The Fabrication, Drug Loading, and Release Behavior of Porous Mannitol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Material Properties
2.1.1. Porous Mannitol before Drug Loading
2.1.2. Porous Mannitol after Drug Loading
2.2. Molecular Docking Analysis
2.3. Adsorption Kinetics and In Vitro Dissolution Behavior
2.3.1. Adsorption Kinetics Analysis
2.3.2. Dissolution Analysis
3. Materials and Methods
3.1. Materials
3.2. Fabrication of Porous Mannitol
3.3. Drug Loading Process
3.4. Characterization of the Material Properties of Prepared Samples
3.4.1. The Surface Tension of the Solution
3.4.2. Moisture Content, Particle Size, Flowability and Density
3.4.3. Atomic Force Microscopy (AFM)
3.4.4. Surface Morphology
3.4.5. Specific Surface Area (SA)
3.4.6. Fourier Transform Infrared Spectrometer (FTIR)
3.4.7. X-ray Diffraction (XRD)
3.4.8. Thermogravimetric (TG) and Differential Scanning Calorimetry (DSC)
3.5. Molecular Docking
3.6. Adsorption Kinetics and In Vitro Dissolution Experiment
3.6.1. Adsorption Kinetics
3.6.2. In Vitro Dissolution Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laffleur, F.; Keckeis, V. Advances in drug delivery systems: Work in progress still needed? Int. J. Pharm. 2020, 590, 119912. [Google Scholar] [CrossRef]
- Drozd, K.V.; Manin, A.N.; Boycov, D.E.; Perlovich, G.L. Simultaneous improvement of dissolution behavior and oral bioavailability of antifungal miconazole via cocrystal and salt formation. Pharmaceutics 2022, 14, 1107. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, J.; Xie, Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int. J. Pharm. 2019, 570, 118642. [Google Scholar] [CrossRef]
- Bhalani, D.V.; Nutan, B.; Kumar, A.; Singh Chandel, A.K. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines 2022, 10, 2055. [Google Scholar] [CrossRef]
- Kandemir, K.; Tomas, M.; McClements, D.J.; Capanoglu, E. Recent advances on the improvement of quercetin bioavailability. Trends Food Sci. Technol. 2022, 119, 192–200. [Google Scholar] [CrossRef]
- Bhakay, A.; Rahman, M.; Dave, R.; Bilgili, E. Bioavailability enhancement of poorly water-soluble drugs via nanocomposites: Formulation–processing aspects and challenges. Pharmaceutics 2018, 10, 86. [Google Scholar] [CrossRef]
- Tran, P.; Pyo, Y.-C.; Kim, D.-H.; Lee, S.-E.; Kim, J.-K.; Park, J.-S. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics 2019, 11, 132. [Google Scholar] [CrossRef]
- Damiri, F.; Rojekar, S.; Bachra, Y.; Varma, R.S.; Andra, S.; Balu, S.; Pardeshi, C.V.; Patel, P.J.; Patel, H.M.; Paiva-Santos, A.C.; et al. Polysaccharide-based nanogels for biomedical applications: A comprehensive review. J. Drug Deliv. Sci. Technol. 2023, 84, 104447. [Google Scholar] [CrossRef]
- Riikonen, J.; Xu, W.; Lehto, V.-P. Mesoporous systems for poorly soluble drugs—Recent trends. Int. J. Pharm. 2018, 536, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Bremmell, K.E.; Prestidge, C.A. Enhancing oral bioavailability of poorly soluble drugs with mesoporous silica based systems: Opportunities and challenges. Drug Dev. Ind. Pharm. 2018, 45, 349–358. [Google Scholar] [CrossRef]
- Esquivel-Castro, T.A.; Ibarra-Alonso, M.C.; Oliva, J.; Martínez-Luévanos, A. Porous aerogel and core/shell nanoparticles for controlled drug delivery: A review. Mat. Sci. Eng. C 2019, 96, 915–940. [Google Scholar] [CrossRef]
- Zhou, M.; Shen, L.; Lin, X.; Hong, Y.; Feng, Y. Design and pharmaceutical applications of porous particles. RSC Adv. 2017, 7, 39490–39501. [Google Scholar] [CrossRef]
- Bamdadi, M.; Bozorg, A.; Tavasoli, A.; Shateri, S.; Andache, M. Synthesis of meso/macroporous γ-alumina via aluminum pellet with controllable porosity: Ammonium bicarbonate influences through drying and calcination steps. ChemistrySelect 2019, 4, 5872–5879. [Google Scholar] [CrossRef]
- Gallo, L.; Verónica Ramírez-Rigo, M.; Bucalá, V. Development of porous spray-dried inhalable particles using an organic solvent-free technique. Powder Technol. 2019, 342, 642–652. [Google Scholar] [CrossRef]
- Boyandin, A.N.; Dvoinina, L.M.; Sukovatyi, A.G.; Sukhanova, A.A. Production of porous films based on biodegradable polyesters by the casting solution technique using a co-soluble porogen (Camphor). Polymers 2020, 12, 1950. [Google Scholar] [CrossRef] [PubMed]
- Hwang, K.M.; Nguyen, T.T.; Seok, S.H.; Jo, H.I.; Cho, C.H.; Hwang, K.M.; Kim, J.Y.; Park, C.W.; Rhee, Y.S.; Park, E.S. Swellable and porous bilayer tablet for gastroretentive drug delivery: Preparation and in vitro-in vivo evaluation. Int. J. Pharm. 2019, 572, 118783. [Google Scholar] [CrossRef] [PubMed]
- Zeman, J.; Pavloková, S.; Vetchý, D.; Staňo, A.; Moravec, Z.; Matějovský, L.; Pitschmann, V. Utilization of pharmaceutical technology methods for the development of innovative porous metasilicate pellets with a very high specific surface area for chemical warfare agents detection. Pharmaceutics 2021, 13, 1860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, J.; Qiao, F.; Liu, Y.; Zhou, Y.; Li, M.; Ai, M.; Yang, Y.; Sui, L.; Zhou, Z. Polymeric non-spherical coarse microparticles fabricated by double emulsion-solvent evaporation for simvastatin delivery. Colloids Surf. B 2021, 199, 111560. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Ebrahimi, A.; Langrish, T. Template-directed flower-like lactose with micro-meso-macroporous structure. Mater. Design 2017, 117, 178–184. [Google Scholar] [CrossRef]
- Tan, S.; Ebrahimi, A.; Liu, X.; Langrish, T. Role of templating agents in the spray drying and postcrystallization of lactose for the production of highly porous powders. Dry. Technol. 2018, 36, 1882–1891. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Liu, J.; Xu, X. Preparation, characterization, physicochemical property and potential application of porous starch: A review. Int. J. Biol. Macromol. 2020, 148, 1169–1181. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Saffari, M.; Langrish, T. Improving the dissolution rate of hydrophobic drugs through encapsulation in porous lactose as a new biocompatible porous carrier. Int. J. Pharm. 2017, 521, 204–213. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, J.; Yu, S.; Hong, S. pH- and temperature-responsive radially porous silica nanoparticles with high-capacity drug loading for controlled drug delivery. Nanotechnology 2020, 31, 335103. [Google Scholar] [CrossRef]
- Damiri, F.; Fatimi, A.; Santos, A.C.P.; Varma, R.S.; Berrada, M. Smart stimuli-responsive polysaccharide nanohydrogels for drug delivery: A review. J. Mater. Chem. B 2023, 11, 10538–10565. [Google Scholar] [CrossRef]
- Xi, Z.; Zhang, W.; Fei, Y.; Cui, M.; Xie, L.; Chen, L.; Xu, L. Evaluation of the solid dispersion system engineered from mesoporous silica and polymers for the poorly water soluble drug indomethacin: In vitro and in vivo. Pharmaceutics 2020, 12, 144. [Google Scholar] [CrossRef]
- Hanada, M.; Jermain, S.V.; Thompson, S.A.; Furuta, H.; Fukuda, M.; Williams, R.O. Ternary amorphous solid dispersions containing a high-viscosity polymer and mesoporous silica enhance dissolution performance. Mol. Pharmaceut. 2020, 18, 198–213. [Google Scholar] [CrossRef]
- Planinsek, O.; Kovacic, B.; Vrecer, F. Carvedilol dissolution improvement by preparation of solid dispersions with porous silica. Int. J. Pharm. 2011, 406, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.T.; Fule, R.; Sav, A.; Amin, P. Porous starch: A novel carrier for solubility enhancement of carbamazepine. AAPS PharmSciTech 2013, 14, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Saffari, M.; Ebrahimi, A.; Langrish, T. Nano-confinement of acetaminophen into porous mannitol through adsorption method. Micropor. Mesopor. Mat. 2016, 227, 95–103. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Liang, T.; Deng, Y.; Qi, X.; Jiang, H.; Wu, Y.; Gao, H. Hierarchical porous calcium carbonate microspheres as drug delivery vector. Prog. Nat. Sci.-Mater. 2017, 27, 674–677. [Google Scholar] [CrossRef]
- Ghosh Dastidar, D.; Saha, S.; Chowdhury, M. Porous microspheres: Synthesis, characterization and applications in pharmaceutical & medical fields. Int. J. Pharm. 2018, 548, 34–48. [Google Scholar]
- Fletes-Vargas, G.; Espinosa-Andrews, H.; Cervantes-Uc, J.M.; Limon-Rocha, I.; Luna-Barcenas, G.; Vazquez-Lepe, M.; Morales-Hernandez, N.; Jimenez-Avalos, J.A.; Mejia-Torres, D.G.; Ramos-Martinez, P.; et al. Porous chitosan hydrogels produced by physical crosslinking: Physicochemical, structural, and cytotoxic properties. Polymers 2023, 15, 2203. [Google Scholar] [CrossRef]
- Palugan, L.; Moutaharrik, S.; Cirilli, M.; Gelain, A.; Maroni, A.; Melocchi, A.; Zema, L.; Foppoli, A.; Cerea, M. Evaluation of different types of mannitol for dry granulation by roller compaction. J. Drug. Deliv. Sci. Technol. 2022, 75, 103619. [Google Scholar] [CrossRef]
- Saffari, M.; Ebrahimi, A.; Langrish, T. Highly-porous mannitol particle production using a new templating approach. Food Res. Int. 2015, 67, 44–51. [Google Scholar] [CrossRef]
- Al-Khattawi, A.; Koner, J.; Rue, P.; Kirby, D.; Perrie, Y.; Rajabi-Siahboomi, A.; Mohammed, A.R. A pragmatic approach for engineering porous mannitol and mechanistic evaluation of particle performance. Eur. J. Pharm. Biopharm. 2015, 94, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Li, F.; Yeh, S.; Moinuddin, S.M.; Xin, J.; Xu, J.; Chen, H.; Ling, B. Recent advances in enhancement of dissolution and supersaturation of poorly water-soluble drug in amorphous pharmaceutical solids: A review. AAPS PharmSciTech 2021, 23, 16. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Xu, J.; Xie, J.; Ma, Y.; Yue, P.; Zheng, Q.; Yang, M. Design and evaluation of nanocomposite microparticles to enhance dissolution and oral bioavailability of andrographolide. Powder Technol. 2018, 323, 219–229. [Google Scholar] [CrossRef]
- Sou, T.; Forbes, R.T.; Gray, J.; Prankerd, R.J.; Kaminskas, L.M.; McIntosh, M.P.; Morton, D.A.V. Designing a multi-component spray-dried formulation platform for pulmonary delivery of biopharmaceuticals: The use of polyol, disaccharide, polysaccharide and synthetic polymer to modify solid-state properties for glassy stabilisation. Powder Technol. 2016, 287, 248–255. [Google Scholar] [CrossRef]
- Sobulska, M.; Zbicinski, I. Advances in spray drying of sugar-rich products. Dry. Technol. 2020, 39, 1774–1799. [Google Scholar] [CrossRef]
- Almansour, K.; Ali, R.; Alheibshy, F.; Almutairi, T.J.; Alshammari, R.F.; Alhajj, N.; Arpagaus, C.; Elsayed, M.M.A. Particle engineering by nano spray drying: Optimization of process parameters with hydroethanolic versus aqueous solutions. Pharmaceutics 2022, 14, 800. [Google Scholar] [CrossRef]
- Zhu, W.F.; Zhu, L.; Li, Z.; Wu, W.T.; Guan, Y.M.; Chen, L.H.; Mao, Z.X.; Ming, L.S. The novel use of PVP K30 as templating agent in production of porous lactose. Pharmaceutics 2021, 13, 814. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Shen, Y.; Yu, D.; Yang, T.; Wu, M.; Yang, L.; Petru, M. Porous film coating enabled by polyvinyl pyrrolidone (PVP) for enhanced air permeability of fabrics: The effect of PVP molecule weight and dosage. Polymers 2020, 12, 2961. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lin, X.; Shen, L.; Hong, Y.; Feng, Y. Composite particles based on particle engineering for direct compaction. Int. J. Pharm. 2017, 519, 272–286. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xian, J.; Wu, F.; Lin, X.; Shen, L.; Feng, Y. Development of TCM-based composite particles for direct compaction by particle design. Powder Technol. 2018, 338, 481–492. [Google Scholar] [CrossRef]
- Vanhoorne, V.; Van Bockstal, P.J.; Van Snick, B.; Peeters, E.; Monteyne, T.; Gomes, P.; De Beer, T.; Remon, J.P.; Vervaet, C. Continuous manufacturing of delta mannitol by cospray drying with PVP. Int. J. Pharm. 2016, 501, 139–147. [Google Scholar] [CrossRef]
- Kawakamia, K.; Sumitania, C.; Yoshihashic, Y.; Yonemochic, E.; Teradac, K. Investigation of the dynamic process during spray-drying to improve aerodynamic performance of inhalation particles. Int. J. Pharm. 2010, 390, 250–259. [Google Scholar] [CrossRef]
- Li, Z.; Wu, F.; Hong, Y.; Shen, L.; Lin, X.; Feng, Y. The fundamental and functional property differences between HPMC and PVP co-processed herbal particles prepared by fluid bed coating. AAPS PharmSciTech 2020, 21, 201. [Google Scholar] [CrossRef]
- Nespi, M.; Kuhn, R.; Yen, C.-W.; Lubach, J.W.; Leung, D. Optimization of spray-drying parameters for formulation development at preclinical scale. AAPS PharmSciTech 2021, 23, 28. [Google Scholar] [CrossRef]
- Yang, Q.-Q.; Cai, W.-Q.; Wang, Z.-X.; Li, Y.; Zhang, Y.; Lin, X.; Su, B.-L.; Corke, H.; Zhang, B.-B. Structural characteristics, binding behaviors, and stability of ternary nanocomplexes of lecithin, polyvinylpyrrolidone, and curcumin. LWT 2023, 175, 114489. [Google Scholar] [CrossRef]
- Guimarães, T.F.; Lanchote, A.D.; da Costa, J.S.; Viçosa, A.L.; de Freitas, L.A.P. A multivariate approach applied to quality on particle engineering of spray-dried mannitol. Adv. Powder Technol. 2015, 26, 1094–1101. [Google Scholar] [CrossRef]
- Smith, R.R.; Shah, U.V.; Parambil, J.V.; Burnett, D.J.; Thielmann, F.; Heng, J.Y. The effect of polymorphism on surface energetics of D-mannitol polymorphs. AAPS J. 2017, 19, 103–109. [Google Scholar] [CrossRef]
- Ban, E.; An, S.H.; Park, B.; Park, M.; Yoon, N.-E.; Jung, B.H.; Kim, A. Improved solubility and oral absorption of emodin-nicotinamide cocrystal over emodin with PVP as a solubility enhancer and crystallization inhibitor. J. Pharm. Sci. 2020, 109, 3660–3667. [Google Scholar] [CrossRef] [PubMed]
- Meneguin, A.B.; da Silva Barud, H.; Sábio, R.M.; de Sousa, P.Z.; Manieri, K.F.; de Freitas, L.A.P.; Pacheco, G.; Alonso, J.D.; Chorilli, M. Spray-dried bacterial cellulose nanofibers: A new generation of pharmaceutical excipient intended for intestinal drug delivery. Carbohyd. Poly. 2020, 249, 116838. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, X.; Zhu, L.; Chen, F.; Liu, H.; Ming, L. New insights into the thermal degradation behavior of Hydroxypropyl-beta-cyclodextrin inclusion complexes containing carvacrol essential oil via thermogravimetric analysis. J. Therm. Anal. Calorim. 2022, 147, 11301–11312. [Google Scholar] [CrossRef]
- Singh, R.K.; Pandey, D.; Patil, T.; Sawarkar, A.N. Pyrolysis of banana leaves biomass: Physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses. Bioresour. Technol. 2020, 310, 123464. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, J.; Jiang, S.; Zeng, M. Effect of chitosan coating on the properties of nanoliposomes loaded with oyster protein hydrolysates: Stability during spray-drying and freeze-drying. Food Chem. 2022, 385, 132603. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, L.; Urosevic, M.; Nikolic, V.; Gajic, I.; Dinic, A.; Miljkovic, V.; Rakic, S.; Dokic, S.; Kesic, J.; Ilic-Stojanovic, S.; et al. The formulation of curcumin: 2-Hydroxypropyl-beta-cyclodextrin complex with smart hydrogel for prolonged release of curcumin. Pharmaceutics 2023, 15, 382. [Google Scholar] [CrossRef] [PubMed]
- Kamari, Y.; Ghiaci, M. Preparation and characterization of ibuprofen/modified chitosan/TiO2 hybrid composite as a controlled drug-delivery system. Micropor. Mesopor. Mat. 2016, 234, 361–369. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Y.; Wang, Y.; Ma, Z.; Huang, X. Quantitative study on coal and shale pore structure and surface roughness based on atomic force microscopy and image processing. Fuel 2019, 244, 78–90. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, Q.; Pu, H.; Tang, P.; Liu, Y.; Li, M.; Ren, X.; Li, H. Experimental and computer simulation investigations of ethyl red with modified β-cyclodextrins: Inclusion mechanism and structure characterization. Chem. Phys. Lett. 2020, 754, 137725. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Zhao, C. Applications of capillary action in drug delivery. iScience 2021, 24, 102810. [Google Scholar] [CrossRef]
- Mohammadzadeh-Asl, S.; Jafari, A.; Aghanejad, A.; Monirinasab, H.; Ezzati Nazhad Dolatabadi, J. Kinetic and thermodynamic studies of sunitinib malate interaction with albumin using surface plasmon resonance and molecular docking methods. Microchem. J. 2019, 150, 104089. [Google Scholar] [CrossRef]
- Saffari, M.; Ebrahimi, A.; Langrish, T. A novel formulation for solubility and content uniformity enhancement of poorly water-soluble drugs using highly-porous mannitol. Eur. J. Pharm. Sci. 2016, 83, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.M.; Sampaio, K.A.; Ceriani, R.; Verhé, R.; Stevens, C.; De Greyt, W.; Meirelles, A.J.A. Adsorption of carotenes and phosphorus from palm oil onto acid activated bleaching earth: Equilibrium, kinetics and thermodynamics. J. Food Eng. 2013, 118, 341–349. [Google Scholar] [CrossRef]
- Nakamura, S.; Kondo, S.; Mohri, A.; Sakamoto, T.; Yuasa, H. Preparation of controlled-release particles based on spherical porous silica used as the drug carrier by the dry coating method. AAPS PharmSciTech 2018, 19, 1493–1499. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Huang, H.; Dong, Y.; Sui, X.; Jian, B.; Zhu, W. A comparative study of the use of mesoporous carbon and mesoporous silica as drug carriers for oral delivery of the water-insoluble drug carvedilol. Molecules 2019, 24, 1770. [Google Scholar] [CrossRef] [PubMed]
- Maleki, M.; Amani-Tehran, M.; Latifi, M.; Mathur, S. Drug release profile in core–shell nanofibrous structures: A study on Peppas equation and artificial neural network modeling. Comput. Meth. Prog. Bio. 2014, 113, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Bayan, M.F.; Chandrasekaran, B.; Alyami, M.H. Development and characterization of econazole topical gel. Gels 2023, 9, 929. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, R.; Kimura, G.; Huwyler, J.; Hosoya, K.I.; Puchkov, M. Impact of insoluble separation layer mechanical properties on disintegration and dissolution kinetics of multilayer tablets. Pharmaceutics 2020, 12, 495. [Google Scholar] [CrossRef]
- Yokoyama, R.; Kimura, G.; Schleputz, C.M.; Huwyler, J.; Puchkov, M. Modeling of disintegration and dissolution behavior of mefenamic acid formulation using numeric solution of Noyes-Whitney equation with cellular automata on microtomographic and algorithmically generated surfaces. Pharmaceutics 2018, 10, 259. [Google Scholar] [CrossRef]
- Yi, L.; Cui, L.; Cheng, L.; Moczo, J.; Pukanszky, B. Levocetirizine-loaded electrospun fibers from Water-Soluble polymers: Encapsulation and drug release. Molecules 2023, 28, 4188. [Google Scholar] [CrossRef]
- Hattori, Y.; Haruna, Y.; Otsuka, M. Dissolution process analysis using model-free Noyes-Whitney integral equation. Colloids Surf. B. 2013, 102, 227–231. [Google Scholar] [CrossRef]
- Rezaeinia, H.; Ghorani, B.; Emadzadeh, B.; Tucker, N. Electrohydrodynamic atomization of balangu (Lallemantia royleana) seed gum for the fast-release of Mentha longifolia L. essential oil: Characterization of nano-capsules and modeling the kinetics of release. Food Hydrocoll. 2019, 93, 374–385. [Google Scholar] [CrossRef]
- Chen, H.; Li, Z.; Wang, F.; Wang, Z.; Li, H. Investigation of surface properties for electrolyte solutions: Measurement and prediction of surface tension for aqueous concentrated electrolyte solutions. J. Chem. Eng. Data 2017, 62, 3783–3792. [Google Scholar] [CrossRef]
- De Pauw, E.; Vervaet, C.; Vanhoorne, V. Formation of delta-mannitol by co-spray drying: Enhancing the tabletability of paracetamol/mannitol formulations. J. Drug Deliv. Sci. Technol. 2022, 77, 103907. [Google Scholar] [CrossRef]
- Ming, L.; Li, Z.; Wu, F.; Du, R.; Feng, Y. A two-step approach for fluidized bed granulation in pharmaceutical processing: Assessing different models for design and control. PLoS ONE 2017, 12, e0180209. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, X.; Huang, H.; Liu, A.; Liu, H.; Abid, N.; Ming, L. Chitosan/zein films incorporated with essential oil nanoparticles and nanoemulsions: Similarities and differences. Int. J. Bio. Macromol. 2022, 208, 983–994. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, X.; Yao, Z.; Chen, F.; Zhu, L.; Liu, H.; Ming, L. Chitosan functionalized cellulose nanocrystals for stabilizing Pickering emulsion: Fabrication, characterization and stability evaluation. Colloids Surf. A. 2022, 632, 127769. [Google Scholar] [CrossRef]
- Damiri, F.; Bachra, Y.; Berrada, M. Synthesis and characterization of 4-formylphenylboronic acid cross-linked chitosan hydrogel with dual action: Glucose-sensitivity and controlled insulin release. Chin. J. Anal. Chem. 2022, 50, 100092. [Google Scholar] [CrossRef]
- Liu, H.N.; Jiang, X.X.; Naeem, A.; Chen, F.C.; Wang, L.; Liu, Y.X.; Li, Z.; Ming, L.S. Fabrication and characterization of beta-cyclodextrin/mosla chinensis essential oil inclusion complexes: Experimental design and molecular modeling. Molecules 2022, 28, 37. [Google Scholar] [CrossRef] [PubMed]
- Ziyat, H.; Naciri Bennani, M.; Hajjaj, H.; Qabaqous, O.; Arhzaf, S.; Mekdad, S.; Allaoui, S. Adsorption of thymol onto natural clays of morocco: Kinetic and isotherm studies. J. Chem-NY. 2020, 2020, 4926809. [Google Scholar] [CrossRef]
- Ju, J.; Chen, X.; Xie, Y.; Yu, H.; Cheng, Y.; Qian, H.; Yao, W. Simple microencapsulation of plant essential oil in porous starch granules: Adsorption kinetics and antibacterial activity evaluation. J. Food Process. Pres. 2019, 43, e14156. [Google Scholar] [CrossRef]
- Rizzi, V.; Gubitosa, J.; Fini, P.; Romita, R.; Agostiano, A.; Nuzzo, S.; Cosma, P. Commercial bentonite clay as low-cost and recyclable “natural” adsorbent for the Carbendazim removal/recover from water: Overview on the adsorption process and preliminary photodegradation considerations. Colloids Surf. A. 2020, 602, 125060. [Google Scholar] [CrossRef]
- Wang, L.; She, X.; Chen, Z.; Quan, S.; Liu, Y.; Mai, X.; Yuan, T.; Fan, H. Preparation and characterization of a chiral molecularly imprinted polymer with a novel functional monomer for controlled release of S-sulpiride. Int. J. Pharm. 2021, 601, 120526. [Google Scholar] [CrossRef] [PubMed]
Materials | Yield (%) | MC (%) | ρb (g/mL) | ρt (g/mL) | ρtrue (g/mL) | CI | HR | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mannitol | / | 0.17 ± 0.03 | 0.5053 ± 0.0046 | 0.6829 ± 0.0062 | 1.4966 ± 0.0017 | 26.0019 ± 0.0007 | 1.3514 ± 0.0000 | |||||||
Mannitol-P0 | 85.36 | 0.12 ± 0.03 | 0.4513 ± 0.0099 | 0.6772 ± 0.0090 | 1.4785 ± 0.0015 | 33.3327 ± 2.3099 | 1.5012 ± 0.0531 | |||||||
Mannitol-P0’ | 85.36 | 0.15 ± 0.00 | 0.3600 ± 0.0106 | 0.6567 ± 0.0067 | 1.4919 ± 0.0026 | 45.1875 ± 1.0514 | 1.8248 ± 0.0347 | |||||||
Mannitol-P1 | 82.19 | 0.23 ± 0.03 | 0.3260 ± 0.0053 | 0.5495 ± 0.0114 | 1.4679 ± 0.0016 | 40.6660 ± 1.1534 | 1.6858 ± 0.0331 | |||||||
Mannitol-P3 | 72.36 | 0.58 ± 0.03 | 0.3153 ± 0.0064 | 0.5086 ± 0.0103 | 1.4615 ± 0.0057 | 37.9998 ± 0.0034 | 1.6129 ± 0.0001 | |||||||
Mannitol-P5 | 88.47 | 0.33 ± 0.03 | 0.3153 ± 0.0064 | 0.5682 ± 0.0145 | 1.4679 ± 0.0024 | 35.3318 ± 1.1549 | 1.5467 ± 0.0273 | |||||||
Materials | AR (°) | d (0.5) (μm) | Span | Uniformity | SA-BET (m2/g) | SA-BJH (m2/g) | PV (cm3/g) | PD (nm) | ||||||
Mannitol | 45.37 ± 0.65 | 75.687 ± 1.067 | 1.332 ± 0.021 | 0.402 ± 0.008 | 0.3978 ± 0.0051 | 0.4496 | 0.000508 | 45.217 | ||||||
Mannitol-P0 | 53.12 ± 0.47 | 64.972 ± 3.561 | 1.947 ± 0.129 | 0.624 ± 0.043 | 0.6015 ± 0.0041 | 0.4955 | 0.001369 | 110.515 | ||||||
Mannitol-P0’ | 54.20 ± 0.46 | 44.099 ± 1.434 | 2.874 ± 0.288 | 0.879 ± 0.081 | 0.7792 ± 0.0086 | 0.5175 | 0.001583 | 107.384 | ||||||
Mannitol-P1 | 55.46 ± 0.42 | 43.069 ± 1.712 | 2.199 ± 0.231 | 0.683 ± 0.070 | 1.3201 ± 0.0115 | 0.9639 | 0.002918 | 121.089 | ||||||
Mannitol-P3 | 53.93 ± 0.46 | 51.138 ± 0.667 | 1.913 ± 0.118 | 0.592 ± 0.034 | 2.1634 ± 0.0127 | 1.7327 | 0.003822 | 88.244 | ||||||
Mannitol-P5 | 53.40 ± 0.47 | 46.229 ± 1.043 | 1.968 ± 0.037 | 0.622 ± 0.009 | 1.1867 ± 0.0171 | 0.5206 | 0.001359 | 119.365 |
Materials | Surface Tension (mN/m) |
---|---|
Mannitol-P0 | 69.967 ± 0.802 |
1% PVP | 60.100 ± 0.854 |
3% PVP | 56.867 ± 0.896 |
5% PVP | 52.867 ± 0.569 |
Mannitol-P1 | 55.267 ± 1.168 |
Mannitol-P3 | 53.767 ± 0.451 |
Mannitol-P5 | 54.467 ± 1.050 |
Curcumin | Ibuprofen | ||||
---|---|---|---|---|---|
Adsorption Kinetics Model | Samples | Regression Equation | R2 | Regression Equation | R2 |
Quasi-first order | Mannitol | In (0.0046 − Qt) = −0.0039t − 5.3817 | 0.9093 | In (1.5700 − Qt) = −0.0069t + 0.4511 | 0.9153 |
Mannitol-P0 | In (0.0136 − Qt) = −0.0060t − 4.2977 | 0.5256 | In (2.1410 − Qt) = −0.0062t + 0.7613 | 0.3951 | |
Mannitol-P0’ | In (0.0080 − Qt) = −0.0039t − 4.8283 | 0.4910 | In (2.4250 − Qt) = −0.0077t + 0.8858 | 0.9986 | |
Mannitol-P1 | In (0.0205 − Qt) = −0.0125t − 3.8873 | 0.7874 | In (8.4220 − Qt) = −0.0070t + 2.1309 | 0.9419 | |
Mannitol-P3 | In (0.0194 − Qt) = −0.0102t − 3.9425 | 0.9924 | In (3.5690 − Qt) = −0.0083t + 1.2722 | 0.9476 | |
Mannitol-P5 | In (0.0203 − Qt) = −0.0080t − 3.8971 | 0.9711 | In (4.9970 − Qt) = −0.0057t + 1.6088 | 0.9068 | |
Quasi-second order | Mannitol | t/Qt = 216.4700t + 8282.9000 | 0.9467 | t/Qt = 0.6092t + 15.9730 | 0.9861 |
Mannitol-P0 | t/Qt = 76.0020t + 705.8300 | 0.9940 | t/Qt = 0.4323t + 13.2390 | 0.9611 | |
Mannitol-P0’ | t/Qt = 76.0020t + 705.8300 | 0.9873 | t/Qt = 0.3665t + 16.5580 | 0.9727 | |
Mannitol-P1 | t/Qt = 42.0340t + 2764.4000 | 0.9574 | t/Qt = 0.1080t + 6.2784 | 0.9751 | |
Mannitol-P3 | t/Qt = 43.1880t + 4627.8000 | 0.9438 | t/Qt = 0.2245t + 28.5270 | 0.8865 | |
Mannitol-P5 | t/Qt = 43.9050t + 3262.0000 | 0.9679 | t/Qt = 0.1844t + 9.7422 | 0.9824 |
Materials | Release in 120 min (%) |
---|---|
Mannitol-Cur | 28.39 ± 3.49 de |
Mannitol-P0-Cur | 37.38 ± 5.13 c |
Mannitol-P0’-Cur | 34.55 ± 6.18 cd |
Mannitol-P1-Cur | 62.44 ± 1.47 b |
Mannitol-P3-Cur | 69.44 ± 0.81 a |
Mannitol-P5-Cur | 69.82 ± 0.96 a |
Mannitol-Ibu | 27.65 ± 0.92 e |
Mannitol-P0-Ibu | 28.10 ± 1.76 e |
Mannitol-P0’-Ibu | 29.94 ± 2.53 de |
Mannitol-P1-Ibu | 68.22 ± 3.28 ab |
Mannitol-P3-Ibu | 71.58 ± 3.07 a |
Mannitol-P5-Ibu | 65.37 ± 0.78 ab |
Mathematical Models | |||
---|---|---|---|
Materials | Zero-Order | First-Order | Korsmeyer–Peppas |
Mannitol-Cur | Q = 0.2664t − 3.9342, R2 = 0.8594 | 100 − Q = 100exp(−0.0024t), R2 = 0.8979 | Q = 0.0777t0.4276, R2 = 0.9110 |
Mannitol-P0-Cur | Q = 0.2956t − 0.7457, R2 = 0.8396 | 100 − Q = 100exp(−0.0034t), R2 = 0.7848 | Q = 0.5762t0.3436, R2 = 0.8545 |
Mannitol-P0’-Cur | Q = 0.2888t − 0.0220, R2 = 0.8545 | 100 − Q = 100exp(−0.0034t), R2 = 0.8033 | Q = 0.6733t0.4106, R2 = 0.8809 |
Mannitol-P1-Cur | Q = 0.4894t + 23.9322, R2 = 0.5949 | 100 − Q = 100exp(−0.0177t), R2 = 0.7737 | Q = 10.1192t0.4282, R2 = 0.7967 |
Mannitol-P3-Cur | Q = 0.4973t + 24.0012, R2 = 0.6423 | 100 − Q = 100exp(−0.0178t), R2 = 0.8016 | Q = 10.0295t0.4323, R2 = 0.8273 |
Mannitol-P5-Cur | Q = 0.4949t + 17.5228, R2 = 0.7821 | 100 − Q = 100exp(−0.0132t), R2 = 0.8773 | Q = 6.6676t0.4990, R2 = 0.9074 |
Mannitol-Ibu | Q = 0.2718t − 0.9126, R2 = 0.9084 | 100 − Q = 100exp(−0.0030t), R2 = 0.8332 | Q = 0.4215t0.4923, R2 = 0.9126 |
Mannitol-P0-Ibu | Q = 0.2749t − 0.7369, R2 = 0.9172 | 100 − Q = 100exp(−0.0031t), R2 = 0.8408 | Q = 0.4192t0.3980, R2 = 0.9217 |
Mannitol-P0’-Ibu | Q = 0.3060t − 1.3295, R2 = 0.8954 | 100 − Q = 100exp(−0.0034t), R2 = 0.8220 | Q = 0.4570t0.3977, R2 = 0.8966 |
Mannitol-P1-Ibu | Q = 0.4878t + 23.2176, R2 = 0.6374 | 100 − Q = 100exp(−0.0169t), R2 = 0.7952 | Q = 9.7155t0.4341, R2 = 0.8312 |
Mannitol-P3-Ibu | Q = 0.4691t + 26.1433, R2 = 0.6080 | 100 − Q = 100exp(−0.0177t), R2 = 0.7570 | Q = 11.3715t0.4027, R2 = 0.8802 |
Mannitol-P5-Ibu | Q = 0.4841t + 17.8794, R2 = 0.8188 | 100 − Q = 100exp(−0.0129t), R2 = 0.8793 | Q = 6.8218t0.4916, R2 = 0.9365 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Luo, X.; Li, Q.; Jin, Z.; Naeem, A.; Zhu, W.; Chen, L.; Feng, Y.; Ming, L. The Fabrication, Drug Loading, and Release Behavior of Porous Mannitol. Molecules 2024, 29, 715. https://doi.org/10.3390/molecules29030715
Li Z, Luo X, Li Q, Jin Z, Naeem A, Zhu W, Chen L, Feng Y, Ming L. The Fabrication, Drug Loading, and Release Behavior of Porous Mannitol. Molecules. 2024; 29(3):715. https://doi.org/10.3390/molecules29030715
Chicago/Turabian StyleLi, Zhe, Xiaosui Luo, Qiong Li, Zhengji Jin, Abid Naeem, Weifeng Zhu, Lihua Chen, Yi Feng, and Liangshan Ming. 2024. "The Fabrication, Drug Loading, and Release Behavior of Porous Mannitol" Molecules 29, no. 3: 715. https://doi.org/10.3390/molecules29030715
APA StyleLi, Z., Luo, X., Li, Q., Jin, Z., Naeem, A., Zhu, W., Chen, L., Feng, Y., & Ming, L. (2024). The Fabrication, Drug Loading, and Release Behavior of Porous Mannitol. Molecules, 29(3), 715. https://doi.org/10.3390/molecules29030715