.W. Honey composition and properties. In Beekeeping in the United States Agriculture Handbook Number 335; USDA: Washington, DC, USA, 1980; pp. 82–91. [Google Scholar]
- Bogdanov, S.; Ruoff, K.; Oddo, L.P. Physico-chemical methods for the characterisation of unifloral honeys: A review. Apidologie 2004, 35 (Suppl. S1), S4–S17. [Google Scholar] [CrossRef]
- Aasima, Z.; Safdar, M.N.; Nouman, S.; Amer, M.; Tabassum, H.; Sial, M.U. Chemical analysis and sensory evaluation of branded honey collected from Islamabad and Rawalpindi market. Pak. J. Agric. Res. 2008, 21, 86–91. [Google Scholar]
- Ouchemoukh, S.; Louaileche, H.; Schweitzer, P. Physicochemical characteristics and pollen spectrum of some Algerian honeys. Food Control 2007, 18, 52–58. [Google Scholar] [CrossRef]
- Almasaudi, S. The antibacterial activities of honey. Saudi J. Biol. Sci. 2021, 28, 2188–2196. [Google Scholar] [CrossRef] [PubMed]
- Lachman, J.; Orsák, M.; Hejtmánková, A.; Kovářová, E. Evaluation of antioxidant activity and total phenolics of selected Czech honeys. LWT-Food Sci. Technol. 2010, 43, 52–58. [Google Scholar] [CrossRef]
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-R.; Ye, Y.-L.; Lin, T.-Y.; Wang, Y.-W.; Peng, C.-C. Effect of floral sources on the antioxidant, antimicrobial, and anti-inflammatory activities of honeys in Taiwan. Food Chem. 2013, 139, 938–943. [Google Scholar] [CrossRef]
- Jull, A.B.; Cullum, N.; Dumville, J.C.; Westby, M.J.; Deshpande, S.; Walker, N. Honey as a topical treatment for wounds. Cochrane Database Syst. Rev. 2015, 2015, CD005083. [Google Scholar] [CrossRef]
- Cohen, H.A.; Rozen, J.; Kristal, H.; Laks, Y.; Berkovitch, M.; Uziel, Y.; Kozer, E.; Pomeranz, A.; Efrat, H. Effect of Honey on Nocturnal Cough and Sleep Quality: A Double-blind, Randomized, Placebo-Controlled Study. Pediatrics 2012, 130, 465–471. [Google Scholar] [CrossRef]
- Mahmood, T.; Akhtar, N.; Khan, B.A.; Naeem, M. Exploring the potential of natural honey for preventing radiation-induced side effects in the oesophagus. CMB 2018, 64, 68–76. [Google Scholar]
- Alvarez-Suarez, J.M.; Gasparrini, M.; Forbes-Hernández, T.Y.; Mazzoni, L.; Giampieri, F. The Composition and Biological Activity of Honey: A Focus on Manuka Honey. Foods 2014, 3, 420–432. [Google Scholar] [CrossRef] [PubMed]
- Asha’ari, Z.A.; Ahmad, M.Z.; Din, W.S.J.W.; Hussin, C.M.C.; Leman, I. Ingestion of honey improves the symptoms of allergic rhinitis: Evidence from a randomized placebo-controlled trial in the East Coast of Peninsular Malaysia. ASM 2013, 33, 469–475. [Google Scholar] [CrossRef]
- Carter, D.A.; Blair, S.E.; Cokcetin, N.N.; Bouzo, D.; Brooks, P.; Schothauer, R.; Harry, E.J. Therapeutic Manuka Honey: No Longer So Alternative. Front. Microbiol. 2016, 7, 569. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.E.A.; Kabbashi, A.S.; Koko, W.S.; Ansari, M.J.; Adgaba, N.; Al-Ghamdi, A. In vitro activity of some natural honeys against Entamoeba histolytica and Giardia lamblia trophozoites. Saudi J. Biol. Sci. 2019, 26, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Laksemi, D.A.; Tunas, I.K.; Damayanti, P.A.; Sudarmaja, I.; Widyadharma, I.P.E.; Wiryanthini, I.A.; Linawati, N.M. Evaluation of Antimalarial Activity of Combination Extract of Citrus aurantifolia and Honey against Plasmodium berghei-İnfected Mice. Trop. J. Nat. Prod. Res. 2023, 7, 2168–2171. [Google Scholar]
- El Naggar, H.M.; Anwar, M.M.; Khayyal, A.E.; Abdelhameed, R.M.; Barakat, A.M.; Sadek, S.A.S.; Elashkar, A.M. Application of honeybee venom loaded nanoparticles for the treatment of chronic toxoplasmosis: Parasitological, histopathological, and immunohistochemical studies. J. Parasit. Dis. 2023, 47, 591–607. [Google Scholar] [CrossRef]
- Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P. Honey for Nutrition and Health: A Review. J. Am. Coll. Nutr. 2008, 27, 677–689. [Google Scholar] [CrossRef]
- Aljohar, H.I.; Maher, H.M.; Albaqami, J.; Al-Mehaizie, M.; Orfali, R.; Alrubia, S. Physical and chemical screening of honey samples available in the Saudi market: An important aspect in the authentication process and quality assessment. Saudi Pharm. J. 2018, 26, 932–942. [Google Scholar] [CrossRef]
- Draiaia, R.; Dainese, N.; Borin, A.; Manzinello, C.; Gallina, A.; Mutinelli, F. Physicochemical parameters and antibiotics residuals in Algerian honey. Afr. J. Biotechnol. 2015, 14, 1242–1251. [Google Scholar]
- Kamal, M.; Rashid, H.U.; Mondal, S.C.; El Taj, H.F.; Jung, C. Physicochemical and microbiological characteristics of honey obtained through sugar feeding of bees. J. Food Sci. Technol. 2019, 56, 2267–2277. [Google Scholar] [CrossRef]
- Terrab, A.; González, A.G.; Díez, M.J.; Heredia, F.J. Mineral content and electrical conductivity of the honeys produced in Northwest Morocco and their contribution to the characterisation of unifloral honeys. J. Sci. Food Agric. 2003, 83, 637–643. [Google Scholar] [CrossRef]
- El Sohaimy, S.A.; Masry, S.H.D.; Shehata, M.G. Physicochemical characteristics of honey from different origins. Ann. Agric. Sci. 2015, 60, 279–287. [Google Scholar] [CrossRef]
- de Sousa, J.M.B.; de Souza, E.L.; Marques, G.; de Toledo Benassi, M.; Gullón, B.; Pintado, M.M.; Magnani, M. Sugar profile, physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region. LWT-Food Sci. Technol. 2016, 65, 645–651. [Google Scholar] [CrossRef]
- Smetanska, I.; Alharthi, S.S.; Selim, K.A. Physicochemical, antioxidant capacity and color analysis of six honeys from different origin. J. King Saud. Univ.—Sci. 2021, 33, 101447. [Google Scholar] [CrossRef]
- Nurdin, A.S.; Saelan, E.; Nurdin, I.N.; Dustan. Composition and nutritional content of Honey Trigona sp. in the Tikep forest management unit (KPH) North Moluccas. IOP Conf. Ser. Earth Environ. Sci. 2021, 807, 022062. [Google Scholar] [CrossRef]
- Saxena, S.; Gautam, S.; Sharma, A. Physical, biochemical and antioxidant properties of some Indian honeys. Food Chem. 2010, 118, 391–397. [Google Scholar] [CrossRef]
- Machado De-Melo, A.A.; Almeida-Muradian, L.B.D.; Sancho, M.T.; Pascual-Maté, A. Composition and properties of Apis mellifera honey: A review. J. Apic. Res. 2018, 57, 5–37. [Google Scholar] [CrossRef]
- Scripcă, L.A.; Amariei, S. The Influence of Chemical Contaminants on the Physicochemical Properties of Unifloral and Multifloral Honey. Foods 2021, 10, 1039. [Google Scholar] [CrossRef]
- Alqarni, A.S.; Owayss, A.A.; Mahmoud, A.A.; Hannan, M.A. Mineral content and physical properties of local and imported honeys in Saudi Arabia. J. Saudi Chem. Soc. 2014, 18, 618–625. [Google Scholar] [CrossRef]
- Ceylan, D.A.; Uslu, N.; Gül, A.; Özcan, M.M.; Özcan, M.M. Effect of honey types on physico-chemical properties, electrical conductivity and mineral contents of honeys. J. Agroaliment. Process. Technol. 2019, 25, 31–35. [Google Scholar]
- Conti, M.E.; Canepari, S.; Finoia, M.G.; Mele, G.; Astolfi, M.L. Characterization of Italian multifloral honeys on the basis of their mineral content and some typical quality parameters. J. Food Compos. Anal. 2018, 74, 102–113. [Google Scholar] [CrossRef]
- Godoy, C.A.; Valderrama, P.; Boroski, M. HMF Monitoring: Storage Condition and Honey Quality. Food Anal. Methods 2022, 15, 3162–3176. [Google Scholar] [CrossRef]
- Capuano, E.; Fogliano, V. Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT Food Sci. Technol. 2011, 44, 793–810. [Google Scholar] [CrossRef]
- Sajid, M.; Yamin, M.; Asad, F.; Yaqub, S.; Ahmad, S.; Mubarik, M.A.M.S.; Ahmad, B.; Ahmad, W.; Qamer, S. Comparative study of physio-chemical analysis of fresh and branded honeys from Pakistan. Saudi J. Biol. Sci. 2020, 27, 173–176. [Google Scholar] [CrossRef]
- Alqarni, A.S.; Owayss, A.A.; Mahmoud, A.A. Physicochemical characteristics, total phenols and pigments of national and international honeys in Saudi Arabia. Arab. J. Chem. 2016, 9, 114–120. [Google Scholar] [CrossRef]
- Langner, E.; Rzeski, W. Biological Properties of Melanoidins: A Review. Int. J. Food Prop. 2014, 17, 344–353. [Google Scholar] [CrossRef]
- Tressl, R.; Wondrak, G.T.; Garbe, L.-A.; Krüger, R.-P.; Rewicki, D. Pentoses and Hexoses as Sources of New Melanoidin-like Maillard Polymers. J. Agric. Food Chem. 1998, 46, 1765–1776. [Google Scholar] [CrossRef]
- Cämmerer, B.; Kroh, L. Investigation of the influence of reaction conditions on the elementary composition of melanoidins. Food Chem. 1995, 53, 55–59. [Google Scholar] [CrossRef]
- Cämmerer, B.; Jalyschko, W.; Kroh, L.W. Intact Carbohydrate Structures as Part of the Melanoidin Skeleton. J. Agric. Food Chem. 2002, 50, 2083–2087. [Google Scholar] [CrossRef]
- Hofmann, T. Studies on the Relationship between Molecular Weight and the Color Potency of Fractions Obtained by Thermal Treatment of Glucose/Amino Acid and Glucose/Protein Solutions by Using Ultracentrifugation and Color Dilution Techniques. J. Agric. Food Chem. 1998, 46, 3891–3895. [Google Scholar] [CrossRef]
- Habib, H.M.; Al Meqbali, F.T.; Kamal, H.; Souka, U.D.; Ibrahim, W.H. Physicochemical and biochemical properties of honeys from arid regions. Food Chem. 2014, 153, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Aazza, S.; Lyoussi, B.; Antunes, D.; Miguel, M.G. Physicochemical characterization and antioxidant activity of 17 commercial Moroccan honeys. Int. J. Food Sci. Nutr. 2014, 65, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Fernandeztorres, R.; Perezbernal, J.; Bellolopez, M.; Callejonmochon, M.; Jimenezsanchez, J.; Guiraumperez, A. Mineral content and botanical origin of Spanish honeys. Talanta 2005, 65, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Al-Mamary, M.; Al-Meeri, A.; Al-Habori, M. Antioxidant activities and total phenolics of different types of honey. Nutr. Res. 2002, 22, 1041–1047. [Google Scholar] [CrossRef]
- Hodnick, W.F.; MllosavljeviĆ, E.B.; Nelson, J.H.; Pardini, R.S. Electrochemistry of flavonoids: Relationships between redox potentials, inhibition of mitochondrial respiration, and production of oxygen radicals by flavonoids. Biochem. Pharmacol. 1988, 37, 2607–2611. [Google Scholar] [CrossRef]
- Mayer-Davis, E.J.; A Bell, R.; A Reboussin, B.; Rushing, J.; A Marshall, J.; Hamman, R.F. Antioxidant nutrient intake and diabetic retinopathy: The San Luis Valley Diabetes Study. Ophthalmology 1998, 105, 2264–2270. [Google Scholar] [CrossRef]
- Villanueva, V.R.; Barbier, M.; Gonnet, M.; Lavie, P. The flavonoids of propolis. Isolation of a new bacteriostatic substance: Pinocembrin (dihydroxy-5, 7 flavanone). Ann. L’institut Pasteur 1970, 118, 84–87. [Google Scholar]
- El-Haskoury, R.; Kriaa, W.; Lyoussi, B.; Makni, M. Ceratonia siliqua honeys from Morocco: Physicochemical properties, mineral contents, and antioxidant activities. J. Food Drug Anal. 2018, 26, 67–73. [Google Scholar] [CrossRef]
- Vinson, J.A.; Hontz, B.A. Phenol Antioxidant Index: Comparative Antioxidant Effectiveness of Red and White Wines. J. Agric. Food Chem. 1995, 43, 401–403. [Google Scholar] [CrossRef]
- Alves, A.; Ramos, A.; Gonçalves, M.M.; Bernardo, M.; Mendes, B. Antioxidant activity, quality parameters and mineral content of Portuguese monofloral honeys. J. Food Compos. Anal. 2013, 30, 130–138. [Google Scholar] [CrossRef]
- Estevinho, L.; Pereira, A.P.; Moreira, L.; Dias, L.G.; Pereira, E. Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem. Toxicol. 2008, 46, 3774–3779. [Google Scholar] [CrossRef]
- Silici, S.; Sagdic, O.; Ekici, L. Total phenolic content, antiradical, antioxidant and antimicrobial activities of Rhododendron honeys. Food Chem. 2010, 121, 238–243. [Google Scholar] [CrossRef]
- Silici, S.; Uluozlu, O.D.; Tuzen, M.; Soylak, M. Assessment of trace element levels in Rhododendron honeys of Black Sea Region, Turkey. J. Hazard. Mater. 2008, 156, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant Activity, Total Phenolic Content, Individual Phenolics and Physicochemical Parameters Suitability for Romanian Honey Authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef]
- Wilczynska, A. Phenolic content and antioxidant activity of different types of polish honey-a short report. Pol. J. Food Nutr. Sci. 2010, 60, 4. [Google Scholar]
- Mellen, M.; Fikselova, M.; Mendelova, A.; Hascik, P. Antioxidant Effect of Natural Honeys Affected by Their Source and Origin. Pol. J. Food Nutr. Sci. 2015, 65, 81–85. [Google Scholar] [CrossRef]
- Bertoncelj, J.; Doberšek, U.; Jamnik, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Becerril-Sánchez, A.L.; Quintero-Salazar, B.; Dublán-García, O.; Escalona-Buendía, H.B. Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Jerković, I.; Bifulco, E.; Marijanović, Z. Biodiversity of Salix spp. honeydew and nectar honeys determined by RP-HPLC and evaluation of their antioxidant capacity. Chem. Biodivers. 2011, 8, 872–879. [Google Scholar] [CrossRef]
- Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef]
- Guerrero, J.A.; Lozano, M.L.; Castillo, J.; Benavente-García, O.; Vicente, V.; Rivera, J. Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor. J. Thromb. Haemost. 2005, 3, 369–376. [Google Scholar] [CrossRef]
- Mao, W.; Schuler, M.A.; Berenbaum, M.R. Honey constituents up-regulate detoxification and immunity genes in the western honeybee Apis mellifera. Proc. Natl. Acad. Sci. USA 2013, 110, 8842–8846. [Google Scholar] [CrossRef] [PubMed]
- Socha, R.; Juszczak, L.; Pietrzyk, S.; Fortuna, T. Antioxidant activity and phenolic composition of herbhoneys. Food Chem. 2009, 113, 568–574. [Google Scholar] [CrossRef]
- Perna, A.; Intaglietta, I.; Simonetti, A.; Gambacorta, E. A comparative study on phenolic profile, vitamin C content and antioxidant activity of Italian honeys of different botanical origin. Int. J. Food Sci. Technol. 2013, 48, 1899–1908. [Google Scholar] [CrossRef]
- Gašić, U.; Kečkeš, S.; Dabić, D.; Trifković, J.; Milojković-Opsenica, D.; Natić, M.; Tešic, Ž. Phenolic profile and antioxidant activity of Serbian polyfloral honeys. Food Chem. 2014, 145, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.A.; Villaverde, J.J.; Freire, C.S.; Domingues, M.R.M.; Neto, C.P.; Silvestre, A.J. Phenolic composition and antioxidant activity of Eucalyptus grandis, E. urograndis (E. grandis × E. urophylla) and E. maidenii bark extracts. Ind. Crop. Prod. 2012, 39, 120–127. [Google Scholar] [CrossRef]
- Foss, K.; Przybyłowicz, K.E.; Sawicki, T. Antioxidant Activity and Profile of Phenolic Compounds in Selected Herbal Plants. Plant Foods Hum. Nutr. 2022, 77, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Tounsi, S.; Wannes, W.A.; Ouerghemmi, I.; Jegham, S.; Njima, Y.B.; Hamdaoui, G.; Zemnib, H.; Moufida, B.M. Juice components and antioxidant capacity of four Tunisian citrus varieties. J. Sci. Food Agric. 2011, 91, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Rafa’t Abdul Hassan, M.J. Antimicrobial effect of bee honey on some pathogenic bacteria isolated from infected wounds in comparison to commonly used antibiotics. J. Basrah Res. 2011, 37, 78–83. [Google Scholar]
- Mandal, M.D.; Mandal, S. Honey: Its medicinal property and antibacterial activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef]
- Osho, A.; Bello, O. Antimicrobial effect of honey produced by on some common human pathogens. Asian J. Exp. Biol. Sci. 2010, 1, 875–880. [Google Scholar]
- Taormina, P.J.; Niemira, B.A.; Beuchat, L.R. Inhibitory activity of honey against foodborne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. Int. J. Food Microbiol. 2001, 69, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Al-Hasani, H.M.H. Study antibacterial activity of honey against some common species of pathogenic bacteria. Iraqi J. Sci. 2018, 59, 30–37. [Google Scholar]
- Hegazi, A.G.; Al Guthami, F.M.; Al Gethami, A.F.M.; Allah, F.M.A.; Saleh, A.A.; Fouad, E.A. Potential antibacterial activity of some Saudi Arabia honey. Veter-World 2017, 10, 233–237. [Google Scholar] [CrossRef]
- Ballal, M.; Shenoy, V.P.; Shivananda, P.; Bairy, I. Honey as an antimicrobial agent against Pseudomonas aeruginosa isolated from infected wounds. J. Glob. Infect. Dis. 2012, 4, 102–105. [Google Scholar] [CrossRef]
- Molan, P.C. The antibacterial activity of honey: 1. The nature of the antibacterial activity. Bee World 1992, 73, 5–28. [Google Scholar] [CrossRef]
- Dinkov, D. Perspection of Royal Jelly and Bee Honey as new antibacterial therapy agents of hospital infections. J. Clin. Path. Lab. Med. 2017, 1, 5–8. [Google Scholar]
- Irish, J.; Blair, S.; Carter, D.A. The Antibacterial Activity of Honey Derived from Australian Flora. PLoS ONE 2011, 6, e18229. [Google Scholar] [CrossRef]
- López-Hidalgo, C.; Meijón, M.; Lamelas, L.; Valledor, L. The Rainbow Protocol: A Sequential Method for Quantifying Pigments, SUGARS, Free Amino Acids, Phenolics, Flavonoids and MDA from a Small Amount of Sample; John Wiley & Sons, Ltd.: Chichester, UK, 2021; Volume 44, pp. 1977–1986. [Google Scholar] [CrossRef]
- Kadyan, S.; Rashmi, H.; Pradhan, D.; Kumari, A.; Chaudhari, A.; Deshwal, G.K. Effect of lactic acid bacteria and yeast fermentation on antimicrobial, antioxidative and metabolomic profile of naturally carbonated probiotic whey drink. LWT 2021, 142, 111059. [Google Scholar] [CrossRef]
- Dunseath, G.J.; Bright, D.; Jones, C.; Dowrick, S.; Cheung, W.; Luzio, S.D. Performance evaluation of a self-administered home oral glucose tolerance test kit in a controlled clinical research setting. Diabet. Med. 2019, 36, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Taleb, M.; Bakour, M.; Brahim, A.T.; Ghaber, S.M.; Abdem, S.A.E.; Mohamed, A.; Lyoussi, B. Molecular Characterization of Erythrocyte Glucose-6-Phosphate Dehydrogenase Deficiency in Different Ethnic Groups of Blood Donors in Mauritania. Front. Biosci. 2023, 15, 11. [Google Scholar] [CrossRef]
- Sunkesula, M.S.B.; Reddy, M.S. Physico-biochemical and bioactive properties of honey samples from southern india. J. Adv. Sci. Res. 2021, 12 (Suppl. S2), 83–87. [Google Scholar]
- Salim, S.N.M.; Ramakreshnan, L.; Fong, C.S.; Wahab, R.A.; Rasad, M.S.B.A. In-vitro cytotoxicity of Trigona itama honey against human lung adenocarcinoma epithelial cell line (A549). Eur. J. Integr. Med. 2019, 30, 100955. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Khalil, M.I.; Sulaiman, S.A.; Gan, S.H. Physicochemical and antioxidant properties of Malaysian honeys produced by Apis cerana, Apis dorsata and Apis mellifera. BMC Complement. Altern. Med. 2013, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- Mesbahi, M.A.; Ouahrani, M.R.; Rebiai, A.; Amara, D.G.; Chouikh, A. Characterization of Zygophyllum album L. monofloral honey from El-Oued, Algeria. Curr. Nutr. Food Sci. 2019, 15, 476–483. [Google Scholar] [CrossRef]
- Marinova, G.; Batchvarov, V. Evaluation of the methods for determination of the free radical scavenging activity by DPPH. Bulg. J. Agric. Sci. 2011, 17, 11–24. [Google Scholar]
- Lamuela-Raventós, R.M. Folin-Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. In Measurement of Antioxidant Activity & Capacity Recent Trends and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 107–115. [Google Scholar] [CrossRef]
- Seal, T. Quantitative HPLC analysis of phenolic acids, flavonoids and ascorbic acid in four different solvent extracts of two wild edible leaves, Sonchus arvensis and Oenanthe linearis of North-Eastern region in India. J. Appl. Pharm. Sci. 2016, 6, 157–166. [Google Scholar] [CrossRef]
HO1 | HO2 | HO3 | HO4 | HO5 | Average Standard Values | |
---|---|---|---|---|---|---|
Reduced sugar before hydrolysis (%) | 76.7 | 76.3 | 75.8 | 77.7 | 76.2 | ≥65 |
Fructose-to-glucose ratio (%) | 0.9 | 0.9 | 0.7 | 0.9 | 0.8 | 0.9–1.35 |
Sucrose (%) | 2.6 | 2.2 | 2.7 | 2.9 | 2.4 | ≤5 |
Honey Sample | Moisture (g/100 g) | pH | EC (mS/cm) | HMF (mg/kg) | Melanoidin |
---|---|---|---|---|---|
HO1 | 14.13 ± 0.06 | 4.20 ± 0.01 | 0.43 ± 0.03 | 17.67 ± 0.15 | 0.44 ± 0.01 |
HO2 | 16.07 ± 0.06 | 4.31 ± 0.01 | 0.46 ± 0.01 | 17.23 ± 0.25 | 0.25 ± 0.04 |
HO3 | 15.13 ± 0.06 | 4.02 ± 0.03 | 0.43 ± 0.01 | 18.13 ± 0.15 | 0.43 ± 0.01 |
HO4 | 13.53 ± 0.06 | 4.12 ± 0.01 | 0.39 ± 0.01 | 18.87 ± 0.06 | 0.37 ± 0.01 |
HO5 | 14.10 ± 0.10 | 4.23 ± 0.02 | 0.41 ± 0.01 | 18.30 ± 0.10 | 0.38 ± 0.01 |
Honey Sample | K (mg/kg) | Na (mg/kg) | Ca (mg/kg) | Fe (mg/kg) | Cu (mg/kg) | Zn (mg/kg) | Pb (mg/kg) | Ni (mg/kg) | Cd (mg/kg) |
---|---|---|---|---|---|---|---|---|---|
HO1 | 449.19 ± 0.29 | 822.24 ± 0.27 | 16.20 ± 0.10 | 1.85 ± 0.001 | 2.43 ± 0.01 | 4.48 ± 0.006 | 0 | 0.16 ± 0.001 | 0.002 ± 0.001 |
HO2 | 111.08 ± 0.01 | 268.36 ± 0.07 | 7.33 ± 0.06 | 2.64 ± 0.003 | 0.86 ± 0.003 | 0 | 0 | 0.022 ± 0.002 | 0 |
HO3 | 353.00 ± 0.10 | 187.72 ± 0.07 | 25.37 ± 0.06 | 8.87 ± 0.001 | 1.76 ± 0.01 | 0.34 ± 0.003 | 0 | 0 | 0 |
HO4 | 867.08 ± 0.03 | 140.68 ± 0.50 | 9.40 ± 0.10 | 6.10 ± 0.002 | 2.12 ± 0.002 | 0.18 ± 0.001 | 0 | 0 | 0.001 ± 0.001 |
HO5 | 243.87 ± 0.10 | 143.59 ± 0.01 | 9.67 ± 0.16 | 3.17 ± 0.001 | 1.16 ± 0.002 | 0.16 ± 0.004 | 0 | 0.25 ± 0.005 | 0.01 ± 0.001 |
Honey Sample | Antioxidant Activity (mg AAE/g) | DPPH IC 50 (mg/mL) | Total Phenol (mg GAE/100 g) |
---|---|---|---|
HO1 | 14.26 ± 0.03 | 18.59 | 120.33 ± 0.58 |
HO2 | 22.15 ± 0.04 | 28.53 | 65.56 ± 0.12 |
HO3 | 15.25 ± 0.15 | 17.78 | 90.80 ± 0.61 |
HO4 | 16.17 ± 0.06 | 7.87 | 80.60 ± 0.10 |
HO5 | 17.29 ± 0.06 | 95.62 | 55.33 ± 0.25 |
Honey Sample | Coumaric Acid µg/mL Sample | Catechin µg/mL Sample | Quercetin µg/mL Sample |
---|---|---|---|
HO1 | 1.37 | 0.00 | 0.00 |
HO2 | 0.65 | 2.68 | 0.00 |
HO3 | 0.00 | 0.00 | 0.30 |
HO4 | 0.38 | 0.00 | 0.00 |
HO5 | 2.34 | 1.80 | 0.00 |
Sample | HO1 | HO2 | HO3 | HO4 | HO5 | Control (−) | Control (+) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
75% | 50% | 25% | 75% | 50% | 25% | 75% | 50% | 25% | 75% | 50% | 25% | 75% | 50% | 25% | |||
Escherichia coli Inhibition (mm) | 10 | 12.4 | 9 | 11.2 | 12.6 | 11.1 | 12.2 | 14.4 | 9 | 12 | 13.6 | 11.2 | 11.7 | 12 | 11.5 | 0 | 12.6 |
Staphylococcus aureus Inhibition (mm) | 11.7 | 12 | 13.2 | 9.5 | 12.1 | 11.2 | 12.2 | 15.6 | 11.3 | 13.2 | 14.5 | 10.1 | 12.5 | 14.3 | 11.2 | 0 | 13.1 |
Candida albicans Inhibition (mm) | 9.3 | 12 | 11.6 | 13.1 | 14.4 | 12.6 | 13.5 | 16 | 12 | 13 | 14 | 12.5 | 9.1 | 13.8 | 12 | 0 | 14 |
Samples | Varietal Source | Location of Collection Salah Eddin (Iraq) |
---|---|---|
HO1 | Citrus flower | Samarra |
HO2 | Clover | Tikrit |
HO3 | Thistle | Balad |
HO4 | Wild flower | Baiji |
HO5 | Eucalypus | Al Duloiya |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hameed, O.M.; Shaker, O.M.; Ben Slima, A.; Makni, M. Biochemical Profiling and Physicochemical and Biological Valorization of Iraqi Honey: A Comprehensive Analysis. Molecules 2024, 29, 671. https://doi.org/10.3390/molecules29030671
Hameed OM, Shaker OM, Ben Slima A, Makni M. Biochemical Profiling and Physicochemical and Biological Valorization of Iraqi Honey: A Comprehensive Analysis. Molecules. 2024; 29(3):671. https://doi.org/10.3390/molecules29030671
Chicago/Turabian StyleHameed, Omar Mohammed, Ohood Mzahim Shaker, Ahlem Ben Slima, and Mohamed Makni. 2024. "Biochemical Profiling and Physicochemical and Biological Valorization of Iraqi Honey: A Comprehensive Analysis" Molecules 29, no. 3: 671. https://doi.org/10.3390/molecules29030671
APA StyleHameed, O. M., Shaker, O. M., Ben Slima, A., & Makni, M. (2024). Biochemical Profiling and Physicochemical and Biological Valorization of Iraqi Honey: A Comprehensive Analysis. Molecules, 29(3), 671. https://doi.org/10.3390/molecules29030671