Construction of Porphyrin-Based Bimetallic Nanomaterials with Photocatalytic Properties
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Characterization and Instruments
3.3. Synthesis of Tb-Eu-TCPP Nanosheets
3.4. Synthesis of Bulk-TCPP
3.5. Monitoring of Singlet Oxygen Using DPA as a Probe
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skrabalak, S.E.; Vaidhyanathan, R. The Chemistry of Metal Organic Framework Materials. Chem. Mater. 2023, 35, 5713–5722. [Google Scholar] [CrossRef]
- Razavi, S.A.A.; Morsali, A. Linker functionalized metal-organic frameworks. Coord. Chem. Rev. 2019, 399, 213820. [Google Scholar]
- Lin, R.-B.; Xiang, S.; Zhou, W.; Chen, B. Microporous Metal-Organic Framework Materials for Gas Separation. Chemistry 2020, 6, 337–363. [Google Scholar] [CrossRef]
- Lustig, P.W.; Mukherjee, S.; Rudd, N.D.; Desai, A.V.; Li, J.; Ghosh, S.K. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Q. Metal-Organic Framework Composites for Catalysis. Matter 2019, 1, 57–89. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, X.; Su, Z. Design of metal–organic framework composites in anti-cancer therapies. Nanoscale 2021, 13, 12102–12118. [Google Scholar] [CrossRef]
- Parrino, F.; D’Arienzo, M.; Mostoni, S.; Dirè, S.; Ceccato, R.; Bellardita, M.; Palmisano, L. Electron and Energy Transfer Mechanisms: The Double Nature of TiO2 Heterogeneous Photocatalysis. Top. Curr. Chem. 2021, 380, 2. [Google Scholar] [CrossRef]
- Skorupskii, G.; Trump, B.A.; Kasel, T.W.; Brown, C.M.; Hendon, C.H.; Dincă, M. Efficient and tunable one-dimensional charge transport in layered lanthanide metal–organic frameworks. Nat. Chem. 2019, 12, 131–136. [Google Scholar] [CrossRef]
- Sahoo, S.; Mondal, S.; Sarma, D. Luminescent Lanthanide Metal Organic Frameworks (Ln MOFs): A Versatile Platform towards Organomolecule Sensing. Coord. Chem. Rev. 2022, 470, 214707. [Google Scholar] [CrossRef]
- Pei, K.; Wu, J.; Zhao, M.; Feng, X.; Li, Y.; Ma, Y.; Li, H.; Zhai, T. Polarized Emission of Lanthanide Metal–Organic Framework (Ln-MOF) Crystals for High-Capacity Photonic Barcodes. Adv. Opt. Mater. 2021, 10, 2102143. [Google Scholar] [CrossRef]
- Younis, S.A.; Lim, D.-K.; Kim, K.-H.; Deep, A. Metalloporphyrinic metal-organic frameworks: Controlled synthesis for catalytic applications in environmental and biological media. Adv. Colloid Interface Sci. 2020, 277, 102108. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Umer, K.; Li, B.; Li, Z.; Li, K.; Sun, W.; Ding, Y. Metalloporphyrin based MOF-545 coupled with solid solution ZnxCd1-xS for efficient photocatalytic hydrogen production. J. Colloid Interface Sci. 2024, 653, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Leng, F.; Liu, H.; Ding, M.; Lin, Q.-P.; Jiang, H.-L. Boosting Photocatalytic Hydrogen Production of Porphyrinic MOFs: The Metal Location in Metalloporphyrin Matters. ACS Catal. 2018, 8, 4583–4590. [Google Scholar] [CrossRef]
- Wang, L.; Jin, P.; Duan, S.; She, H.; Huang, J.; Wang, Q. In-situ incorporation of Copper(II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction. Sci. Bull. 2019, 64, 926–933. [Google Scholar] [CrossRef]
- Kong, X.J.; He, T.; Zhou, J.; Zhao, C.; Li, T.C.; Wu, X.Q.; Wang, K.; Li, J.R. In Situ Porphyrin Substitution in a Zr(IV)-MOF for Stability Enhancement and Photocatalytic CO2 Reduction. Small 2021, 17, 2005357. [Google Scholar]
- Shi, Q.; Chen, M.-H.; Xiong, J.; Li, T.; Feng, Y.-Q.; Zhang, B. Porphyrin-Based Two-Dimensional Metal-Organic framework nanosheets for efficient photocatalytic CO2 transformation. Chem. Eng. J. 2024, 481, 148301. [Google Scholar] [CrossRef]
- Shang, S.; Xiong, W.; Yang, C.; Johannessen, B.; Liu, R.; Hsu, H.-Y.; Gu, Q.; Leung, M.K.H.; Shang, J. Atomically Dispersed Iron Metal Site in a Porphyrin-Based Metal–Organic Framework for Photocatalytic Nitrogen Fixation. ACS Nano 2021, 15, 9670–9678. [Google Scholar] [CrossRef]
- Qi, Y.; Cai, Z.; Zheng, C.; Cheng, Z.; Fan, S.; Feng, Y.-S. Bimetallic synergy significantly enhances the photocatalytic performance of lanthanide porphyrin-based MOFs: Efficient photocatalytic oxidation of benzyl alcohol and benzylamine under mild conditions in air. J. Catal. 2024, 429, 115226. [Google Scholar] [CrossRef]
- Schlachter, A.; Asselin, P.; Harvey, P.D. Porphyrin-Containing MOFs and COFs as Heterogeneous Photosensitizers for Singlet Oxygen-Based Antimicrobial Nanodevices. ACS Appl. Mater. Interfaces 2021, 13, 26651–26672. [Google Scholar] [CrossRef]
- Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the functional modification of graphene/graphene oxide: A review. RSC Adv. 2020, 10, 15328–15345. [Google Scholar] [CrossRef]
- Latorrata, S.; Balzarotti, R. Advances in Graphene and Graphene-Related Materials. Appl. Sci. 2023, 13, 8929. [Google Scholar] [CrossRef]
- Huang, H.; Shi, H.; Das, P.; Qin, J.; Li, Y.; Wang, X.; Su, F.; Wen, P.; Li, S.; Lu, P.; et al. The Chemistry and Promising Applications of Graphene and Porous Graphene Materials. Adv. Funct. Mater. 2020, 30, 1909035. [Google Scholar] [CrossRef]
- Li, B.; Wen, H.M.; Cui, Y.; Zhou, W.; Qian, G.; Chen, B. Emerging Multifunctional Metal–Organic Framework Materials. Adv. Mater. 2016, 28, 8819–8860. [Google Scholar] [CrossRef]
- Xue, Y.; Zhao, G.; Yang, R.; Chu, F.; Chen, J.; Wang, L.; Huang, X. 2D metal–organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications. Nanoscale 2021, 13, 3911–3936. [Google Scholar] [CrossRef]
- Chakraborty, G.; Park, I.-H.; Medishetty, R.; Vittal, J.J. Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chem. Rev. 2021, 121, 3751–3891. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Wan, Y.; Guo, J.; Zhao, M. Two-dimensional metal-organic framework nanosheet composites: Preparations and applications. Chin. Chem. Lett. 2022, 33, 693–702. [Google Scholar] [CrossRef]
- Cheng, K.; Li, Y.; Gao, Z.; Chen, F.; You, C.; Sun, B. Two-dimensional metal organic framework for effective gas absorption. Inorg. Chem. Commun. 2019, 101, 27–31. [Google Scholar] [CrossRef]
- Obregón, S.; Colón, G. Heterostructured Er3+ doped BiVO4 with exceptional photocatalytic performance by cooperative electronic and luminescence sensitization mechanism. Appl. Catal. B 2014, 158–159, 242–249. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, X.; Wei, L.; Yu, C.; Yi, J.; Ji, H. Regulate the crystal and optoelectronic properties of Bi2WO6 nanosheet crystals by Sm3+ doping for superior visible-light-driven photocatalytic performance. Appl. Surf. Sci. 2020, 508, 145309. [Google Scholar] [CrossRef]
- García, C.R.; Diaz-Torres, L.A.; Oliva, J.; Romero, M.T.; Hirata, G.A. Effect of Eu3+ concentration on the photocatalytic activity of LaSr2 AlO5 powders. Inorg. Chem. Commun. 2015, 59, 63–67. [Google Scholar] [CrossRef]
- Qin, L.; Cai, P.; Chen, C.; Cheng, H.; Wang, J.; Kim, S.I.; Seo, H.J. Enhanced Visible Light-Driven Photocatalysis by Eu3+-Doping in BaNb2V2O11 with Layered Mixed-Anion Structure. J. Phys. Chem. C 2016, 120, 12989–12998. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Cheng, F.; Zheng, Z.; Du, Y. Ultrathin lanthanide oxides nanomaterials: Synthesis, properties and applications. Sci. Bull. 2016, 61, 1422–1434. [Google Scholar] [CrossRef]
- He, T.; Ni, B.; Zhang, S.; Gong, Y.; Wang, H.; Gu, L.; Zhuang, J.; Hu, W.; Wang, X. Ultrathin 2D Zirconium Metal–Organic Framework Nanosheets: Preparation and Application in Photocatalysis. Small 2018, 14, 1703929. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, B.; Ma, H.; Zhang, L.; Jiang, H.; Song, H.; Zhang, L.; Luo, Y. A nanoscaled lanthanide metal–organic framework as a colorimetric fluorescence sensor for dipicolinic acid based on modulating energy transfer. J. Mater. Chem. C 2016, 4, 7294–7301. [Google Scholar] [CrossRef]
- Han, L.; Dong, X.Z.; Liu, S.G.; Wang, X.H.; Ling, Y.; Li, N.B.; Luo, H.Q. A multi-ratiometric fluorescence sensor integrated intrinsic signal amplification strategy for a sensitive and visual assay of the anthrax biomarker based on a bimetallic lanthanide metal–organic framework. Environ. Sci. Nano 2023, 10, 683–693. [Google Scholar] [CrossRef]
- Wu, M.; Jiang, Z.W.; Zhang, P.; Gong, X.; Wang, Y. Energy transfer-based ratiometric fluorescence sensing anthrax biomarkers in bimetallic lanthanide metal-organic frameworks. Sens. Actuators B 2023, 383, 133596. [Google Scholar] [CrossRef]
- Jiang, Z.W.; Zou, Y.C.; Zhao, T.T.; Zhen, S.J.; Li, Y.F.; Huang, C.Z. Controllable Synthesis of Porphyrin-Based 2D Lanthanide Metal–Organic Frameworks with Thickness- and Metal-Node-Dependent Photocatalytic Performance. Angew. Chem. Int. Ed. 2020, 59, 3300–3306. [Google Scholar] [CrossRef]
- Long, L.N.; Quang, N.T.; Khuong, T.T.; Kien, P.T.; Thang, N.H.; Van Khai, T. Controllable synthesis by hydrothermal method and optical properties of 2D MoS2/rGO nanocomposites. J. Sol-Gel Sci. Technol. 2023, 106, 699–714. [Google Scholar] [CrossRef]
- Gusain, D.; Bux, F. Synthesis of magnesium based metal organic framework by microwave hydrothermal process. Inorg. Chem. Commun. 2019, 101, 172–176. [Google Scholar] [CrossRef]
- Guan, X.; Yang, Z.; Zhou, M.; Yang, L.; Peymanfar, R.; Aslibeiki, B.; Ji, G. 2D MXene Nanomaterials: Synthesis, Mechanism, and Multifunctional Applications in Microwave Absorption. Small Struct. 2022, 3, 2200102. [Google Scholar] [CrossRef]
- Tsuji, M. Microwave-Assisted Synthesis of Metallic Nanomaterials in Liquid Phase. ChemistrySelect 2017, 2, 805–819. [Google Scholar] [CrossRef]
- Chahal, S.; Bandyopadhyay, A.; Dash, S.P.; Kumar, P. Microwave Synthesized 2D Gold and Its 2D-2D Hybrids. J. Phys. Chem. Lett. 2022, 13, 6487–6495. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zheng, X.; Chen, H.; Shi, Z.; Tang, H.; Gong, P.; Guo, L.; Li, M.; Huang, H.; Liu, Z. Synergistic effect of MOF-Directed acid-base pairs for enhanced proton conduction. Microporous Mesoporous Mater. 2021, 323, 111199. [Google Scholar] [CrossRef]
- Guo, H.; Zhu, Y.; Wang, S.; Su, S.; Zhou, L.; Zhang, H. Combining Coordination Modulation with Acid–Base Adjustment for the Control over Size of Metal–Organic Frameworks. Chem. Mater. 2012, 24, 444–450. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, A.; Rizvi, M.A.; Moosvi, S.K.; Krishnan, V.; Duvenhage, M.M.; Roos, W.D.; Swart, H.C. Surface, optical and photocatalytic properties of Rb doped ZnO nanoparticles. Appl. Surf. Sci. 2020, 514, 145930. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, S.; Wang, Y.; Xue, Y.D.; Chen, M. Preparation of dual-ligands Eu-MOF nanorods with dual fluorescence emissions for highly sensitive and selective ratiometric/visual fluorescence sensing phosphate. Sens. Actuators B 2022, 367, 132008. [Google Scholar] [CrossRef]
- Park, S.J.; Joo, M.H.; Maeng, J.Y.; Rhee, C.K.; Kang, J.-G.; Sohn, Y. Electrochemical Ce3+/Ce4+ and Eu2+/Eu3+ interconversion, complexation, and electrochemical CO2 reduction on thio-terpyridyl-derivatized Au electrodes. Appl. Surf. Sci. 2022, 576, 151793. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, H.; Wu, N.; Peng, L.; Wang, M.; Tian, J.; Xu, J.; Yang, W. Eu3+ Functionalized Nanoporous Covalent Organic Frameworks for Fluorescence Detection and Removal of Tetracycline. ACS Appl. Nano Mater. 2023, 6, 6627–6636. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, M.; Hui, Y.; Sun, L.; Hao, Y.; Ren, H.; Guo, H.; Yang, W. Polyarylether-based COFs coordinated by Tb3+ for the fluorescent detection of anthrax-biomarker dipicolinic acid. J. Mater. Chem. B 2024, 12, 466–474. [Google Scholar] [CrossRef]
- Zhu, H.; Yuan, J.; Tan, X.; Zhang, W.; Fang, M.; Wang, X. Efficient removal of Pb2+ by Tb-MOFs: Identifying the adsorption mechanism through experimental and theoretical investigations. Environ. Sci. Nano 2019, 6, 261–272. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, L.; Lv, Z.; Qi, Z.; Xu, Y.; Miao, T.; Fu, X.; Li, L. Coupled visible-light driven photocatalytic reactions over porphyrin-based MOF materials. Chem. Eng. J. 2022, 442, 136186. [Google Scholar] [CrossRef]
- Huong, T.T.; Anh, T.K.; Minh, L.Q. Fabrication and properties of highly luminescent materials from Tb(OH)3@SiO2 and Tb(OH)3@SiO2:Eu3+nanotubes. J. Phys. Conf. Ser. 2009, 187, 012064. [Google Scholar] [CrossRef]
- Belova, N.V.; Sliznev, V.V.; Christen, D. Infrared and Raman spectra of tris(dipivaloylmethanato) lanthanides, Ln(thd)3 (Ln = La, Nd, Eu, Gd, Tb, Ho, Er, Tm, Yb, Lu). J. Mol. Struct. 2017, 1132, 34–43. [Google Scholar] [CrossRef]
- La, D.D.; Thi, H.P.N.; Kim, Y.S.; Rananaware, A.; Bhosale, S.V. Facile fabrication of Cu(II)-porphyrin MOF thin films from tetrakis(4-carboxyphenyl)porphyrin and Cu(OH)2 nanoneedle array. Appl. Surf. Sci. 2017, 424, 145–150. [Google Scholar] [CrossRef]
- Xiong, J.; Yang, L.; Gao, L.X.; Zhu, P.P.; Chen, Q.; Tan, K.J. A highly fluorescent lanthanide metal-organic framework as dual-mode visual sensor for berberine hydrochloride and tetracycline. Anal. Bioanal. Chem. 2019, 411, 5963–5973. [Google Scholar] [CrossRef]
- Sebastian, N.; Yu, W.-C.; Balram, D.; Al-Mubaddel, F.S.; Noman, M.T. Functionalization of CNFs surface with β-cyclodextrin and decoration of hematite nanoparticles for detection and degradation of toxic fungicide carbendazim. Appl. Surf. Sci. 2022, 586, 152666. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, L.; Zhang, J.; Guo, G.; Jiang, X.; Zhang, Z.; Li, S. Highly sensitive fluorescent quantification of carbendazim by two-dimensional Tb-MOF nanosheets for food safety. Food Chem. 2023, 416, 135853. [Google Scholar] [CrossRef]
- Kabak, B.; Kendüzler, E. Europium metal-organic frameworks: Synthesis, characterization, and application as fluorescence sensors for the detection of Cu2+, Ni2+ cations and T3, T4 hormones. Talanta 2024, 266, 124944. [Google Scholar] [CrossRef]
- Yang, H.; Wu, Y.; Zhuang, Z.; Li, Y.; Chen, C. Factors Affecting the Catalytic Performance of Nano-catalysts. Chin. J. Chem. 2021, 40, 515–523. [Google Scholar] [CrossRef]
- Wang, X.; Chi, C.; Zhang, K.; Qian, Y.; Gupta, K.M.; Kang, Z.; Jiang, J.; Zhao, D. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat. Commun. 2017, 8, 14460. [Google Scholar] [CrossRef]
- Buglak, A.A.; Filatov, M.A.; Hussain, M.A.; Sugimoto, M. Singlet oxygen generation by porphyrins and metalloporphyrins revisited: A quantitative structure-property relationship (QSPR) study. J. Photochem. Photobiol. A 2020, 403, 112833. [Google Scholar] [CrossRef]
- Peng, Y.; Li, Y.; Ban, Y.; Yang, W. Two-Dimensional Metal–Organic Framework Nanosheets for Membrane-Based Gas Separation. Angew. Chem. Int. Ed. 2017, 56, 9757–9761. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, B.M.; Bennett, T.F.; Monsour, C.G.; Selke, M.; Liu, Y. Determination of Singlet Oxygen Quantum Yield of a Porphyrinic Metal–Organic Framework. J. Phys. Chem. C 2021, 125, 7392–7400. [Google Scholar] [CrossRef]
- Clement, S.; Sobhan, M.; Deng, W.; Camilleri, E.; Goldys, E.M. Nanoparticle-mediated singlet oxygen generation from photosensitizers. J. Photochem. Photobiol. A 2017, 332, 66–71. [Google Scholar] [CrossRef]
- Qiao, Y.; Sun, C.; Jian, J.; Xue, X.; Shi, J.; Zhou, T.; Xu, Z.; Che, G.; Zhao, L. Enhanced photocatalytic degradation performance of new and stable 2D/3D Ln-MOFs for tetracycline under visible light. J. Mol. Struct. 2023, 1293, 136235. [Google Scholar] [CrossRef]
- Ying, Y.; Lin, Z.; Huang, H. “Edge/Basal Plane Half-Reaction Separation” Mechanism of Two-Dimensional Materials for Photocatalytic Water Splitting. ACS Energy Lett. 2023, 8, 1416–1423. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H. 2D Metal–Organic Frameworks as Multifunctional Materials in Heterogeneous Catalysis and Electro/Photocatalysis. Adv. Mater. 2019, 31, 1900617. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Huang, W.; Jin, J.; Gan, Y.; Zhang, S. Oxygen-vacancy-mediated energy transfer for singlet oxygen generation by diketone-anchored MIL-125. Appl. Catal. B 2021, 292, 120197. [Google Scholar] [CrossRef]
- Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893–2939. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Hao, W.; Lv, X.; Wang, T.; Wang, X.; Du, Y.; Dou, S.; Xie, T.; Wang, D.; Wang, J. Bismuth Oxybromide with Reasonable Photocatalytic Reduction Activity under Visible Light. ACS Catal. 2014, 4, 954–961. [Google Scholar] [CrossRef]
- Ma, Y.; Li, M.; Jiang, J.; Li, T.; Wang, X.; Song, Y.; Dong, S. In-situ prepared MIL-53(Fe)/BiOI photocatalyst for efficient degradation of tetracycline under visible-light driven photo-Fenton system: Investigation of performance and mechanism. J. Alloys Compd. 2021, 870, 159524. [Google Scholar] [CrossRef]
- Buzzetti, L.; Crisenza, G.E.M.; Melchiorre, P. Mechanistic Studies in Photocatalysis. Angew. Chem. Int. Ed. 2019, 58, 3730–3747. [Google Scholar] [CrossRef] [PubMed]
- Demyanenko, A.V.; Bogomolov, A.S.; Dozmorov, N.V.; Svyatova, A.I.; Pyryaeva, A.P.; Goldort, V.G.; Kochubei, S.A.; Baklanov, A.V. Singlet Oxygen 1O2 in Photocatalysis on TiO2. Where Does It Come from? J. Phys. Chem. C 2019, 123, 2175–2181. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Z.; Yuan, M.; He, Z.; Wei, H.; Wang, X.; Song, J.; Jiang, L. Construction of Porphyrin-Based Bimetallic Nanomaterials with Photocatalytic Properties. Molecules 2024, 29, 708. https://doi.org/10.3390/molecules29030708
Ji Z, Yuan M, He Z, Wei H, Wang X, Song J, Jiang L. Construction of Porphyrin-Based Bimetallic Nanomaterials with Photocatalytic Properties. Molecules. 2024; 29(3):708. https://doi.org/10.3390/molecules29030708
Chicago/Turabian StyleJi, Zhiqiang, Mengnan Yuan, Zhaoqin He, Hao Wei, Xuemin Wang, Jianxin Song, and Lisha Jiang. 2024. "Construction of Porphyrin-Based Bimetallic Nanomaterials with Photocatalytic Properties" Molecules 29, no. 3: 708. https://doi.org/10.3390/molecules29030708
APA StyleJi, Z., Yuan, M., He, Z., Wei, H., Wang, X., Song, J., & Jiang, L. (2024). Construction of Porphyrin-Based Bimetallic Nanomaterials with Photocatalytic Properties. Molecules, 29(3), 708. https://doi.org/10.3390/molecules29030708