Study on the Physical and Rheological Characterisation of Low-Density Polyethylene (LDPE)/Recycled Crumb Rubber (RCR) on Asphalt Binders
Abstract
:1. Introduction
2. Results and Discussion
2.1. Routine Performance Characterisation
2.2. Ease of Construction
2.3. Rheological Properties
2.3.1. Temperature Scanning
2.3.2. Frequency Scanning
2.3.3. MSCR
2.3.4. BBR
3. Materials and Methods
3.1. Materials
3.2. Sample Preparation
3.2.1. Activation Pre-Treatment of CR and Preparation of LDPE
3.2.2. Preparation of LDPE/RCR-Modified Asphalt (L-RCRMA)
3.3. Testing and Characterisation
4. Conclusions
- (1)
- Rheological experiments showed that the pre-treatment of CR degraded the high-temperature performance of modified asphalt but improved its low-temperature performance and storage stability. On the contrary, with an increase in LDPE doping, the high-temperature rheological properties of L-RCRMA showed an increasing trend and the low-temperature rheological properties showed a decreasing trend, but the low-temperature rheological properties decreased less significantly.
- (2)
- The incorporation of RCR and LDPE improved the rotational viscosity of L-RCRMA at all temperatures, which was significantly better than that of CRMA.
- (3)
- The Han curve showed that in the range of 0.5% to 2.5%, the incorporation of LDPE had no negative effect on the original good compatibility of RCRMA, and the Han curve of L-RCRMA remained smooth and continuous.
- (4)
- Compared with RCRMA, 1.5% L-RCRMA has obvious high-temperature stability and maintained good compatibility; compared with CRMA, it has obvious low-temperature crack resistance, is environmentally friendly, and has excellent performance as a new road material. In summary, we suggest that the ideal dosage of RCR is 20%, and the ideal dosage of LDPE is 1.5%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, L.; Zheng, M.; Wang, C. Current status and development of terminal blend tyre rubber modified asphalt. Constr. Build. Mater. 2016, 128, 399–409. [Google Scholar] [CrossRef]
- Lo Presti, D. Recycled Tyre Rubber Modified Bitumens for road asphalt mixtures: A literature review. Constr. Build. Mater. 2013, 49, 863–881. [Google Scholar] [CrossRef]
- Cong, P.; Xun, P.; Xing, M.; Chen, S. Investigation of asphalt binder containing various crumb rubbers and asphalts. Constr. Build. Mater. 2013, 40, 632–641. [Google Scholar] [CrossRef]
- Huang, F.; Shangguan, L.-J. Morphology and Mechanical Properties of Low Density Polyethylene/Multi-walled Carbon Nanotubes Nanocomposites. Mater. Sci. 2017, 23, 129–132. [Google Scholar] [CrossRef]
- Zhao, Z.Y. Experimental study on durability of rubber powder-LDPE composite modified asphalt and its mixture. Highw. Eng. 2017, 42, 249–254+260. [Google Scholar]
- Farahani, H.Z.; Palassi, M.; Sadeghpour Galooyak, S. Thermal analysis of bitumen modified with LDPE and CR. Pet. Sci. Technol. 2017, 35, 1570–1575. [Google Scholar] [CrossRef]
- García-Morales, M.; Partal, P.; Navarro, F.J.; Martínez-Boza, F.J.; Gallegos, C. Processing, rheology, and storage stability of recycled EVA/LDPE modified bitumen. Polym. Eng. Sci. 2007, 47, 181–191. [Google Scholar] [CrossRef]
- Porto, M.; Loise, V.; Teltayev, B.; Calandra, P.; De Santo, M.P.; Oliviero Rossi, C.; Caputo, P. Synergic effects between vacuum residue and polymers for preparing high-performance bitumens. Colloids Surf. A Physicochem. Eng. Asp. 2023, 676, 132149. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, H.; Chen, Y.; Ji, J.; You, Z.; Zhang, Y. A review on compatibility between crumb rubber and asphalt binder. Constr. Build. Mater. 2021, 297, 123820. [Google Scholar] [CrossRef]
- Nanjegowda, V.H.; Biligiri, K.P. Utilization of high contents of recycled tire crumb rubber in developing a modified-asphalt-rubber binder for road applications. Resour. Conserv. Recycl. 2023, 192, 106909. [Google Scholar] [CrossRef]
- Li, J.; Xiao, X.; Chen, Z.; Xiao, F.; Amirkhanian, S.N. Internal de-crosslinking of scrap tire crumb rubber to improve compatibility of rubberized asphalt. Sustain. Mater. Technol. 2022, 32, e00417. [Google Scholar] [CrossRef]
- Genet, M.B.; Sendekie, Z.B.; Jembere, A.L. Investigation and optimization of waste LDPE plastic as a modifier of asphalt mix for highway asphalt: Case of Ethiopian roads. Case Stud. Chem. Environ. Eng. 2021, 4, 100150. [Google Scholar] [CrossRef]
- Du, Z.Y.; Yuan, J.; Xiao, F.P. Improvement of evaluation method for low temperature performance of low density polyethylene modified asphalt. J. Constr. Mater. 2021, 24, 1032–1038. [Google Scholar]
- Wen, Y.; Liu, Q.; Chen, L.; Pei, J.; Zhang, J.; Li, R. Review and comparison of methods to assess the storage stability of terminal blend rubberized asphalt binders. Constr. Build. Mater. 2020, 258, 119586. [Google Scholar] [CrossRef]
- Li, F.; Zhang, X.; Wang, L.; Zhai, R. The preparation process, service performances and interaction mechanisms of crumb rubber modified asphalt (CRMA) by wet process: A comprehensive review. Constr. Build. Mater. 2022, 354, 129168. [Google Scholar] [CrossRef]
- Ren, S.; Liu, X.; Lin, P.; Erkens, S. Influence of swelling-degradation degree on rheological properties, thermal pyrolysis kinetics, and emission components of waste crumb rubber modified bitumen. Constr. Build. Mater. 2022, 337, 127555. [Google Scholar] [CrossRef]
- Lo Presti, D.; Izquierdo, M.A.; Jiménez del Barco Carrión, A. Towards storage-stable high-content recycled tyre rubber modified bitumen. Constr. Build. Mater. 2018, 172, 106–111. [Google Scholar] [CrossRef]
- Yang, H.; Dong, R. Investigating the properties of rejuvenated asphalt with the modified rejuvenator prepared by waste cooking oil and waste tire crumb rubber. Constr. Build. Mater. 2022, 315, 125692. [Google Scholar] [CrossRef]
- Yan, K.Z.; Li, H.L.; Hong, Z.; Li, G. Rheological properties of LDPE/EVA composite modified asphalt. J. Constr. Mater. 2022, 25, 408–414. [Google Scholar]
- Zhang, S.; Yang, Y.; Guo, R.; Yan, Y.; Huan, H.; Wan, B. Study on the Low-Temperature Pre-Desulfurization of Crumb Rubber-Modified Asphalt. Polymers 2023, 15, 2273. [Google Scholar] [CrossRef]
- Ghani, U.; Zamin, B.; Tariq Bashir, M.; Ahmad, M.; Sabri, M.M.S.; Keawsawasvong, S. Comprehensive Study on the Performance of Waste HDPE and LDPE Modified Asphalt Binders for Construction of Asphalt Pavements Application. Polymers 2022, 14, 3673. [Google Scholar] [CrossRef] [PubMed]
- Nisar, J.; Shafi Mir, M. Vivek, Study on optimal preparation and rheological characteristics of waste low density polyethylene (LDPE)/styrene butadiene styrene (SBS) composite modified asphalt binder. Constr. Build. Mater. 2023, 407, 133459. [Google Scholar] [CrossRef]
- He, B.; Xiao, Y.; Li, Y.; Fu, M.; Yu, J.; Zhu, L. Preparation and characterization of lignin grafted layered double hydroxides for sustainable service of bitumen under ultraviolet light. J. Clean. Prod. 2022, 350, 131536. [Google Scholar] [CrossRef]
- Qian, C.; Fan, W.; Yang, G.; Han, L.; Xing, B.; Lv, X. Influence of crumb rubber particle size and SBS structure on properties of CR/SBS composite modified asphalt. Constr. Build. Mater. 2020, 235, 117517. [Google Scholar] [CrossRef]
- Yang, X.; Shen, A.; Li, B.; Wu, H.; Lyu, Z.; Wang, H.; Lyu, Z. Effect of microwave-activated crumb rubber on reaction mechanism, rheological properties, thermal stability, and released volatiles of asphalt binder. J. Clean. Prod. 2020, 248, 119230. [Google Scholar] [CrossRef]
- Hong, Z.; Yan, K.; Ge, D.; Wang, M.; Li, G.; Li, H. Effect of styrene-butadiene-styrene (SBS) on laboratory properties of low-density polyethylene (LDPE)/ethylene-vinyl acetate (EVA) compound modified asphalt. J. Clean. Prod. 2022, 338, 130677. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Li, Z. Performance Evaluation of Desulfurized Rubber Asphalt Based on Rheological and Environmental Effects. J. Mater. Civ. Eng. 2020, 32, 04019330. [Google Scholar] [CrossRef]
- Kocak, S.; Kutay, M.E. Fatigue performance assessment of recycled tire rubber modified asphalt mixtures using viscoelastic continuum damage analysis and AASHTOWare pavement ME design. Constr. Build. Mater. 2020, 248, 118658. [Google Scholar] [CrossRef]
- Xu, P.; Gao, J.; Pei, J.; Chen, Z.; Zhang, J.; Li, R. Research on highly dissolved rubber asphalt prepared using a composite waste engine oil addition and microwave desulfurization method. Constr. Build. Mater. 2021, 282, 122641. [Google Scholar] [CrossRef]
- Zhao, M.; Dong, R.; Chi, Z.; Aljarmouzi, A.; Li, J. Effect of process variables on the chemical characteristics of crumb rubber desulfurized by waste cooking oil and its desulfurization mechanism. Constr. Build. Mater. 2021, 311, 125361. [Google Scholar] [CrossRef]
- Mirwald, J.; Hofko, B.; Pipintakos, G.; Blom, J.; Soenen, H. Comparison of microscopic techniques to study the diversity of the bitumen microstructure. Micron 2022, 159, 103294. [Google Scholar] [CrossRef] [PubMed]
- Niu, F.F.; Yan, L.J.; Lv, P.; Zhang, X.; Wang, M.; Kong, J.; Bao, W.; Chang, L. Preparation and analysis of coal tar pitch-based carbon aerogel microspheres. J. Chem. Eng. 2022, 73, 5605–5614. [Google Scholar]
- Chen, Z.; Pei, J.; Wang, T.; Amirkhanian, S. High temperature rheological characteristics of activated crumb rubber modified asphalts. Constr. Build. Mater. 2019, 194, 122–131. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, C.; Gao, F.; Li, T.-S.; Tan, Y.-Q. Using DSR and MSCR tests to characterize high temperature performance of different rubber modified asphalt. Constr. Build. Mater. 2016, 127, 466–474. [Google Scholar] [CrossRef]
- Zhao, M.; Dong, R. Reaction mechanism and rheological properties of waste cooking oil pre-desulfurized crumb tire rubber/SBS composite modified asphalt. Constr. Build. Mater. 2021, 274, 122083. [Google Scholar] [CrossRef]
- Garilli, E.; Autelitano, F.; Giuliani, F. Use of bending beam rheometer test for rheological analysis of asphalt emulsion-cement mastics in cold in-place recycling. Constr. Build. Mater. 2019, 222, 484–492. [Google Scholar] [CrossRef]
Parameters | Heating Reduction /% | Ash Content /% | Iron Content /% | Fibre Content /% | Sieve Residue /% | Bulk Density /kg/m3 |
---|---|---|---|---|---|---|
Test Value | 0.62 | 8.75 | 0.029 | 0 | 0.014 | 314 |
Experimental Methods | GB/T19208-2008 | GB/T4498-2013 | GB/T19208-2008 | GB/T19208-2008 | GB/T19208-2008 | GB/T19208-2008 |
Parameters | Density /g·cm−3 | Melting Point /°C | Tensile Strength /MPa |
---|---|---|---|
Test Value | 0.936 | 123 | 9.2 |
Experimental Methods | GB/T2559-2005 | GB/T8026-2014 | ASTM D882 |
Parameters | Density /g·cm−3 | Viscosity /m2·s−1 (100 °C) | Saturated Phenol /% |
---|---|---|---|
Test Value | 1.02 | 40 | 87 |
Experimental Methods | GB/T1884-92 | GB/T265-88 | ASM-IP-2 |
Parameters | Softening Point /°C | Ductility (15 °C)/cm | Penetration (25 °C)/mm | Flash Point /°C |
---|---|---|---|---|
Test Value | 45.8 | >100 | 70.5 | 286 |
Standard Value | ≥45 | ≥100 | 60~80 | ≥260 |
Experimental Methods | GB/T0606-2011 | GB/T0605-2011 | GB/T0604-2011 | GB/T0611-2011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Yan, Y.; Yang, Y.; Guo, R. Study on the Physical and Rheological Characterisation of Low-Density Polyethylene (LDPE)/Recycled Crumb Rubber (RCR) on Asphalt Binders. Molecules 2024, 29, 716. https://doi.org/10.3390/molecules29030716
Zhang S, Yan Y, Yang Y, Guo R. Study on the Physical and Rheological Characterisation of Low-Density Polyethylene (LDPE)/Recycled Crumb Rubber (RCR) on Asphalt Binders. Molecules. 2024; 29(3):716. https://doi.org/10.3390/molecules29030716
Chicago/Turabian StyleZhang, Shibo, Yong Yan, Yang Yang, and Rongxin Guo. 2024. "Study on the Physical and Rheological Characterisation of Low-Density Polyethylene (LDPE)/Recycled Crumb Rubber (RCR) on Asphalt Binders" Molecules 29, no. 3: 716. https://doi.org/10.3390/molecules29030716
APA StyleZhang, S., Yan, Y., Yang, Y., & Guo, R. (2024). Study on the Physical and Rheological Characterisation of Low-Density Polyethylene (LDPE)/Recycled Crumb Rubber (RCR) on Asphalt Binders. Molecules, 29(3), 716. https://doi.org/10.3390/molecules29030716